2019年高考试题汇编理科数学---数列.doc

合集下载

2019年全国高考理科数学试题分类汇编1:集合(K12教育文档)

2019年全国高考理科数学试题分类汇编1:集合(K12教育文档)

2019年全国高考理科数学试题分类汇编1:集合(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年全国高考理科数学试题分类汇编1:集合(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年全国高考理科数学试题分类汇编1:集合(word版可编辑修改)的全部内容。

2019年全国高考理科数学试题分类汇编1:集合一、选择题1 .(2019年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U =,集合{}=12A ,,{}=23B ,,则()=U A B ( )A 。

{}134,,B 。

{}34, C. {}3 D 。

{}4【答案】D2 .(2019年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则A.()01,B.(]02, C 。

()1,2 D 。

(]12, 【答案】D3 .(2019年普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A ) (,2]-∞ (B) [1,2] (C) [2,2] (D) [—2,1]【答案】D4 .(2019年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S ,T ,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构".以下集合对不是“保序同构"的是( )A 。

(完整word版)数列高考真题专项练习2019(word文档良心出品)

(完整word版)数列高考真题专项练习2019(word文档良心出品)

数列高考真题专项练习2019
1. (2018)记Sn为等差数列{an}的前n项和, 已知a1=﹣7, S3=﹣15.
(1)求{a n}的通项公式;
(2)求Sn, 并求Sn的最小值.
2. (2017)已知等差数列{an}的前n项和为Sn, 等比数列{bn}的前n项和为Tn, a1=
﹣1, b1=1, a2+b2=2.
(1)若a3+b3=5, 求{bn}的通项公式;
(2)若T3=21, 求S3.
3. (2016)等差数列{an}中, a3+a4=4, a5+a7=6.
(Ⅰ)求{a n}的通项公式;
(Ⅱ)设bn=[an], 求数列{bn}的前10项和, 其中[x]表示不超过x的最大整数, 如
[0.9]=0, [2.6]=2.
4. (2015)数列{an}满足a1=1, a2=2, an+2=2an+1﹣an+2.
(Ⅰ)设bn=an+1﹣an, 证明{bn}是等差数列;
(Ⅱ)求{an}的通项公式.
5. (2014)已知等差数列{an}的公差不为零, a1=25, 且a1, a11, a13成等比数列. (Ⅰ)求{a n}的通项公式;
(Ⅱ)求a1+a4+a7+…+a3n﹣2.
6. (2013)等差数列{an}中, a7=4, a19=2a9,
(Ⅰ)求{a n}的通项公式;
(Ⅱ)设bn=/, 求数列{bn}的前n项和Sn.
7. (2012)已知数列{an}中, a1=1, 前n项和/
(1)求a2, a3;
(2)求{an}的通项公式.
8. (2011)设等比数列{an}的前n项和为Sn, 已知a2=6, 6a1+a3=30, 求an和Sn.。

专题06数列解答题-2013-2022十年全国高考数学真题分类汇编(全国通用版)(原卷版)

专题06数列解答题-2013-2022十年全国高考数学真题分类汇编(全国通用版)(原卷版)

2013-2022十年全国高考数学真题分类汇编专题06数列解答题1.(2022年全国甲卷理科·第17题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.2.(2022新高考全国II 卷·第17题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.3.(2022新高考全国I 卷·第17题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .4.(2021年新高考全国Ⅱ卷·第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==.(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值.5.(2021年新高考Ⅰ卷·第17题)已知数列{}n a 满足11a =,11,,2,.n n n a n a a n +⎧+=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.6.(2020年新高考I 卷(山东卷)·第18题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .7.(2020新高考II 卷(海南卷)·第18题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.8.(2021年高考全国乙卷理科·第19题)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知12nb +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.9.(2021年高考全国甲卷理科·第18题)已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a 是等差数列:②数列是等差数列;③213aa =.注:若选择不同的组合分别解答,则按第一个解答计分.10.(2020年高考数学课标Ⅰ卷理科·第17题)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.11.(2020年高考数学课标Ⅲ卷理科·第17题)设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .12.(2019年高考数学课标全国Ⅱ卷理科·第19题)已知数列{}n a 和{}n b 满足11a =,10b =,1434n n n a a b +=-+,1434n n n b b a +=--.()1证明:{}n n a b +是等比数列,{}n n a b -是等差数列;()2求{}n a 和{}n b 的通项公式.13.(2018年高考数学课标Ⅲ卷(理)·第17题)(12分)等比数列{}n a 中,11a =,534a a =(1)求{}n a 的通项公式;的(2)记n S 为{}n a 的前n 项和,若63m S =,求m .(1)12n n a -=或()12n n a -=-;(2)6m =14.(2018年高考数学课标Ⅱ卷(理)·第17题)(12分)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.15.(2016高考数学课标Ⅲ卷理科·第17题)已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(Ⅰ)证明{}n a 是等比数列,并求其通项公式;(Ⅱ)若53132S =,求λ.16.(2016高考数学课标Ⅱ卷理科·第17题)(本题满分12分)n S 为等差数列{}n a 的前n 项和,且17=128.a S ,=记[]=lg n nb a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg 99=1,.(I)求111101b b b ,,;(II)求数列{}n b 的前1 000项和.17.(2015高考数学新课标1理科·第17题)(本小题满分12分)n S 为数列{}n a 的前n 项和.已知20,24 3.n n n n a a a S >+=+(Ⅰ)求{}n a 的通项公式:(Ⅱ)设112n n n b a a +=,求数列{}n b 的前n 项和18.(2014高考数学课标2理科·第17题)(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1231112na a a ++<…+19.(2014高考数学课标1理科·第17题)已知数列的前项和为,,,,其中为常数.(1)证明:;{}n a n n S 11a =0n a ≠11n n n a a S +=-λλ2n n a a l +-={}n a(2)是否存在,使得为等差数列?并说明理由.。

