2020届云南省昆明市高考数学模拟试卷(文)(有答案)(精校版)

合集下载

2020届云南省昆明市数学(文科)三诊一模试卷及答案

2020届云南省昆明市数学(文科)三诊一模试卷及答案

物线的准线上,
∴点 P(﹣1,4),
∴直线 PF 的斜率为:
2,
又∵PF⊥AB,∴直线 AB 的斜率为 ,
∴直线 AB 的方程为:y﹣0 ሉ
,即 x﹣2y﹣1=0,
故选:A. 10.(5 分)若直线 y=ax 与曲线 y=lnx﹣1 相切,则 a=( )
A.e
B.1
C.
D.
【解答】解:
,设切点为(x,lnx﹣1),
C.2π
【解答】解:由三视图还原原几何体如图,
D.4π
可知该几何体是底面半径为 1,高是 2 的圆柱截去四分之一.
其体积为 V

故选:B. 6.(5 分)执行如图所示的程序框图,则输出的 T=( )
A.
B.
C.
【解答】解:k=1,S=0,T=0; S=0+1=1,T=1,k=2;
第 8页(共 20页)
B.2﹣i
C.﹣2+i
D.﹣2﹣i
【解答】解:∵z 满足(1+2i)z=5i,
∴z



2+i
故选:A.
3.(5 分)在正项等比数列{an}中,若 a1=1,a3=2a2+3,则其前 3 项的和 S3=( )
A.3
B.9
C.13
D.24
【解答】解:设正项等比数列{an}的公比为 q>0,∵a1=1,a3=2a2+3, ∴q2=2q+3,解得 q=3. 则其前 3 项的和 S3=1+3+32=13. 故选:C.
െൌ

,解得

故选:D. 11.(5 分)已知正四棱锥 P﹣ABCD 的所有顶点都在球 O 的球面上,若 찐

云南省昆明市2020届高三数学高考适应性月考卷(四)试题 文(答案不全)新人教A版

云南省昆明市2020届高三数学高考适应性月考卷(四)试题 文(答案不全)新人教A版

云南师大附中2020届高考适应性月考卷(四)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.参考公式:样本数据,,,x x x L 的标准差s =其中x 为样本平均数 柱体体积公式V Sh = 其中S 为底面面积,h 为高锥体体积公式13V Sh =其中S 为底面面积,h 为高球的表面积,体积公式24R S π=,334R V π=其中R 为球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}(1,2),(3,4)A =,则集合A 的真子集个数是A .16B .8C .4D .32.已知i 为虚数单位,则复数133ii-+的虚部是 A .1- B .1 C .i - D .i3.命题“所有实数的平方都是正数”的否定为A .所有实数的平方都不是正数B .有的实数的平方是正数C .至少有一个实数的平方不是正数D .至少有一个实数的平方是正数4.已知平面向量a r 和b r ,||1a =r ,||2b =r ,且a r 与b r 的夹角为120°,则|2|a b +r r等于A .6B .C .4D .25.球内接正方体的表面积与球的表面积的比为A .6:πB .4:πC .3:πD .2:π6.已知定义在R 上的函数2()sin xf x e x x x =+-+,则曲线()y f x =在点(0,(0))f 处的切线方程是A .21y x =-B .1y x =+C .32y x =-D .23y x =-+甲 乙9 0 86 5 5 4 1 3 5 5 71 2 27.如果实数,x y 满足不等式组1,10,220,x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是A .25B .5C .4D .18.如图1给出的是计算111124620++++L 的值的一个程序框图,其中判断框内应填入的条件是A .12?i >B .11?i >C .10?i >D .9?i >9.若函数()()y f x x R =∈满足(2)()f x f x +=,且(]1,1x ∈-时,2()f x x =,函数()|lg |g x x =,则函数()()()h x f x g x =-的零点的个数为A .10B .9C .8D .710.甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图2所示,1x ,2x 分别表示甲乙两名运动员这项测试成绩的平均数,12,s s 分别表示甲乙两名运动员这项测试成绩的标准差,则有A .1212,x x s s ><B .1212,x x s s ==C .1212,x x s s =<D .1212,x x s s =>11.已知一几何体的三视图如图3,主视图和左视图都是矩形,俯视图为正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何形体可能是①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③每个面都是直角三角形的四面体.A .①②B .①②③C .①③D .②③12.设F 是双曲线22221(0,0)x y a b a b-=>>的右焦点,双曲线两条渐近线分别为12,l l ,过F作直线1l 的垂线,分别交12,l l 于A 、B 两点,且向量BF u u u r 与FA u u u r同向.若||,||,||OA AB OB 成等差数列,则双曲线离心率e 的大小为ABCD .2主视图左视图俯视图第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. 13.在直角坐标系xOy 中,有一定点(2,1)A ,若线段OA 的垂直平分线过抛物线22(0)y px p =>的焦点,则该抛物线的准线方程是 .14.已知角ϕ的终边经过点(1,1)P ,函数()sin()(0)f x x ωϕω=+>图像的相邻两条对称轴之间的距离等于3π,则()12f π= .15.某单位为了制定节能减排的目标,先调查了用电量y (度)与气温x (℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据,得线性回归方程2y x a =-+,则a = .16.已知数列{}n a 中121,2a a ==,当整数1n >时,1112()n n n S S S S +-+=+都成立,则15S = .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数21()2cos 22f x x x =--,x R ∈. (1)求函数()f x 的最小正周期;(2)设ABC △的内角A 、B 、C 的对边分别为a 、b 、c ,且c =,()9f C =,sin 2sin B A =,求,a b 的值.18.(本小题满分12分)如图4,正三棱柱111ABC A B C -中,E 是AC 中点.(1)求证:平面1BEC ⊥平面11ACC A ;ABCEB 1A 1C 1(2)若1AA =2AB =,求点A 到平面1BEC 的距离. 19.(本小题满分12分)班主任统计本班50名学生平均每天放学回家后学习时间的数据用图5所示条形图表示. (1)求该班学生每天在家学习时间的平均值;(2)假设学生每天在家学习时间为18时至23时,已知甲每天连续学习2小时,乙每天连续学习3小时,求22时甲、乙都在学习的概率.20.(本小题满分12分)已知椭圆221x y m n+=(常数,m n R ∈,且m n >)的左、右焦点分别为1F ,2F ,且,M n 为短轴的两个端点,且四边形12F MF N 是面积为4的正方形. (1)求椭圆的方程;(2)过原点且斜率分别为k 和(2)k k -≥的两条直线与椭圆221x y m n+=的交点为A 、B 、C 、D (按逆时针顺序排列,且点A 位于第一象限内),求四边形ABCD 的面积S 的最大值.21.(本小题满分12分)已知函数()ln bf x x a x x=-+在1x =处取得极值,且3a > (1)求a 与b 满足的关系式; (2)求函数()f x 的单调区间;(3)设函数22()3g x a x =+,若存在121,,22m m ⎡⎤∈⎢⎥⎣⎦,使得12|()()|9f m g m -<成立,求a 的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号. 22.(本小题满分10分)【选修4-1:几何选讲】 如图6,已知圆O 外有一点P ,作圆O 的切线PM ,M 为切点,过PM 的中点N ,作割线NAB ,交圆于A 、B两小时)点,连接PA 并延长,交圆O 于点C ,连续PB 交圆O 于点D ,若MC BC =. (1)求证:△APM ∽△ABP ;(2)求证:四边形PMCD 是平行四边形. 23.(本小题满分10分)【选修4-4:坐标系与参数方程】 在极坐标系中,直线l 的极坐标方程为()3R πθρ=∈,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为2cos ,1cos ,x y αα=⎧⎨=+⎩(α为参数),求直线l 与曲线C 的交点P 的直角坐标. 24.(本小题满分10分)【选修4-5:不等式选讲】 已知函数2()log (|1||5|)f x x x a =-+--. (1)当2a =时,求函数()f x 的最小值;(2)当函数()f x 的定义域为R 时,求实数a 的取值范围.数学试题参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力二、填空题.本题考查基础知识,基本概念和基本运算技巧 13.54x =-14.1 15.60 16.211三、解答题 17.。