2019年高考真题汇编理科数学(解析版)4:数列

2019年高考真题汇编理科数学(解析版)4:数列

2018 高考真题分类汇编:数列一、选择题1.【 2018高考真题重庆理1】在等差数列 { a n } 中,a2 1 , a4 5 则 { a n } 的前 5 项和 S5 =A.7B.15C.20D.25【答案】 B【解析】因为 a2 1 , a4 5 ,所以 a1a5a2a46,所以数列的前 5 项和5(a1 a5 ) 5( a2a4 ) 56 15, 选 B. S52 2 22.【2018 高考真题浙江理7】设 S n是公差为 d( d≠ 0)的无穷等差数列﹛an﹜的前 n 项和,则下列命题错误的是A. 若 d< 0,则数列﹛ S ﹜有最大项nB. 若数列﹛ Sn﹜有最大项,则d< 0C. 若数列﹛ Sn﹜是递增数列,则对任意n N *,均有 S n0D. 若对任意n N *,均有 S n 0 ,则数列﹛ Sn﹜是递增数列【答案】 C【解析】选项 C显然是错的,举出反例:— 1,0,1,2,3,⋯.满足数列 {S n} 是递增数列,但是 Sn> 0 不成立.故选 C。

3. 【 2018 高考真题新课标理5】已知a n为等比数列, a4a7 2 , a5a68 ,则 a1a10()(A) 7 (B) 5 (C ) (D ) 【答案】 D【解析】因为 { a n} 为等比数列,所以a5 a6a4 a78 ,又 a4 a72 ,所以a44, a7 2 或a42, a7 4 . 若 a44, a7 2 ,解得 a18, a101, a1a10 7 ;若 a42, a7 4 ,解得a10 8, a1 1 ,仍有a1 a107 ,综上选D.4. 【 2018 高考真题上海理 18】设 a n1 sin n, S n a1 a2a n,在 S1 , S2 , , S100中,正数的个数是n25()A. 25 B . 50 C .75 D . 100 【答案】 D【解析】当 1≤ n ≤ 24 时, a n> 0,当 26≤n ≤ 49 时, a n< 0,但其绝对值要小于1≤ n ≤ 24 时相应的值,当51≤ n ≤ 74 时, a n> 0,当 76≤ n ≤99 时, a n< 0,但其绝对值要小于51≤ n ≤ 74 时相应的值,∴当1≤ n ≤100 时,均有 S n> 0。

高考数学试题分类汇编 数列 试题

高考数学试题分类汇编 数列 试题

制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日 制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日 十、数列 制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日 一、选择题 1.〔理4〕na为等差数列,其公差为-2,且7a是3a与9a的等比中项,nS为 na

的前n项和,*nN,那么10S的值是

A.-110 B.-90 C.90 D.110 【答案】D 2.〔理8〕数列na的首项为3,nb为等差数列且1(*)nnnbaanN.假设那么32b,1012b,那么8a

A.0 B.3 C.8 D.11 【答案】B 【解析】由知128,28,nnnbnaan由叠加法 21328781()()()642024603aaaaaaaa

3.〔理11〕定义在0,上的函数()fx满足()3(2)fxfx,当0,2x时,2()2fxxx

.设()fx在22,2nn上的最大值为(*)nanN,且na的前n项和

为nS,那么limnnS

A.3 B.52 C.2 D.32 【答案】D 制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日 制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日 【解析】由题意1(2)()3fxfx,在[22,2]nn上, 2111()111331,()1,2,(),3,()()()lim1333213nnnnnnfxnfxnfxaSS

4.〔理18〕设{}na是各项为正数的无穷数列,iA是边长为1,iiaa的矩形面积〔1,2,i〕,那么{}nA为等比数列的充要条件为 A.{}na是等比数列。 B.1321,,,,naaa或者242,,,,naaa是等比数列。 C.1321,,,,naaa和242,,,,naaa均是等比数列。 D.1321,,,,naaa和242,,,,naaa均是等比数列,且公比一样。 【答案】D

2019年高考试题汇编-理科数学(解析版)15:程序框图

2019年高考试题汇编-理科数学(解析版)15:程序框图

2019年高考试题汇编-理科数学(解析版)15:程序框图注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。

在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。

考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。

只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。

1.【2018高考真题新课标理6】如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,那么〔 〕()A A B +为12,,...,n a a a 的和()B2A B +为12,,...,n a a a 的算术平均数()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【答案】C【解析】根据程序框图可知,这是一个数据大小比较的程序,其中A 为最大值,B 为最小值,选C.2.【2018高考真题陕西理10】右图是用模拟方法估计圆周率π的程序框图,P 表示估计结果,那么图中空白框内应填入〔 〕 A.1000N P =B.41000N P =C.1000M P =D.41000M P =【答案】D.【解析】根据第一个条件框易知M 是在圆内的点数,N 是在圆外的点数,而空白处是要填写圆周率的计算公式,由几何概型的概念知10004M P=,所以10004M P =.应选D. 3.【2018高考真题山东理6】执行下面的程序图,如果输入4a =,那么输出的n 的值为〔A 〕2 〔B 〕3〔C 〕4 〔D 〕5 【答案】B【解析】当4=a 时,第一次1,3,140====n Q P ,第二次2,7,441====n Q P ,第三次3,15,1642====n Q P ,此时Q P <不满足,输出3=n ,选B.4.【2018高考真题辽宁理9】执行如下图的程序框图,那么输出的S 的值是(A) -1 (B) 23(C) 32(D) 4【答案】D【解析】根据程序框图可计算得24,1;1,2;,3;3s i s i s i ===-=== 3,4;4,5,2s i s i ====由此可知S 的值呈周期出现,其周期为4,输出时9i = 因此输出的值与1i =时相同,应选D【点评】此题主要考查程序框图中的循环结构、数列的周期性以及运算求解能力, 属于中档题。

历年高考数学真题汇编专题13 等差、等比数列的应用(解析版)

历年高考数学真题汇编专题13 等差、等比数列的应用(解析版)

历年高考数学真题汇编专题13 等差、等比数列的应用1.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .2.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则( ) A . 当101,102b a => B . 当101,104b a => C . 当102,10b a =-> D . 当104,10b a =->【答案】A【解析】①当b =0时,取a =0,则0,n a n *=∈N .②当<0b 时,令2x x b =+,即20x x b -+=.则该方程140b ∆=->,即必存在0x ,使得2000x x b -+=, 则一定存在10 ==a a x ,使得21n n n a a b a +=+=对任意n *∈N 成立,解方程20a a b -+=,得12a ±=,10≤时,即90b -…时,总存在a =,使得121010a a a ==⋯=≤, 故C 、D 两项均不正确.③当0b >时,221a a b b =+≥,则2232a a b b b =+≥+,()22243a a b b b b =+++….(ⅰ)当12b =时,22451111711,1222162a a ⎡⎤⎛⎫++=>>+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦≥,则26111112224a ⎛⎫>++=> ⎪⎝⎭,2719222a >+=, 28918310224a ⎛⎫>+=> ⎪⎝⎭ ,则2981102a a =+>, 21091102a a =+> , 故A 项正确.(ⅱ)当14b =时,令1==0a a ,则2231111,4442a a ⎛⎫==+< ⎪⎝⎭,所以224311114242a a ⎛⎫=+<+= ⎪⎝⎭,以此类推,所以2210911114242a a ⎛⎫=+<+= ⎪⎝⎭,故B 项不正确. 故本题正确答案为A.遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.3、【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________. 【答案】58【解析】设等比数列的公比为q ,由已知223111314S a a q a q q q =++=++=,即2104q q ++=.解得12q =-,所以441411()(1)521181()2a q S q ---===---. 准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的计算,部分考生易出现运算错误.一题多解:本题在求得数列的公比后,可利用已知计算3343431315()428S S a S a q =+=+=+-=,避免繁分式计算. 4、【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.【答案】100【解析】设等差数列{}n a 的公差为d ,根据题意可得317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩ 101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 5、【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是__________. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组. 6、【2019年高考全国I 卷文数】记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.n 由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-.(2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a ≥等价于211100n n -+…,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n *≤≤∈N .该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.7、【2019年高考全国II 卷文数】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【解析】(1)设{}n a 的公比为q ,由题设得22416q q =+,即2280q q --=.解得2q =-(舍去)或q =4.因此{}n a 的通项公式为121242n n n a --=⨯=.(2)由(1)得2(21)log 221n b n n =-=-, 因此数列{}n b 的前n 项和为21321n n +++-=L .本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.8、【2019年高考北京卷文数】设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值.n 因为110a =-,所以23410,102,103a d a d a d =-+=-+=-+. 因为23410,8,6a a a +++成等比数列, 所以()()()23248106a a a +=++. 所以2(22)(43)d d d -+=-+. 解得2d =.所以1(1) 212n a a n d n =+-=-. (2)由(1)知,212n a n =-.所以,当7n ≥时,0n a >;当6n ≤时,0n a ≤. 所以,n S 的最小值为630S =-.一、等差数列1、定义:数列{}n a 若从第二项开始,每一项与前一项的差是同一个常数,则称{}n a 是等差数列,这个常数称为{}n a 的公差,通常用d 表示2、等差数列的通项公式:()11n a a n d =+-,此通项公式存在以下几种变形: (1)()n m a a n m d =+-,其中m n ≠:已知数列中的某项m a 和公差即可求出通项公式(2)n ma a d n m -=-:已知等差数列的两项即可求出公差,即项的差除以对应序数的差(3)11n a a n d-=+:已知首项,末项,公差即可计算出项数3、等差中项:如果,,a b c 成等差数列,则b 称为,a c 的等差中项(1)等差中项的性质:若b 为,a c 的等差中项,则有c b b a -=-即2b a c =+ (2)如果{}n a 为等差数列,则2,n n N *∀≥∈,n a 均为11,n n a a -+的等差中项(3)如果{}n a 为等差数列,则m n p q a a a a m n p q +=+⇔+=+ 4、等差数列通项公式与函数的关系:()111n a a n d d n a d =+-=⋅+-,所以该通项公式可看作n a 关于n 的一次函数,从而可通过函数的角度分析等差数列的性质。