云南省昆明市达标名校2020年高考三月数学模拟试卷含解析

云南省昆明市达标名校2020年高考三月数学模拟试卷含解析

云南省昆明市达标名校2020年高考三月数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若()*3n xn N x x ⎛+∈ ⎪⎝⎭的展开式中含有常数项,且n 的最小值为a ,则22aaa x dx --=⎰( ) A .36πB .812πC .252πD .25π2.函数()2sin()f x x ωϕ=+(0,0)ωϕπ><<的部分图像如图所示,若5AB =,点A 的坐标为(1,2)-,若将函数()f x 向右平移(0)m m >个单位后函数图像关于y 轴对称,则m 的最小值为( )A .12B .1C .3π D .2π 3.设直线l 过点()0,1A -,且与圆C :2220x y y +-=相切于点B ,那么AB AC ⋅=( )A .3±B .3C 3D .14.若集合{}2|0,|121x A x B x x x +⎧⎫=≤=-<<⎨⎬-⎩⎭,则A B =( ) A .[2,2)-B .(]1,1-C .()11-,D .()12-, 5.在直角梯形ABCD 中,0AB AD ⋅=,30B ∠=︒,23AB =2BC =,点E 为BC 上一点,且AE xAB y AD =+,当xy 的值最大时,||AE =( )A 5B .2C .302D .36.设不等式组2000x x y x y -≤⎧⎪+≥⎨⎪-≥⎩,表示的平面区域为Ω,在区域Ω内任取一点(),P x y ,则P 点的坐标满足不等式222x y +≤的概率为 A .π8B .π4C .12π+ D 2π+7.在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,且||1,||2AB AC ==,120BAC ∠=︒,则||EB =( )A .194B .11 C .32D .7 8.抛物线()220y px p =>的准线与x 轴的交点为点C ,过点C 作直线l 与抛物线交于A 、B 两点,使得A 是BC 的中点,则直线l 的斜率为( ) A .13±B .223±C .±1D . 3±9.某中学有高中生1500人,初中生1000人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为n 的样本.若样本中高中生恰有30人,则n 的值为( ) A .20B .50C .40D .6010.在复平面内,31ii+-复数(i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限11.相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.如图的程序是与“三分损益”结合的计算过程,若输入的x 的值为1,输出的x 的值为( )A .6481B .3227C .89D .162712.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近()lg 20.3≈( )A .30010B .40010C .50010D .60010二、填空题:本题共4小题,每小题5分,共20分。

2020年云南省昆明市高考数学三诊一模试卷(文科)(5月份)

2020年云南省昆明市高考数学三诊一模试卷(文科)(5月份)
定义域为 的偶函数 满足 = ,当 时, ,给出下列四个结论:
① ;
②若 = ,则 = ;
③函数 在 内有且仅有 个零点;
其中,正确结论的序号是________.
三、解答题(共5小题,满分60分)
已知三棱柱 ,底面 为等边三角形,侧棱 平面 , 为 中点, = , 和 交于点 .
(1)证明: 平面 ;
【解答】
证明:如图所示,取 的中点 ,连接 , .在 中, 为 的中点, 为 的中点,
∴ , .
∵ 为 的中点,∴ .且 .
∴ , = .
∴四边形 为平行四边形.
∴ ,
而 平面 , 平面 .
∴ 平面 .
∵ = , 与 为等边三角形, = = = .
∴ = .
∵侧棱 平面 ,
∴ = = , = ,
可得 .
(1)求椭圆 的方程;
(2)设 , 是椭圆 的左、右顶点,点 为直线 = 上的动点,直线 , 分别交椭圆于 , 两点,求四边形 面积为 ,求点 的坐标.
(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用铅笔在答题卡选考题区域内把所选的题号涂黑.如果多做,则按所做的第一题计分.[选修4--4:坐标系与参数方程]
∴ , = .
∴四边形 为平行四边形.
∴ ,
而 平面 , 平面 .
∴ 平面 .
∵ = , 与 为等边三角形, = = = .
∴ = .
∵侧棱 平面 ,
∴ = = , = ,
可得 .

点 到平面 的距离为 .
设点 到平面 的距离为 .
则 ,
∴ ,
解得 .
【考点】
点、线、面间的距离计算
直线与平面平行

云南省昆明市达标名校2020年高考四月仿真备考数学试题含解析

云南省昆明市达标名校2020年高考四月仿真备考数学试题含解析

云南省昆明市达标名校2020年高考四月仿真备考数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.双曲线2214x y -=的渐近线方程是( )A .32y x =±B .233y x =±C .2x y =±D .2y x =±2.已知(,)a bi a b R +∈是11ii +-的共轭复数,则a b +=( ) A .1-B .12- C .12D .13.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()2x x f x g x a a -+=-+(0a >且1a ≠),若(2)g a =,则函数()22f x x +的单调递增区间为( )A .(1,1)-B .(,1)-∞C .(1,)+∞D .(1,)-+∞4.已知角α的终边与单位圆221x y +=交于点01,3P y ⎛⎫ ⎪⎝⎭,则cos2α等于( ) A .19B .79-C .23-D .135.已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m=( ) A .−8 B .−6 C .6D .86.已知函数()f x 的导函数为()f x ',记()()1f x f x '=,()()21f x f x '=,…,()()1n n f x f x +'=(n ∈N *). 若()sin f x x x =,则()()20192021f x f x += ( ) A .2cos x -B .2sin x -C .2cos xD .2sin x7.抛物线24y x =的焦点为F ,点(,)P x y 为该抛物线上的动点,若点(1,0)A -,则PFPA的最小值为( )A .12B .2 C .3 D .228.如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为( )A .23B .163C .6D .与点O 的位置有关9.已知集合{}{}2|1,|31x A x x B x ==<,则()RAB =( )A .{|0}x x <B .{|01}x xC .{|10}x x -<D .{|1}x x -10.甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是( ) A .甲B .乙C .丙D .丁11.当输入的实数[]230x ∈,时,执行如图所示的程序框图,则输出的x 不小于103的概率是( )A .914B .514C .37D .92812.已知函数()()sin f x A x =+ωϕ(π0,0,2A >><ωϕ)的部分图象如图所示,且()()0f a x f a x ++-=,则a 的最小值为( )ππC .π3D .5π12二、填空题:本题共4小题,每小题5分,共20分。

2019-2020学年云南省昆明市县街中学高三数学文模拟试卷含解析

2019-2020学年云南省昆明市县街中学高三数学文模拟试卷含解析

2019-2020学年云南省昆明市县街中学高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1.参考答案:B略2. 已知2sin2α=1+cos2α,则tan2α=()A. B. C. 或0 D. 或0参考答案:D试题分析:把的两边平方得,整理可得,即,所以,解得或,当时,;当时,,所以或,故选D.考点:三角函数的基本关系式及三角函数的化简求值.3. 数列{a n}的各项均为正数,其前n项和为S n,已知=1,且a1=,则tanS n的取值集合是()A.{0, } B.{0,, } C.{0,,﹣} D.{0,,﹣}参考答案:A【考点】数列的求和.【分析】已知=1,化为[na n+1﹣(n+1)a n](a n+1+a n)=0,a n,a n+1>0.可得.可得a n=×n.S n.可得tanS n=tan[],对n分类讨论即可得出.【解答】解:∵=1,∴na=(n+1)a+a n a n+1,∴[na n+1﹣(n+1)a n](a n+1+a n)=0,a n,a n+1>0.∴na n+1﹣(n+1)a n=0,即.∴=…==.∴a n=×n.∴S n=.∴tanS n=tan[],n=3k∈N*时,tanS n==0;n=3k﹣1∈N*时,tanS n=tan=0;n=3k﹣2∈N*时,tanS n=tanπ=.综上可得:tanS n的取值集合是{0, }.故选:A.4. 函数的部分图象如图所示,则函数表达式为()A.B.C.D.参考答案:D略5. 已知数列的前项和为,且,则等于A. B. 1 C. 2 D. 4参考答案:D6. 已知椭圆与抛物线有相同的焦点,为原点,点是抛物线准线上一动点,点在抛物线上,且,则的最小值为()A. B. C.D.参考答案:A7. 若(是虚数单位,是实数),则的值是A.B.C.D.参考答案:D略8. 已知是第二象限的角,其终边上的一点为,且,则()A. B. C. D.参考答案:D9. 函数的部分图象为参考答案:A10. 复数Z的共轭复数为,且(i是虚数单位),则在复平面内,复数Z对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限参考答案:A∵∴,即.∴∴复数的对应点位于第一象限故选A.二、填空题:本大题共7小题,每小题4分,共28分11. 已知实数,,,,为坐标平面上的三点,若,则ab的最大值为。