十年高考真题分类汇编(2010-2019) 数学 专题08 数列 Word版原卷版

十年高考真题分类汇编(2010-2019)  数学 专题08 数列  Word版原卷版

十年高考真题分类汇编(2010—2019)数学专题08 数列一、选择题1.(2019·全国1·理T9)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A.a n =2n-5 B.a n =3n-10C.S n =2n 2-8nD.S n =12n 2-2n2.(2019·浙江·T 10)设a,b ∈R,数列{a n }满足a 1=a,a n+1=a n 2+b,n ∈N *,则( )A.当b=12时,a 10>10 B.当b=14时,a 10>10 C.当b=-2时,a 10>10D.当b=-4时,a 10>103.(2018·全国1·理T4)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A.-12 B.-10 C.10D.124.(2018·浙江·T10)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则( ) A.a 1<a 3,a 2<a 4 B.a 1>a 3,a 2<a 4 C.a 1<a 3,a 2>a 4 D.a 1>a 3,a 2>a 45.(2018·北京·理T4文T 5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于√212.若第一个单音的频率为f,则第八个单音的频率为( ) A.√23fB.√223fC.√2512fD.√2712f6.(2017·全国1·理T12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.1107.(2017·全国3·理T9)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( ) A.-24 B.-3C.3D.88.(2016·全国1·理T3)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A.100B.99C.98D.979.(2015·浙江·理T13)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则( )A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>010.(2015·全国2·文T5)设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=( )A.5B.7C.9D.1111.(2015·全国1·文T7)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10= ( )A.172B.192C.10D.1212.(2015·全国2·理T4)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=( )A.21B.42C.63D.8413.(2015·全国2·文T9)已知等比数列{a n}满足a1=14,a3a5=4(a4-1),则a2=()A.2B.1C.1D.114.(2014·大纲全国·文T8)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=( )A.31B.32C.63D.6415.(2014·全国2·文T5)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=( )A.n(n+1)B.n(n-1)C.n(n+1)2D.n(n-1)216.(2013·全国2·理T3)等比数列{a n}的前n项和为S n.已知S3=a2+10a1,a5=9,则a1=( )A.13B.-13C.19D.-1917.(2013·全国1·文T6)设首项为1,公比为23的等比数列{a n}的前n项和为S n,则( )A.S n=2a n-1B.S n=3a n-2C.S n=4-3a nD.S n=3-2a n18.(2013·全国1·理T12)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3,….若b1>c1,b1+c1=2a1,a n+1=a n,b n+1=c n+a n2,c n+1=b n+a n2,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n-1}为递增数列,{S2n}为递减数列D.{S 2n-1}为递减数列,{S 2n }为递增数列19.(2013·全国1·理T7)设等差数列{a n }的前n 项和为S n ,若S m-1=-2,S m =0,S m+1=3,则m= ( ) A.3 B.4 C.5 D.620.(2012·全国·理T5)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A.7 B.5 C.-5D.-721.(2012·全国·文T12)数列{a n }满足a n+1+(-1)na n =2n-1,则{a n }的前60项和为( ) A.3 690 B.3 660 C.1 845 D.1 830二、填空题1.(2019·全国3·文T14)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10= .2.(2019·全国3·理T14)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S10S 5= .3.(2019·江苏·T 8)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是 .4.(2019·北京·理T10)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5= ,S n 的最小值为 .5.(2019·全国1·文T14)记S n 为等比数列{a n }的前n 项和.若a 1=1,S 3=34,则S 4= .6.(2019·全国1·理T14)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.7.(2018·全国1·理T14)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6= . 8.(2018·北京·理T9)设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为 .9.(2018·上海·T 10)设等比数列{a n }的通项公式为a n =q n-1(n ∈N *),前n 项和为S n ,若lim n →∞S n a n+1=12,则q=.10.(2018·江苏·T 14)已知集合A={x|x=2n-1,n ∈N *},B={x|x=2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为 . 11.(2017·全国2·理T15)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k=1n1S k=____________.12.(2017·全国3·理T14)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4= .13.(2017·江苏·理T9文T9)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=. 14.(2016·浙江·理T13文T13)设数列{a n }的前n 项和为S n ,若S 2=4,a n+1=2S n +1,n ∈N *,则a 1= ,S 5= . 15.(2016·北京·理T12)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6= . 16.(2016·全国1·理T15)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 17.(2015·全国1·文T13)在数列{a n }中,a 1=2,a n+1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n= . 18.(2015·湖南·理T14)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n = .19.(2015·福建·文T16)若a,b 是函数f(x)=x 2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于 . 20.(2015·江苏·理T11)设数列{a n }满足a 1=1,且a n+1- a n =n+1(n ∈N *).则数列{1a n}前10项的和为____________.21.(2015·全国2·理T16)设S n 是数列{a n }的前n 项和,且a 1=-1,a n+1=S n S n+1,则S n = . 22.(2015·广东·理T10)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8= .23.(2015·陕西·文T13)中位数为 1 010的一组数构成等差数列,其末项为 2 015,则该数列的首项为 .24.(2014·江苏·理T7)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是 . 25.(2014·广东·文T13)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5= .26.(2014·安徽·理T12)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q= . 27.(2014·全国2·文T16)数列{a n }满足a n+1=11-a n,a 8=2,则a 1=____________.28.(2014·北京·理T12)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n= 时,{a n }的前n 项和最大. 29.(2014·天津·理T11)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为 .30.(2013·全国2·理T16)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为 . 31.(2013·辽宁·理T14)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x+4=0的两个根,则S 6= .32.(2013·全国1·理T14)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n = . 33.(2012·全国·文T14)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q= . 三、计算题1.(2019·全国2·文T18)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n .求数列{b n }的前n 项和.2.(2019·全国2·理T19)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n+1=3a n -b n +4,4b n+1=3b n -a n -4. (1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.3.(2019·天津·文T18)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式; (2)设数列{c n }满足c n ={1,n 为奇数,b n 2,n 为偶数,求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).4.(2019·天津·理T19)设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4. (1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k,其中k ∈N *. ①求数列{a 2n (c 2n -1)}的通项公式; ②求∑i=12na i c i (n ∈N *).5.(2019·浙江·T 20)设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式; (2)记c n =√a n 2b n,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *. 6.(2019·江苏·T 20)定义首项为1且公比为正数的等比数列为“M - 数列”. (1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M - 数列”; (2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n=2b n−2b n+1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M - 数列”{c n }(n ∈N *),对任意正整数k,当k ≤m 时,都有c k ≤b k ≤c k+1成立,求m 的最大值.7.(2018·北京·文T15)设{a n }是等差数列,且a 1=ln 2,a 2+a 3=5ln 2. (1)求{a n }的通项公式; (2)求e a 1+e a 2+…+e a n .8.(2018·上海·T 21)给定无穷数列{a n },若无穷数列{b n }满足:对任意x ∈N *,都有|b n -a n |≤1,则称{b n }与{a n }“接近”.(1)设{a n }是首项为1,公比为12的等比数列,b n =a n+1+1,n ∈N *,判断数列{b n }是否与{a n }接近,并说明理由; (2)设数列{a n }的前四项为a 1=1,a 2=2,a 3=4,a 4=8,{b n }是一个与{a n }接近的数列,记集合M={x|x=b i ,i=1,2,3,4},求M 中元素的个数m:(3)已知{a n }是公差为d 的等差数列.若存在数列{b n }满足:{b n }与{a n }接近,且在b 2-b 1,b 3-b 2,…,b 201-b 200中至少有100个为正数,求d 的取值范围.9.(2018·江苏·T 20)设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列. (1)设a 1=0,b 1=1,q=2,若|a n -b n |≤b 1对n=1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m ∈N *,q ∈(1, √2m],证明:存在d ∈R,使得|a n -b n |≤b 1对n=2,3,…,m+1均成立,并求d 的取值范围(用b 1,m,q 表示).10.(2018·天津·文T18)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.11.(2018·天津·理T18)设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6. (1)求{a n }和{b n }的通项公式;(2)设数列{S n }的前n 项和为T n (n ∈N *), ①求T n ;②证明∑k=1n(T k +b k+2)b k(k+1)(k+2)=2n+2-2(n ∈N *). 12.(2018·全国2·理T17文T17)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.13.(2018·全国1·文T17)已知数列{a n }满足a 1=1,na n+1=2(n+1)a n .设b n =ann .(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.14.(2018·全国3·理T17文T17)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =63,求m.15.(2017·全国1·文T17)设S n 为等比数列{a n }的前n 项和,已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n+1,S n ,S n+2是否成等差数列.16.(2017·全国2·文T17)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.17.(2017·全国3·文T17)设数列{a n}满足a1+3a2+…+(2n-1)a n=2n.(1)求{a n}的通项公式;}的前n项和.(2)求数列{a n2n+118.(2017·天津·理T18)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b2n-1}的前n项和(n∈N*).19.(2017·山东·理T19)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.20.(2017·山东·文T19)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.1)求数列{a n}的通项公式;}的前n项和T n.(2){b n}为各项非零的等差数列,其前n项和为S n.已知S2n+1=b n b n+1,求数列{b na n21.(2017·天津·文T18)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b n}的前n项和(n∈N*).22.(2016·全国2·理T17)S n为等差数列{a n}的前n项和,且a1=1,S7=28.记b n=[lg a n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg 99]=1.(1)求b1,b11,b101;(2)求数列{b n}的前1 000项和.23.(2016·全国2·文T17)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 24.(2016·浙江·文T17)设数列{a n }的前n 项和为S n .已知S 2=4,a n+1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n-2|}的前n 项和.25.(2016·北京·文T15)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.26.