云南省昆明市2020届高三“三诊一模”教学质量检测数学(文)试题( 解析版)

2020年高考(文科)数学(5月份)三诊一模试卷一、选择题(共12小题).1.已知集合A={x|x<﹣1或x>2},B={﹣3,﹣2,﹣1,0,1,2,3},则A∩B=()A.{﹣3,﹣2}B.{2,3}C.{﹣3,﹣2,3}D.{﹣3,﹣2,2,3}2.若复数z满足(1+2i)z=5i,则z=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i3.在正项等比数列{a n}中,若a1=1,a3=2a2+3,则其前3项的和S3=()A.3B.9C.13D.244.已知向量a→=(1,1),b→=(2,4),则(a→−b→)•a→=()A.﹣14B.﹣4C.4D.145.已知某几何体的三视图如图所示,则该几何体的体积为()A.π2B.32πC.2πD.4π6.执行如图所示的程序框图,则输出的T=()A.85B.32C.43D.17.已知f(x)是定义在R上的减函数,则关于x的不等式f(x2﹣x)﹣f(x)>0的解集为()A.(﹣∞,0)∪(2,+∞)B.(0,2)C.(﹣∞,2)D.(2,+∞)8.已知圆C:(x﹣1)2+y2=r2(r>1)与x轴负半轴的交点为M,过点M且斜率为1的直线l与圆C的另一个交点为N,若MN的中点P恰好落在y轴上,则|MN|=()A.2√3B.2√2C.√3D.√29.抛物线上任意两点A、B处的切线交于点P,称△PAB为“阿基米德三角形”.当线段AB经过抛物线焦点F时,△PAB具有以下特征:①P点必在抛物线的准线上;②△PAB为直角三角形,且PA⊥PB③PF⊥AB.若经过抛物线y2=4x焦点的一条弦为AB,阿基米德三角形为△PAB,且点P的纵坐标为4,则直线AB的方程为()A.x﹣2y﹣1=0B.2x+y﹣2=0C.x+2y﹣1=0D.2x﹣y﹣2=0 10.若直线y=ax与曲线y=lnx﹣1相切,则a=()A .eB .1C .1eD .1e 211.已知正四棱锥P ﹣ABCD 的所有顶点都在球O 的球面上,若AB =2√2,且P ﹣ABCD 的体积为323,则球O 的表面积为( )A .25πB .25π3C .25π4D .5π12.如图,某公园内有一个半圆形湖面,O 为圆心,半径为1千米,现规划在半圆弧岸边上取点C ,D ,E ,满足∠AOD =∠DOE =2∠AOC ,在扇形AOC 和四边形ODEB 区域内种植荷花,在扇形COD 区域内修建水上项目,并在湖面上修建栈道DE ,EB 作为观光路线,则当DE +EB 取得最大值时,sin ∠AOC =( )A .√26B .14C .√23D .12二、填空题(共4小题,每小题5分,满分20分)13.能说明命题“∀x ∈R 且x ≠0,x +1x≥2”是假命题的x 的值可以是 .(写出一个即可)14.由三角形的垂心与各顶点连线的中点构成的三角形称为“欧拉三角形”已知△DEF 是锐角△ABC 的欧拉三角形,若向△ABC 所在区域内随机投一个点,则该点落在△DEF 内的概率为 .15.已知F 是双曲线M :x 2a −y 2b =1(a >0,b >0)的右焦点,点P 在M 上,O 为坐标原点,若|OP|=2b ,∠POF =π3,则M 的离心率为 .16.定义域为R 的偶函数f (x )满足f (1+x )+f (1﹣x )=0,当x ∈[0,1)时,f(x)=sin πx2,给出下列四个结论:①|f(x)|<1;②若f(x1)+f(x2)=0,则x1+x2=0;③函数f(x)在(0,4)内有且仅有3个零点;其中,正确结论的序号是.三、解答题(共5小题,满分60分)17.已知三棱柱ABC﹣A1B1C1,底面ABC为等边三角形,侧棱AA1⊥平面ABC,D为CC1中点,AA1=2AB,AB1和A1B交于点O.(1)证明:OD∥平面ABC;(2)若AB=2,求点B到平面A1B1D的距离.18.2020年1月,教育部《关于在部分高校开展基础学科招生改革试点工作的意见》印发,自2020年起,在部分高校开展基础学科招生改革试点(也称“强基计划”).强基计划聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域,选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.新材料产业是重要的战略性新兴产业,如图是我国2011﹣2019年中国新材料产业市场规模及增长趋势图.其中柱状图表示新材料产业市场规模(单位:万亿元),折线图表示新材料产业市场规模年增长率(%).(1)求2015年至2019年这5年的新材料产业市场规模的平均数;(2)从2012年至2019年中随机挑选一年,求该年新材料产业市场规模较上一年的年增加量不少于6000亿元的概率;(3)由图判断,从哪年开始连续三年的新材料产业市场规模年增长率的方差最大.(结论不要求证明)19.△ABC的角A,B,C的对边分别为a,b,c,已知b2+c2=a2+bc.(1)求A;(2)从三个条件:①a=√3②b=√3③△ABC的面积为√3中任选一个作为已知条件,求△ABC周长的取值范围.20.已知函数f(x)=ax−(a+2)lnx−2x(a>0).(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,求f(x1)+f(x2)的最小值.21.椭圆规是画椭圆的一种工具,如图1所示,在十字形滑槽上各有一个活动滑标M,N,有一根旋杆将两个滑标连成一体,|MN|=4,D为旋杆上的一点,且在M,N两点之间,且|ND|=3|MD|,当滑标M在滑槽EF内作往复运动,滑标N在滑槽GH内随之运动时,将笔尖放置于D处可画出椭圆,记该椭圆为C.如图2所示,设EF与GH交于点O,以EF所在的直线为x轴,以GH所在的直线为y轴,建立平面直角坐标系.(1)求椭圆C的方程;(2)设A1,A2是椭圆C的左、右顶点,点P为直线x=6上的动点,直线A1P,A2P分别交椭圆于Q,R两点,求四边形A1QA2R面积为3√3,求点P的坐标.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用铅笔在答题卡选考题区域内把所选的题号涂黑.如果多做,则按所做的第一题计分.[选修4--4:坐标系与参数方程]x=12−√22t,22.在平面直角坐标系xOy中,直线l的参数方程为{(t为参数),以原点y=32+√22tO为极点,x轴的非负半轴为极轴建立极坐标系.(1)求直线l的极坐标方程;(2)设动点M的极坐标为(ρ,θ),射线OM与直线l相交于点A,且满足|OA|•|OM|=4,求点M轨迹的极坐标方程.[选修4--5:不等式选讲]23.已知f(x)=2|x+1|+|x﹣1|.(1)解不等式f(x)≤4;(2)设f(x)的最小值为m,实数a,b,c满足a2+b2+c2=m,证明:|a+b+c|≤√6.参考答案一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|x<﹣1或x>2},B={﹣3,﹣2,﹣1,0,1,2,3},则A∩B=()A.{﹣3,﹣2}B.{2,3}C.{﹣3,﹣2,3}D.{﹣3,﹣2,2,3}【分析】利用交集定义直接求解.解:∵集合A={x|x<﹣1或x>2},B={﹣3,﹣2,﹣1,0,1,2,3},∴A∩B={﹣3,﹣2,3}.故选:C.【点评】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.若复数z满足(1+2i)z=5i,则z=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i【分析】通过分母实数化,求出z即可.解:∵z满足(1+2i)z=5i,∴z=5i1+2i=5i(1−2i)(1+2i)(1−2i)=2+i故选:A.【点评】本题考查了复数的运算,熟练掌握运算性质是解题的关键,本题是一道基础题.3.在正项等比数列{a n}中,若a1=1,a3=2a2+3,则其前3项的和S3=()A.3B.9C.13D.24【分析】设正项等比数列{a n}的公比为q>0,由a1=1,a3=2a2+3,可得q2=2q+3,解得q.再利用求和公式即可得出.解:设正项等比数列{a n}的公比为q>0,∵a1=1,a3=2a2+3,∴q2=2q+3,解得q=3.则其前3项的和S3=1+3+32=13.故选:C.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于基础题.4.已知向量a→=(1,1),b→=(2,4),则(a→−b→)•a→=()A.﹣14B.﹣4C.4D.14【分析】先根据平面向量的线性坐标运算求出a→−b→=(﹣1,﹣3),再根据数量积的坐标运算求解即可.解:∵a→=(1,1),b→=(2,4),∴a→−b→=(﹣1,﹣3),∴(a→−b→)•a→=−1﹣3=﹣4.故选:B.【点评】本题考查平面向量坐标运算的混合运算,考查学生的计算能力,属于基础题.5.已知某几何体的三视图如图所示,则该几何体的体积为()A.π2B.32πC.2πD.4π【分析】由三视图还原原几何体,可知该几何体是底面半径为1,高是2的圆柱截去四分之一,再由圆柱体积公式求解.解:由三视图还原原几何体如图,可知该几何体是底面半径为1,高是2的圆柱截去四分之一.其体积为V=34×π×12×2=32π.故选:B.【点评】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.6.执行如图所示的程序框图,则输出的T=()A .85B .32C .43D .1【分析】根据程序框图一步一步进行运算,直到跳出循环. 解:k =1,S =0,T =0; S =0+1=1,T =1,k =2; S =1+2=3,T =43,k =3;S =3+3=6,输出T 43; 故选:C .【点评】本题考查程序框图,注意一步一步运算,属于基础题.7.已知f (x )是定义在R 上的减函数,则关于x 的不等式f (x 2﹣x )﹣f (x )>0的解集为( )A .(﹣∞,0)∪(2,+∞)B .(0,2)C .(﹣∞,2)D .(2,+∞)【分析】根据题意,由函数的单调性分析:f (x 2﹣x )﹣f (x )>0⇒f (x 2﹣x )>f (x )⇒x 2﹣x <x ,结合一元二次不等式的解法分析可得答案.解:根据题意,f (x )是定义在R 上的减函数,则f (x 2﹣x )﹣f (x )>0⇒f (x 2﹣x )>f (x )⇒x 2﹣x <x ,即x 2﹣2x <0,解可得0<x <2,即不等式的解集为(0,2); 故选:B .【点评】本题考查函数的单调性的性质以及应用,涉及不等式的解法,属于基础题. 8.已知圆C :(x ﹣1)2+y 2=r 2(r >1)与x 轴负半轴的交点为M ,过点M 且斜率为1的直线l 与圆C 的另一个交点为N ,若MN 的中点P 恰好落在y 轴上,则|MN |=( ) A .2√3B .2√2C .√3D .√2【分析】由题意画出图形,求出M 的坐标,写出直线l 的方程,与圆的方程联立求得N 点横坐标,再由中点坐标公式求得r ,进一步求出M 与N 的坐标,则答案可求. 解:取y =0,可得x =1﹣r 或x =1+r , 由题意可得,M (1﹣r ,0), 设直线l 的方程为y =x +r ﹣1,联立{y =x +r −1(x −1)2+y 2=r 2,得x 2+(r ﹣2)x +1﹣r =0. 由1﹣r +x N =2﹣r ,得x N =1.由MN 的中点P 恰好落在y 轴上,得1﹣r +1=0,即r =2.∴M (﹣1,0),N (1,2),则|MN |=√(−1−1)2+(0−2)2=2√2. 故选:B .【点评】本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法,考查运算能力,是中档题.9.抛物线上任意两点A 、B 处的切线交于点P ,称△PAB 为“阿基米德三角形”.当线段AB 经过抛物线焦点F 时,△PAB 具有以下特征:①P 点必在抛物线的准线上;②△PAB 为直角三角形,且PA ⊥PB ③PF ⊥AB . 若经过抛物线y 2=4x 焦点的一条弦为AB ,阿基米德三角形为△PAB ,且点P 的纵坐标为4,则直线AB 的方程为( ) A .x ﹣2y ﹣1=0B .2x +y ﹣2=0C .x +2y ﹣1=0D .2x ﹣y ﹣2=0【分析】由△PAB 为“阿基米德三角形”,且线段AB 经过抛物线y 2=4x 焦点,可得:P 点必在抛物线的准线上,可求出点P (﹣1,4),从而得到直线PF 的斜率为﹣2, 又PF ⊥AB ,所以直线AB 的斜率为12,再利用点斜式即可求出直线AB 的方程.解:由题意可知,抛物线y 2=4x 的焦点F 的坐标为(1,0),准线方程为:x =﹣1, 由△PAB 为“阿基米德三角形”,且线段AB 经过抛物线y 2=4x 焦点,可得:P 点必在抛物线的准线上, ∴点P (﹣1,4),∴直线PF 的斜率为:4−0−1−1=−2,又∵PF ⊥AB ,∴直线AB 的斜率为12,∴直线AB 的方程为:y ﹣0=12(x −1),即x ﹣2y ﹣1=0,故选:A .【点评】本题主要考查了抛物线的定义,以及抛物线的性质,是中档题. 10.若直线y =ax 与曲线y =lnx ﹣1相切,则a =( )A .eB .1C .1eD .1e 2【分析】先对曲线求出导数,然后设切点,根据切点是公共点、切点处的导数是切线的斜率列出方程组,即可求出a 的值.解:y′=1x ,设切点为(x ,lnx ﹣1),则{ax =lnx −1a =1x ,解得a =1e 2. 故选:D .【点评】本题考查导数的几何意义和切线方程的求法.利用切点是公共点、切点处的导数是切线斜率,构造方程组是此类问题的基本思路.属于基础题.11.已知正四棱锥P ﹣ABCD 的所有顶点都在球O 的球面上,若AB =2√2,且P ﹣ABCD 的体积为323,则球O 的表面积为( )A .25πB .25π3C .25π4D .5π【分析】根据条件作图,数形结合求出球O 的半径r 即可. 解:如图,V P ﹣ABCD =13S 正ABCD ⋅PH =13×(2√2)2•PH =323,则PH =8, 设球O 的半径为r ,则在Rt △AOH 中,AO 2=AH 2+OH 2,即r 2=(4﹣r )2+22,解得r =52,则球O 的表面积为4πr 2=4π×254=25π, 故选:A .【点评】本题考查正四棱锥的外接球的表面积的求法,考查正四棱锥的结构特征、球的性质等基础知识,考查运算求解能力,是基础题.12.如图,某公园内有一个半圆形湖面,O 为圆心,半径为1千米,现规划在半圆弧岸边上取点C ,D ,E ,满足∠AOD =∠DOE =2∠AOC ,在扇形AOC 和四边形ODEB 区域内种植荷花,在扇形COD 区域内修建水上项目,并在湖面上修建栈道DE ,EB 作为观光路线,则当DE +EB 取得最大值时,sin ∠AOC =( )A .√26B .14C .√23D .12【分析】设∠AOC =α,则∠AOD =∠DOE =2α,∠BOE =π﹣4α,α∈(0,π4).可得:DE =2sin α,BE =2sin (π2−2α),DE +BE =2sin α+2sin (π2−2α),化简和差公式、三角函数及其二次函数的单调性即可得出.解:设∠AOC =α,则∠AOD =∠DOE =2α,∠BOE =π﹣4α,α∈(0,π4).可得:DE =2sin α,BE =2sin (π2−2α),∴DE +BE =2sin α+2sin (π2−2α)=2sin α+2cos2α=2sin α+2(1﹣2sin 2α)=﹣4(sinα−14)2+94,∴当sinα=14时,DE+EB取得最大值.故选:B.【点评】本题考查了化简和差公式、三角函数及其二次函数的单调性,考查了推理能力与计算能力,属于基础题.二、填空题(共4小题,每小题5分,满分20分)13.能说明命题“∀x∈R且x≠0,x+1x≥2”是假命题的x的值可以是﹣1,(任意负数均可以).(写出一个即可)【分析】全称命题的否定只需举出一个反例即可.例如x=﹣1,带入.解:当x>0时,x+1x≥2,当且仅当x=1取等号,当x<0时,x+1x≤−2,当且仅当x=−1取等号,∴只需x取值为负数,即可.例如x=﹣1时x+1x=−2【点评】本题考察了,全称命题的真假,基本不等式应用(也可以利用对勾函数图象来解决),属于基础题.14.由三角形的垂心与各顶点连线的中点构成的三角形称为“欧拉三角形”已知△DEF是锐角△ABC的欧拉三角形,若向△ABC所在区域内随机投一个点,则该点落在△DEF内的概率为14.【分析】做出,根据中点连线三角形与大三角形相似,面积比为相似比的平方即可求解.解:根据中位线定理,显然△DEF ∽△ABC ,且相似比为12.设A =“点落在△DEF 内”,Ω=“点落在△ABC 内”, ∴P(A)=S(A)S(Ω)=(12)2=14. 故答案为:14.