(2016·山东·理T18文T19)已知数列{a n }的前n 项和S n =3n 2+8n,{b n }是等差数列,且a n =b n +b n+1. (1)求数列{b n }的通项公式; (2)令c n =(a n +1)n+1(b n +2)n,求数列{c n }的前n 项和T n .27.(2016·天津·理T18)已知{a n }是各项均为正数的等差数列,公差为d.对任意的n ∈N *,b n 是a n 和a n+1的等比中项.(1)设c n =b n+12−b n 2,n ∈N *,求证:数列{c n }是等差数列;(2)设a 1=d,T n =∑k=12n(-1)kb k 2,n ∈N *,求证:∑k=1n1T k<12d2.28.(2016·天津·文T18)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1−1a 2=2a 3,S 6=63. (1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n+1的等差中项,求数列{(-1)nb n 2}的前2n 项和.29.(2016·全国1·文T17)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n+1+b n+1=nb n . (1)求{a n }的通项公式; (2)求{b n }的前n 项和.30.(2016·全国3·文T17)已知各项都为正数的数列{a n }满足a 1=1, a n 2-(2a n+1-1)a n -2a n+1=0. (1)求a 2,a 3;(2)求{a n }的通项公式.31.(2016·全国3·理T17)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式;(2)若S 5=3132,求λ.32.(2015·北京·文T16)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7.问:b 6与数列{a n }的第几项相等? 33.(2015·重庆·文T16)已知等差数列{a n }满足a 3=2,前3项和S 3=92. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 34.(2015·福建·文T17)等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式;(2)设b n =2a n -2+n,求b 1+b 2+b 3+…+b 10的值.35.(2015·全国1·理T17)S n 为数列{a n }的前n 项和.已知a n >0,a n 2+2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n+1,求数列{b n }的前n 项和.36.(2015·安徽·文T18)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n+1S n S n+1,求数列{b n }的前n 项和T n .37.(2015·天津·理T18)已知数列{a n }满足a n+2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式;(2)设b n =log 2a2n a 2n -1,n ∈N *,求数列{b n }的前n 项和.38.(2015·山东·文T19)已知数列{a n }是首项为正数的等差数列,数列{1a n ·a n+1}的前n 项和为n2n+1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n .39.(2015·浙江·文T17)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n+1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1n b n =b n+1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .40.(2015·天津·文T18)已知{a n}是各项均为正数的等比数列,{b n}是等差数列,且a1=b1=1,b2+b3=2a3,a5-3b2=7.(1)求{a n}和{b n}的通项公式;(2)设c n=a n b n,n∈N*,求数列{c n}的前n项和.41.(2015·湖北·文T19)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式;(2)当d>1时,记c n=a nb n,求数列{c n}的前n项和T n.42.(2014·全国2·理T17)已知数列{a n}满足a1=1,a n+1=3a n+1.(1)证明:{a n+12}是等比数列,并求{a n}的通项公式;(2)证明:1a1+1a2+…+1a n<32.43.(2014·福建·文T17)在等比数列{a n}中,a2=3,a5=81.(1)求a n;(2)设b n=log3a n,求数列{b n}的前n项和S n.44.(2014·湖南·文T16)已知数列{a n}的前n项和S n=n 2+n2,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=2a n+(-1)n a n,求数列{b n}的前2n项和.45.(2014·北京·文T14)已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.46.(2014·大纲全国·理T18)等差数列{a n}的前n项和为S n.已知a1=10,a2为整数,且S n≤S4.(1)求{a n}的通项公式;(2)设b n=1a n a n+1,求数列{b n}的前n项和T n.47.(2014·山东·理T19)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-14na n a n+1,求数列{b n}的前n项和T n.48.(2014·全国1·文T17)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x+6=0的根.(1)求{a n }的通项公式;(2)求数列{an 2n }的前n 项和. 49.(2014·安徽·文T18)数列{a n }满足a 1=1,na n+1=(n+1)a n +n(n+1),n ∈N *.(1)证明:数列{a n n }是等差数列;(2)设b n =3n ·√a n ,求数列{b n }的前n 项和S n .50.(2014·山东·文T19)在等差数列{a n }中,已知公差d=2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n+1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n . 51.(2014·大纲全国·文T17)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列;(2)求{a n }的通项公式.52.(2014·全国1·理T17)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n+1=λS n -1,其中λ为常数.(1)证明:a n+2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.53.(2013·全国2·文T17)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n-2.54.(2013·全国1·文T17)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列{12n -12n+1}的前n 项和.55.(2012·湖北·理T18文T20)已知等差数列{a n }前三项的和为-3,前三项的积为8.(1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.56.(2011·全国·文T17)已知等比数列{a n }中,a 1=13,公比q=13.(1)S n 为{a n }的前n 项和,证明:S n =1-an 2;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.57.(2011·全国·理T17)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 32=9a 2a 6.(1)求数列{a n}的通项公式;}的前n项和.(2)设b n=log3a1+log3a2+…+log3a n,求数列{1b n58.(2010·全国·理T17)设数列{a n}满足a1=2,a n+1-a n=3·22n-1.(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.59.(2010·全国·文T17)设等差数列{a n}满足a3=5,a10=-9,(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n及使得S n最大的序号n的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2019全国1理)9.记nS为等差数列na的前n项和.已知40S,55a,则( ) A.25nan B.310nan C.228nSnn D.2122nSnn 答案: A 解析:

依题意有415146045Sadaad,可得132ad,25nan,24nSnn.

(2019全国1理)14.记nS为等比数列na的前n项和,若113a,246aa,则5S . 答案:

5S1213 解答:

∵113a,246aa 设等比数列公比为q ∴32511()aqaq

∴3q ∴5

S

121

3

2019全国2理)19. 已知数列na和nb满足11a,01b,4341nnnbaa,4341nnnabb.

(1)证明: nnba是等比数列,nnba是等差数列; (2)求na和nb的通项公式. 答案: (1)见解析

(2)21)21(nann,21)21(nbnn. 解析: (1)将4341nnnbaa,4341nnnabb相加可得nnnnnnbababa334411,

整理可得)(2111nnnnbaba,又111ba,故nnba是首项为1,公比为21的等比数列. 将4341nnnbaa,4341nnnabb作差可得8334411nnnnnnbababa, 整理可得211nnnnbaba,又111ba,故nnba是首项为1,公差为2的等差数列. (2)由nnba是首项为1,公比为21的等比数列可得1)21(nnnba①; 由nnba是首项为1,公差为2的等差数列可得12nbann②; ①②相加化简得21)21(nann,①②相减化简得21)21(nbnn。

(2019全国3理)5.已知各项均为正数的等比数列na的前4项和为15,且53134aaa,则3a() A. 16 B. 8 C. 4 D. 2 答案: C 解答:

设该等比数列的首项1a,公比q,由已知得,4211134aqaqa,

因为10a且0q,则可解得2q,又因为231(1)15aqqq, 即可解得11a,则2314aaq.

(2019全国3理)14.记nS为等差数列na的前n项和,若10a,213aa,则105SS . 答案: 4 解析:

设该等差数列的公差为d,∵213aa,∴113ada,故1120,0daad,

∴1101101551102292102452452aaadSdaaSadd. (2019北京理)10.设等差数列{an}的前n项和为Sn,若a2=−3,S5=−10,则a5=__________,Sn的最小值为__________. 【答案】 (1). 0. (2). -10. 【解析】 【分析】 首先确定公差,然后由通项公式可得5a的值,进一步研究数列中正项、负项的变化规律,得到和的最小值. 【详解】等差数列na中,53510Sa,得322,3aa,公差321daa,5320aad, 由等差数列na的性质得5n时,0na,6n时,na大于0,所以nS的最小值为4S或5S,即为10. 【点睛】本题考查等差数列的通项公式、求和公式、等差数列的性质,难度不大,注重重要知识、基础知识、基本运算能力的考查. (2019北京理)20.已知数列{an},从中选取第i1项、第i2项、…、第im项(i1则称新数列12miiiaaa,,,为{an}的长度为m的递增子列.规定:数列{an}的任意一项都是{an}的长度为1的递增子列. (Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列; (Ⅱ)已知数列{an}的长度为p的递增子列的末项的最小值为0ma,长度为q的递增子列的末项的最小值为0n

a.