【点评】本题考查几何概型条件下的概率计算问题,注意抓住几何图形性质解题.属于中档题.15.已知F 是双曲线M :x 2a −y 2b =1(a >0,b >0)的右焦点,点P 在M 上,O 为坐标原点,若|OP|=2b ,∠POF =π3,则M 的离心率为 √5 .【分析】设P 的坐标,求出OP →,OF →的坐标,由∠POF =π3,所以cos ∠POF =12=OP →⋅OF→|OP →|⋅|OF →|=x 0⋅c2b⋅c,求出P 的横坐标,代入x 02+y 02=4b 2进而求出纵坐标,再将P 坐标代入双曲线的方程可得a ,b 的关系,由a ,b ,c 之间的关系求出离心率. 解:设P (x 0,y 0)由题意可得x 0>0,设y 0>0,OP →=(x 0,y 0),由题意|OP |=2b ,可得x 02+y 02=4b 2,OF →=(c ,0),由∠POF =π3,所以cos ∠POF =12=OP →⋅OF→|OP →|⋅|OF →|=x 0⋅c 2b⋅c ,可得x 0=b ,y 02=3b 2,y 0>0,将P 点的坐标代入双曲线的方程可得:b 2a 2−3=1,所以b 2=4a 2,所以双曲线的离心率e =√c 2a 2=√a 2+b 2a 2=√5,故答案为:√5.【点评】本题考查双曲线的性质,及数量积的应用,属于中档题.16.定义域为R的偶函数f(x)满足f(1+x)+f(1﹣x)=0,当x∈[0,1)时,f(x)=sin πx 2,给出下列四个结论:①|f(x)|<1;②若f(x1)+f(x2)=0,则x1+x2=0;③函数f(x)在(0,4)内有且仅有3个零点;其中,正确结论的序号是①③.【分析】由f(1+x)+f(1﹣x)=0可知f(x)关于点(1,0)对称,令x=1,可得f(1)=0,再结合f(x)为偶函数,且当x∈[0,1)时,f(x)=sin πx2,可以作出函数的图象,根据图象逐一判断每个选项的正误即可得解.解:∵f(1+x)+f(1﹣x)=0,∴f(x)关于点(1,0)对称,令x=1,则f(1)+f(1)=0,∴f(1)=0,又∵f(x)为偶函数,且当x∈[0,1)时,f(x)=sin πx2,∴可作出函数f(x)的图象如下所示,①﹣1<f(x)<1,∴|f(x)|<1,即①正确;②取x1=﹣1,x2=2,满足f(x1)+f(x2)=0,但x1+x2=1≠0,即②错误;③函数f(x)在(0,4)内的零点为x=1,2,3,有且仅有3个,即③正确.∴正确的是①③,故答案为:①③.【点评】本题考查函数的图象与性质,分析出函数的对称性和作出函数图象是解题的关键,考查学生的作图能力和分析能力,属于中档题.三、解答题(共5小题,满分60分)17.已知三棱柱ABC﹣A1B1C1,底面ABC为等边三角形,侧棱AA1⊥平面ABC,D为CC1中点,AA1=2AB,AB1和A1B交于点O.(1)证明:OD∥平面ABC;(2)若AB=2,求点B到平面A1B1D的距离.【分析】(1)如图所示,取AB的中点E,连接CE,OE.在△ABB1中,利用三角形中位线定理可得:EO∥BB1,EO=12BB1.D为CC1的中点,可得:EO∥CD,EO=CD.利用平行四边形的性质可得:OD∥EC,利用线面平行的判定定理可得:OD∥平面ABC.(2)AB=2,△ABC与△A1B1C1为等边三角形,及其侧棱AA1⊥平面ABC,可得A1D=B1D=2√2,A1B1=2,可得S△A1B1D ,S△BB1D,点A1到平面BB1C1C的距离为√3.设点A1到平面A1B1D的距离为h.利用V A1−BB1D =V B−A1B1D,即可得出h.【解答】(1)证明:如图所示,取AB的中点E,连接CE,OE.在△ABB1中,E为AB的中点,O为AB1的中点,∴EO∥BB1,EO=12BB1.∵D为CC1的中点,∴CD=12CC1=12BB1.且CD∥BB1.∴EO∥CD,EO=CD.∴四边形CDOE为平行四边形.∴OD∥EC,而OD⊄平面ABC,EC⊂平面ABC.∴OD∥平面ABC.(2)解:∵AB=2,△ABC与△A1B1C1为等边三角形,AA1=2AB=4=CC1.∴C1D=2.∵侧棱AA1⊥平面ABC,∴A1D=B1D=2√2,A1B1=2,可得S△A1B1D.S△BB1D=12×2×4=4.点A1到平面BB1C1C的距离为√3.设点A1到平面A1B1D的距离为h.则V A 1−BB 1D =V B−A 1B 1D , ∴13×√3×4=13×√7h ,解得h =4√217.【点评】本题考查了直角与等边三角形三角形的性质、三角形中位线定理、线面面面平行与垂直的判定与性质定理、等体积法,考查了推理能力与计算能力,属于中档题. 18.2020年1月,教育部《关于在部分高校开展基础学科招生改革试点工作的意见》印发,自2020年起,在部分高校开展基础学科招生改革试点(也称“强基计划”).强基计划聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域,选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.新材料产业是重要的战略性新兴产业,如图是我国2011﹣2019年中国新材料产业市场规模及增长趋势图.其中柱状图表示新材料产业市场规模(单位:万亿元),折线图表示新材料产业市场规模年增长率(%).(1)求2015年至2019年这5年的新材料产业市场规模的平均数;(2)从2012年至2019年中随机挑选一年,求该年新材料产业市场规模较上一年的年增加量不少于6000亿元的概率;(3)由图判断,从哪年开始连续三年的新材料产业市场规模年增长率的方差最大.(结论不要求证明)【分析】(1)利用折线图能求出2015年至2019年这5年的新材料产业市场规模的平均数.(2)设A表示事件”从2012年至2019年中随机挑选一年,该年新材料产业市场规模的增加值达到6000亿元“,利用列举法能求出该年新材料产业市场规模较上一年的年增加量不少于6000亿元的概率.(3)由图判断,从2012年开始连续三年的新材料产业市场规模年增长率的方差最大.解:(1)2015年至2019年这5年的新材料产业市场规模的平均数为:x=2.1+2.7+3.1+3.9+4.55=3.26万亿元.(2)设A表示事件”从2012年至2019年中随机挑选一年,该年新材料产业市场规模的增加值达到6000亿元“,从2012年起,每年新材料产业市场规模的增加值依次为:3000,2000,3000,5000,6000,4000,8000,6000,(单位:亿元),∴P(A)=3 8.(3)由图判断,从2012年开始连续三年的新材料产业市场规模年增长率的方差最大.【点评】本题考查平均数、概率、方差的求法,考查古典概型、列举法、折线图的性质等基础知识,考查运算求解能力,是基础题.19.△ABC的角A,B,C的对边分别为a,b,c,已知b2+c2=a2+bc.(1)求A;(2)从三个条件:①a =√3②b =√3③△ABC 的面积为√3中任选一个作为已知条件,求△ABC 周长的取值范围.【分析】(1)运用余弦定理,结合条件可得所求角;(2)选①②,先通过正弦定理,再由三角函数的和差公式,结合三角函数的图象和性质,可得所求范围;选③,可通过三角形的面积公式,求得bc =4,再由余弦定理和基本不等式,计算可得所求范围.解:(1)b 2+c 2=a 2+bc ,可得cos A =b 2+c 2−a 22bc =bc 2bc =12,由A ∈(0,π),可得A =π3; (2)选①a =√3,又A =π3,可得a sinA =b sinB=c sinC=2,可设B =π3+d ,C =π3−d ,−π3<d <π3,即有三角形ABC 的周长l =a +b +c =2sin B +2sin C +√3=2sin (π3+d )+2sin (π3−d )+√3=2(√32cos d +12sin d +√32cos d −12sin d )+√3=2√3cos d +√3,由cos d ∈(12,1],可得周长l 的范围是(2√3,3√3];选②b =√3,由A =π3,由正弦定理可得a =32sinB ,c =√3sinC sinB =√3sin(2π3−B)sinB =3cosB 2sinB +√32, 则周长为l =a +b +c =32sinB +3cosB 2sinB +3√32=6cos 2B 24sin B 2cos B 2+3√32 =32tan B 2+3√32,由B ∈(0,2π3),可得0<B 2<π3,即有0<tan B 2<√3, 可得△ABC 的周长的取值范围是(2√3,+∞);若选③S △ABC =√3,由A =π3,可得S △ABC =12bc sin A =√34bc =√3,即bc =4,由余弦定理可得a 2=b 2+c 2﹣2bc cos A =b 2+c 2﹣bc =(b +c )2﹣3bc =(b +c )2﹣12, 则周长l =a +b +c =√(b +c)2−12+(b +c ),由b +c ≥2√bc =4,当且仅当b =c =2时等号成立,所以l ≥√42−12+4=6, 则△ABC 的周长的范围是[6,+∞).【点评】本题考查三角形的正弦定理和余弦定理、面积公式的运用,考查三角函数的恒等变换和三角函数的性质和基本不等式的运用,以及不等式的性质,考查运算能力,属于中档题.20.已知函数f(x)=ax −(a +2)lnx −2x (a >0).(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,求f (x 1)+f (x 2)的最小值.【分析】(1)先求出导函数f '(x ),再对a 的值分情况讨论,分别由导函数f '(x )的正负得到函数f (x )的单调性即可;(2)由(1)可知,f (x )有两个极值点时,a >0且a ≠2,不妨设x 1=1,x 2=2a ,所以f (x 1)+f (x 2)=(a +2)ln a2−2lna ,设h (x )=(x +2)ln x2−2lnx ,x ∈(0,+∞),利用导数得到h (x )min =h (2e)=−2e−2ln 2,所以当a >0且a ≠2时,f (x 1)+f (x 2)的最小值为−2e−2ln 2.解:(1)函数f(x)=ax −(a +2)lnx −2x(a >0),定义域为(0,+∞),∴f '(x )=a −a+2x+2x2=ax 2−(a+2)x+2x2=(x−1)(ax−2)x, 由f '(x )=0得:x =1或x =2a,①若0<a <2,则2a>1,由f '(x )<0得,1<x <2a ;由f '(x )>0得,0<x <1或x >2a,∴函数f (x )在(1,0)和(2a,+∞)上单调递增,在(1,2a)上单调递减;②若a =2,则2a=1,此时f '(x )=2(x−1)2x2≥0恒成立,∴函数f '(x )在(0,+∞)上单调递增; ③若a >2,则0<2a<1,由f '(x )<0得,2a<x <1;由f '(x )>0得,0<x <2a或x >1,∴函数f (x )在(0,2a)和(1,+∞)上单调递增,在(2a,1)上单调递减;(2)由(1)可知,f (x )有两个极值点时,a >0且a ≠2,不妨设x 1=1,x 2=2a ,∴f (x 1)=f (1)=a ﹣2﹣lna ,f (x 2)=f (2a)=2﹣a +(a +2)ln a2−lna ,∴f (x 1)+f (x 2)=(a +2)ln a 2−2lna ,设h (x )=(x +2)ln x2−2lnx ,x ∈(0,+∞),则h (x )=(x +2)(lnx ﹣ln 2)﹣2lnx , ∴h '(x )=lnx ﹣ln 2+1,由h '(x )<0得0<x <2e,∴函数h (x )在(0,2e)上单调递减;由h '(x )>0得x >2e,∴函数h (x )在(2e,+∞)上单调递增,∴x >0时,h (x )min =h (2e)=−2e−2ln 2,∴当a>0且a≠2时,f(x1)+f(x2)的最小值为−2e−2ln2.【点评】本题主要考查了利用导数研究函数的单调性和最值,是中档题.21.椭圆规是画椭圆的一种工具,如图1所示,在十字形滑槽上各有一个活动滑标M,N,有一根旋杆将两个滑标连成一体,|MN|=4,D为旋杆上的一点,且在M,N两点之间,且|ND|=3|MD|,当滑标M在滑槽EF内作往复运动,滑标N在滑槽GH内随之运动时,将笔尖放置于D处可画出椭圆,记该椭圆为C.如图2所示,设EF与GH交于点O,以EF所在的直线为x轴,以GH所在的直线为y轴,建立平面直角坐标系.(1)求椭圆C的方程;(2)设A1,A2是椭圆C的左、右顶点,点P为直线x=6上的动点,直线A1P,A2P分别交椭圆于Q,R两点,求四边形A1QA2R面积为3√3,求点P的坐标.【分析】(1)由|MN|的值及|ND|=3|MD|,可得|MD|,|ND|的值,由题意可得椭圆的长半轴及短半轴长,进而求出椭圆的方程;(2)由(1)可得A1,A2电子版,由题意设P的坐标,进而求出直线A1P,直线A2P的方程,与椭圆联立分别求出Q,R的坐标,进而求出四边形的面积的表达式,换元由均值不等式可得P的坐标.解:(1)由|MN|=4,D为旋杆上的一点,且在M,N两点之间,且|ND|=3|MD|,可得|MD|=1,|ND|=3所以椭圆的长半轴a为3,短半轴b为1,所以椭圆的方程为:x 29+y 2=1;(2)由(1可得A 1(﹣3,0),A 2(3,0),设P (6,t ),t >0, 则直线A 1P 的方程为:y =t 9(x +3),直线A 2P 的方程为:y =t 3(x ﹣3), 设Q (x 1,y 1),R (x 2,y 2),由{y =t9(x +3)x29+y 2=1整理可得:(9+t 2)y 2﹣6ty =0,因为yA 1=0,所以y Q =6t9+t 2, 由{y =t3(x −3)x29+y 2=1整理可得(1+t 2)y 2+2ty =0,因为yA 2=0,所以y R =−2t1+t 2, 所以四边形A 1QA 2R 的面积S =12|A 1A 2||y Q ﹣y R |=12•6•(6t 9+t 2+2t 1+t 2)=24t(3+t 2)(9+t 2)(1+t 2)=24t(3+t 2)(3+t 2)2+4t2=243+t 2t +4t 3+t 2, 因为t >0,m =t 2+3t=t +3t≥2√3,所以S =24m+4m=3√3,解得m =2√3,即t =√3, 当t <0,由对称性可得t =−√3,综上所述:当点P (6,√3)或(6,−√3)时,四边形A 1QA 2R 面积为3√3.【点评】本题考查求椭圆方程的方法及直线与椭圆的综合,及均值不等式的应用,属于中档题. 一、选择题22.在平面直角坐标系xOy中,直线l的参数方程为{x=12−√22t,y=32+√22t(t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求直线l的极坐标方程;(2)设动点M的极坐标为(ρ,θ),射线OM与直线l相交于点A,且满足|OA|•|OM|=4,求点M轨迹的极坐标方程.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用极径的应用求出结果.解:(1)直线l的参数方程为{x=12−√22t,y=32+√22t(t为参数),转换为直角坐标方程为x+y ﹣2=0.转换为极坐标方程为ρcosθ+ρsinθ+2=0.(2)设动点M的极坐标为(ρ,θ),射线OM与直线l相交于点A,且满足|OA|•|OM|=4,所以A(4ρ,θ),所以4ρ(sinθ+cosθ)=2,转换为ρ=2sinθ+2cosθ(ρ>0).【点评】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,极径的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.[选修4--5:不等式选讲]23.已知f(x)=2|x+1|+|x﹣1|.(1)解不等式f(x)≤4;(2)设f(x)的最小值为m,实数a,b,c满足a2+b2+c2=m,证明:|a+b+c|≤√6.【分析】(1)利用绝对值的意义,写出分段函数,即可求不等式f(x)≤4的解集;(2)利用绝对值不等式,求出m ,再利用柯西不等式进行证明.解:(1)f (x )={−3x −1,x ≤−1x +3,−1<x <13x +1,x ≥1,∴不等式f (x )≤4等价于{x ≤−1−3x −1≤4或{−1<x <1x +3≤4或{x ≥13x +1≤4,解得−53≤x ≤﹣1或﹣1<x <1或x =1,∴不等式的解集为[−53,1];(2)由(1)可知,f (x )在(﹣∞,﹣1]递减,在(﹣1,+∞)递增, ∴f (x )的最小值为f (﹣1)=2, ∴m =2, 即a 2+b 2+c 2=2,根据柯西不等式得(a +b +c )2≤(12+12+12)(a 2+b 2+c 2)=6, 故|a +b +c|≤√6.【点评】本题考查不等式的解法,考查柯西不等式证明不等式,考查学生分析解决问题的能力,属于中档题.。