若p(Ⅲ)设无穷数列{an}的各项均为正整数,且任意两项均不相等.若{an}的长度为s的递增子列末项的最小值为2s–1,且长度为s末项为2s–1的递增子列恰有2s-1个(s=1,2,…),求数列{an}的通项公式. 【答案】(Ⅰ) 1,3,5,6. (Ⅱ)见解析;

(Ⅲ)见解析. 【解析】 【分析】 (Ⅰ)由题意结合新定义的知识给出一个满足题意的递增子列即可;

(Ⅱ)利用数列的性质和递增子列的定义证明题中的结论即可;

(Ⅲ)观察所要求解数列的特征给出一个满足题意的通项公式,然后证明通项公式满足题中所有的条件即可. 【详解】(Ⅰ)满足题意的一个长度为4的递增子列为:1,3,5,6. (Ⅱ)对于每一个长度为q的递增子列12,,qaaaL,都能从其中找到若干个长度为p的递增子列12,,paaaL,此

时pqaa, 设所有长度为q的子列的末项分别为:123,,,qqqaaaL, 所有长度为p的子列的末项分别为:123,,,pppaaaL, 则0123min,,,nqqqaaaaL, 注意到长度为p的子列可能无法进一步找到长度为q的子列, 故0123min,,,mpppaaaaL, 据此可得:00mn

aa

(Ⅲ)满足题意的一个数列的通项公式可以是1,2,1,4,3,6,5,8,7,1,nnnannL为偶数为奇数,

下面说明此数列满足题意. 很明显数列为无穷数列,且各项均为正整数,任意两项均不相等. 长度为s的递增子列末项的最小值为2s-1, 下面用数学归纳法证明长度为s末项为2s-1的递增子列恰有12s个1,2,sL: 当1n时命题显然成立, 假设当nk时命题成立,即长度为k末项为2k-1的递增子列恰有12k个, 则当1nk时,对于nk时得到的每一个子列121,,,,21ksssaaakL, 可构造:121,,,,21,211ksssaaakkL和121,,,,2,211ksssaaakkL两个满足题意的递增子列, 则长度为k+1末项为2k+1的递增子列恰有1112222kkk个,

综上可得,数列1,2,1,4,3,6,5,8,7,1,nnnannL为偶数为奇数是一个满足题意的数列的通项公式. 注:当3s时,所有满足题意的数列为:2,3,5,1,3,5,2,4,5,1,4,5, 当4s时,数列2,3,5对应的两个递增子列为:2,3,5,7和2,3,6,7.

【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.

(2019天津理)19.设na是等差数列,nb是等比数列.已知1122334,622,24abbaba,. (Ⅰ)求na和nb的通项公式;

(Ⅱ)设数列nc满足111,22,1,,2,kknkknccbn其中*kN. (i)求数列221nnac的通项公式; (ii)求2*1niiiacnN. 【答案】(Ⅰ)31nan;32nnb(Ⅱ)(i)221941nnnac(ii)2*211*12725212nnniiiacnnn

NN

【解析】 【分析】 (Ⅰ)由题意首先求得公比和公差,然后确定数列的通项公式即可; (Ⅱ)结合(Ⅰ)中的结论可得数列221nnac的通项公式,结合所得的通项公式对所求的数列通项公式进行等

价变形,结合等比数列前n项和公式可得21niiiac的值. 【详解】(Ⅰ)设等差数列na的公差为d,等比数列nb的公比为q. 依题意得262426262424124qddqdd,解得32dq, 故4(1)331nann,16232nnnb. 所以,na的通项公式为31nan,nb的通项公式为32nnb. (Ⅱ)(i)22211321321941nnnnnnnacab. 所以,数列221nnac的通项公式为221941nnnac.

(ii)22111nniiiiiiiacaac2222111nniiiiiaac 2212432nnn







1941nii

2114143252914nnnn



211*2725212nnnnN

.

【点睛】本题主要考查等差数列、等比数列的通项公式及其前n项和公式等基础知识.考查化归与转化思想和数列求和的基本方法以及运算求解能力.

(2019上海)18.已知数列,,前项和为. (1)若为等差数列,且,求; {}na13annS

{}na415anS

相关文档
最新文档