昆明市2020届高三数学“三诊一模”模拟考试三模试题文含解析

A。 B。 C. 3D。
【答案】C
【解析】
【分析】
先设出 , 点坐标,根据抛物线定义表示出 和 ,然后把已知条件 进行用坐标表示,最后化简即可得出结果.
【详解】解:设 , ,准线 与 轴交于点 ,如图:
在 和 中,由勾股定理得:
,

又因为 ,所以 。
由抛物线定义知, , ,
所以 。
故选:C。
【点睛】本题考查了抛物线的定义和设而不求思想,解析几何中设而不求是一种常见的计算技巧,关键是把条件坐标化,突出考查计算能力,属于中档题。
云南省昆明市2020届高三数学“三诊一模”模拟考试(三模)试题 文(含解析)
注意事项:
1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题上.写在本试卷上无效.
【详解】 , ,
最大,
, ,
考察函数 与 图象,
可得 ,
,
,
故选:D.
【点睛】本题考查指数式与对数式的大小比较,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力、运算求解能力.
10。如图1,已知 是直角梯形, ∥ , , 在线段 上, .将 沿 折起,使平面 平面 ,连接 , ,设 的中点为 ,如图2.对于图2,下列选项错误的是( )
17。已知数列 为正项等比数列, 为 的前 项和,若 , .
(1)求数列 的通项公式;
(2)从两个条件:① ;② 中任选一个作为已知条件,求数列 的前 项和 .

云南省昆明市2020届高三“三诊一模”高考模拟考试(三模)数学(文)试题附答案

秘密★启用前【考试时间:6月9日15:00-17:00】昆明市2020届“三诊一模”高考模拟考试文科数学注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数(1)z i i =-对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合{2,1,0,1,2}A =--,{2|}B b b A =+∈,则A B ⋂=( )A .{2,1,0}--B .{1,0,1}-C .{2,0,2}-D .{0,1,2}3.已知一家便利店从1月份至5月份的营业收入与成本支出的折线图如下:关于该便利店1月份至5月份的下列描述中,正确的是( )A .各月的利润保持不变B .各月的利润随营业收入的增加而增加C .各月的利润随成本支出的增加而增加D .各月的营业收入与成本支出呈正相关关系4.已知tan()3αβ-=,tan 2β=,则tan α的值为( )A .1-B .1C .12-D .125.已知点P 在双曲线22221(0,0)x y a b a b-=>>的一条渐近线上,该双曲线的离心率为( )A B C .2 D .4 6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体的体积为( )A .216B .108C .D .367.执行如图所示的程序框图,若输出65S =,则输入的N 可以是( )A .3B .4C .5D .68.材料一:已知三角形三边长分别为,,a b c ,则三角形的面积为S =2a b c p ++=.这个公式被称为海伦-秦九韶公式.材料二:阿波罗尼奥斯(Apollonius )在《圆锥曲线论》中提出椭圆定义:我们把平面内与两个定点12,F F 的距离的和等于常数(大于12F F )的点的轨迹叫做椭圆.根据材料一或材料二解答:已知ABC V 中,4BC =,6AB AC +=,则ABC V 面积的最大值为( )B .3C .D .69.已知4log 3a =,ln3b =,33log 2c =,则,,a b c 的大小关系为( ) A .a c b >> B .a b c >> C .b c a >> D .b a c >>10.如图1,已知四边形PABC 是直角梯形,//AB PC ,AB BC ⊥,D 在线段PC 上,AD PC ⊥.将PAD V 沿AD 折起,使平面PAD ⊥平面ABCD ,连接,PB PC ,设PB 的中点为N ,如图2.对于图2,下列选项错误的是( )A .平面PAB ⊥平面PBC B .BC ⊥平面PDCC .PD AC ⊥ D .2PB AN =11.设函数()|sin |cos f x x x =+,下述四个结论:①()f x 是偶函数 ②()f x 的图象关于直线2x π=对称③()f x 的最小值为④()f x 在(,0)π-上有且仅有一个极值点其中所有正确结论的编号是A .①③B .①④C .②③D .②④12.已知F 为抛物线22(0)y px p =>的焦点,准线为l ,过焦点F 的直线与抛物线交于A ,B 两点,点,A B。

云南省达标名校2020年高考三月数学模拟试卷含解析

云南省达标名校2020年高考三月数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设i 是虚数单位,若复数5i2i()a a +∈+R 是纯虚数,则a 的值为( ) A .3-B .3C .1D .1-2.已知数列{}n a 的前n 项和为n S ,11a =,22a =且对于任意1n >,*n N ∈满足()1121n n n S S S +-+=+,则( ) A .47a =B .16240S =C .1019a =D .20381S =3.已知抛物线2:6C y x =的焦点为F ,准线为l ,A 是l 上一点,B 是直线AF 与抛物线C 的一个交点,若3FA FB =,则||BF =( ) A .72B .3C .52D .24.某几何体的三视图如图所示,则该几何体的最长棱的长为( )A .25B .4C .2D .225.已知函数()f x 的导函数为()f x ',记()()1f x f x '=,()()21f x f x '=,…,()()1n n f x f x +'=(n ∈N *). 若()sin f x x x =,则()()20192021f x f x += ( ) A .2cos x -B .2sin x -C .2cos xD .2sin x6.已知命题p:直线a ∥b ,且b ⊂平面α,则a ∥α;命题q:直线l ⊥平面α,任意直线m ⊂α,则l ⊥m.下列命题为真命题的是( ) A .p ∧qB .p ∨(非q )C .(非p )∧qD .p ∧(非q )7.在ABC ∆中,,2,BD DC AP PD BP AB AC λμ===+,则λμ+= ( )A .13-B .13C .12-D .128.若函数32()2()f x x mx x m R =-+∈在1x =处有极值,则()f x 在区间[0,2]上的最大值为( ) A .1427B .2C .1D .39.若复数()12()()z m m i m R =+-∈+是纯虚数,则63iz+=( ) A .3B .5C .5D .3510.函数()sin (0)f x x ωω=>的图象向右平移12π个单位得到函数()y g x =的图象,并且函数()g x 在区间[,]63ππ上单调递增,在区间[,]32ππ上单调递减,则实数ω的值为( ) A .74B .32C .2D .5411.设函数22sin ()1x xf x x =+,则()y f x =,[],x ππ∈-的大致图象大致是的( )A .B .C .D .12.已知函数1222,0,()log ,0,x x f x x x +⎧+≤⎪=⎨>⎪⎩若关于x 的方程[]2()2()30f x af x a -+=有六个不相等的实数根,则实数a 的取值范围为( ) A .163,5⎛⎫⎪⎝⎭B .163,5⎛⎤⎥⎝⎦C .(3,4)D .(]3,4二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

_._ _._ 2019年云南省昆明市高考模拟考试(5月份) 数学试卷(文科)

一、选择题 1.设集合A={x∈Z|x≥2},B={x|0≤x<6},则A∩B=( )

A.{x|2≤x<6} B.{x|0≤x<6} C.{0,1,2,3,4,5} D.{2,3,4,5}

2. =( )

A.﹣i B.i C.1 D.﹣1 3.一个四棱柱的三视图如图所示,若该四棱柱的所有顶点都在同一球面上,则这个球的表面

积为( )

A.25π B.50π C.100π D.200π 4.AQI(Air Quality Index,空气质量指数)是报告每日空气质量的参数,描述了空气清洁

或者污染的程度.AQI共分六级,从一级优(0~50),二级良(51~100,),三级轻度污染,四级重度污染,直至无极重度污染,六级严重污染(大于300).下面是昆明市2019年4月份随机抽取的10天的AQI茎叶图,利用该样本估计昆明市2018年4月份质量优的天数(按这个月共30天计算)为( )

A.3 B.4 C.12 D.21 5.已知非零向量,满足•=0,||=3,且与+的夹角为,则||=( )

A.6 B.3 C.2 D.3 6.若tanθ=﹣2,则sin2θ+cos2θ=( )

A. B.﹣ C. D.﹣

7.已知F1、F2为双曲线C:﹣=1(a>0,b>0)的左、右焦点,点P在C的渐进线上,PF1_._ _._ ⊥x轴,若△PF1F2为等腰直角三角形,则C的离心率为( ) A. B. C. +1 D.

8.在△ABC中,已知AB=,AC=,tan∠BAC=﹣3,则BC边上的高等于( )

A.1 B. C. D.2 9.定义n!=1×2×3×…×n,例如1!=1,2!=1×2=2,执行右边的程序框图,若输入ɛ=0.01,

则输出的e精确到e的近似值为( )

A.2.69 B.2.70 C.2.71 D.2.72 10.我国南北朝时期的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上,于5世纪末

提出了下面的体积计算的原理(祖暅原理):“幂势既同,则积不容异”.“势”是几何体的高,“幂”是截面面积.意思是,若两等高的几何体在同高处截面面积总相等,则这两个几何体的体积相等.现有一旋转体D,它是由抛物线y=x2(x≥0),直线y=4及y轴围成的封闭图形如图1所示绕y轴旋转一周形成的几何体,利用祖暅原理,以长方体的一半为参照体(如图2所示)则旋转体D的体积是( ) A. B.6π C.8π D.16π 11.已知函数f(x)=,若方程f(x)﹣ax=0恰有两个不同的根,则实数a的取值范围是( )

A.(0,) B.[,) C.(,] D.(﹣∞,0]∪[,+∞)

12.设F为抛物线C:y2=8x,曲线y=(k>0)与C交于点A,直线FA恰与曲线y=(k>0)

相切于点A,直线FA于C的准线交于点B,则等于( ) A. B. C. D.

二、填空题 13.已知实数x,y满足,则z=x+y的最大值为 .

14.已知函数f(x)=sin(ωx+)(ω>0),A、B是函数y=f(x)图象上相邻的最高点和最低

点,若|AB|=2,则f(1)= . 15.已知数列{an}的前n项和为Sn,且an=4n,若不等式Sn+8≥λn对任意的n∈N*都成立,则

实数λ的取值范围为 . 16.若关于x的不等式a≤x2﹣3x+4≤b的解集恰好为[a,b],那么b﹣a= .

三、解答题 17.已知数列{an}满足a1=2,an+1=2an+2n+1.

(Ⅰ)证明数列{}是等差数列; _._ _._ (Ⅱ)求数列{}的前n项和. 18.某校为了解高一学生周末的“阅读时间”,从高一年级中随机调查了100名学生进行调查,

获得了每人的周末“阅读时间”(单位:小时),按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成样本的频率分布直方图如图所示. (Ⅰ)求图中a的值; (Ⅱ)估计该校高一学生周末“阅读时间”的中位数; (Ⅲ)在[1,1.5),[1.5,2)这两组中采用分层抽样抽取7人,再从7人中随机抽取2人,求抽取的两人恰好都在一组的概率.

19.如图,已知三棱锥P﹣ABC,BC⊥AC,BC=AC=2,PA=PB,平面PAB⊥平面ABC,D、

E、F分别是AB、PB、PC的中点.

(Ⅰ)证明:PD⊥平面ABC; (Ⅱ)若M为BC中点,且PM⊥平面EFD,求三棱锥P﹣ABC的体积.

20.已知动点M(x,y)满足: +=2,M的轨迹为曲线E.

(Ⅰ)求E的方程; (Ⅱ)过点F(1,0)作直线l交曲线E于P,Q两点,交y轴于R点,若=λ1, =λ2,求证:λ1+λ2为定值.

21.已知函数f(x)=(2x2+x)lnx﹣(2a+1)x2﹣(a+1)x+b(a,b∈R).

(Ⅰ)当a=1时,求函数f(x)的单调区间; (Ⅱ)若f(x)≥0恒成立,求b﹣a的最小值.

请考生在22、23二题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程] 22.在平面直角坐标系xOy中,曲线C的方程为(x﹣2)2+y2=4,直线l的方程为x+y﹣12=0,

以坐标原点为极点,x轴正半轴为极轴建立极坐标系. (Ⅰ)分别写出曲线C与直线l的极坐标方程; (Ⅱ)在极坐标中,极角为θ(θ∈(0,))的射线m与曲线C,直线l分别交于A、B两点(A异于极点O),求的最大值.

[选修4-5:不等式选讲] 23.已知a,b,c,m,n,p都是实数,且a2+b2+c2=1,m2+n2+p2=1. _._ _._ (Ⅰ)证明|am+bn+cp|≤1; (Ⅱ)若abc≠0,证明++≥1. _._

_._ 2019年云南省昆明市高考数学模拟试卷(文科)(5月份)

参考答案与试题解析 一、选择题 1.设集合A={x∈Z|x≥2},B={x|0≤x<6},则A∩B=( )

A.{x|2≤x<6} B.{x|0≤x<6} C.{0,1,2,3,4,5} D.{2,3,4,5}

【考点】1E:交集及其运算. 【分析】由A与B,求出两集合的交集即可. 【解答】解:∵集合A={x∈Z|x≥2},B={x|0≤x<6}, ∴A∩B={2,3,4,5}, 故选:D

2. =( )

A.﹣i B.i C.1 D.﹣1 【考点】A5:复数代数形式的乘除运算. 【分析】直接由复数代数形式的乘除运算化简得答案. 【解答】解: =, 故选:A.

3.一个四棱柱的三视图如图所示,若该四棱柱的所有顶点都在同一球面上,则这个球的表面

积为( )

A.25π B.50π C.100π D.200π 【考点】LR:球内接多面体;LG:球的体积和表面积. 【分析】由题意,四棱柱为长方体,其对角线长为=5,可得球的半径为,即可求出这个球的表面积. 【解答】解:由题意,四棱柱为长方体,其对角线长为=5,

∴球的半径为, ∴这个球的表面积为=50π, 故选:B. _._ _._ 4.AQI(Air Quality Index,空气质量指数)是报告每日空气质量的参数,描述了空气清洁

或者污染的程度.AQI共分六级,从一级优(0~50),二级良(51~100,),三级轻度污染,四级重度污染,直至无极重度污染,六级严重污染(大于300).下面是昆明市2019年4月份随机抽取的10天的AQI茎叶图,利用该样本估计昆明市2018年4月份质量优的天数(按这个月共30天计算)为( )

A.3 B.4 C.12 D.21 【考点】BA:茎叶图. 【分析】通过读茎叶图求出空气质量是优的概率,从而求出30天空气质量是优的天数即可. 【解答】解:由茎叶图10天中有4天空气质量是优,

即空气优的概率是p==, 故30天中有×30=12天是优, 故选:C.

5.已知非零向量,满足•=0,||=3,且与+的夹角为,则||=( )

A.6 B.3 C.2 D.3 【考点】9V:向量在几何中的应用;9S:数量积表示两个向量的夹角. 【分析】利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可.

【解答】解:非零向量,满足•=0,可知两个向量垂直,||=3,且与+的夹角为, 说明以向量,为邻边, +为对角线的平行四边形是正方形,所以则||=3. 故选:D.

6.若tanθ=﹣2,则sin2θ+cos2θ=( )

A. B.﹣ C. D.﹣

【考点】GI:三角函数的化简求值. 【分析】利用二倍角公式、同角三角函数的基本关系,求得要求式子的值.

相关文档
最新文档