简述利用农杆菌介导法进行植物基因转化的具体流程

合集下载

农杆菌转化法原理

农杆菌转化法原理

农杆菌转化法原理农杆菌转化法是一种常用的植物基因转化技术,其原理是利用农杆菌在植物体内引起植物细胞的转化,使外源基因被导入植物细胞内,从而实现对植物基因的改造。

这项技术在农业生产和基因工程领域有着广泛的应用,为改良作物品种、提高农作物产量、抗病虫害等方面提供了有力的技术支持。

农杆菌转化法的原理主要包括以下几个关键步骤:1. 农杆菌感染植物细胞。

首先,将含有外源基因的质粒DNA导入到农杆菌的Ti质粒中,然后将农杆菌与植物组织接触,使其感染植物细胞。

农杆菌通过其特殊的毛状附着器将Ti质粒转移到植物细胞内。

2. 植物细胞内基因导入。

农杆菌感染植物细胞后,Ti质粒中的外源基因会被转移到植物细胞内。

这些外源基因可以是对抗病虫害、提高产量或改良品质的基因,通过农杆菌的介导,成功导入到植物细胞内。

3. 外源基因整合到植物基因组。

一旦外源基因进入植物细胞内,它们会与植物细胞的染色体发生重组,将外源基因整合到植物基因组中。

这样,外源基因就成为植物细胞的一部分,可以被遗传到后代植物中。

4. 外源基因表达。

一旦外源基因整合到植物基因组中,它们就会开始在植物细胞内进行表达。

外源基因的表达可以使植物获得新的性状,比如抗病虫害、耐逆境等,从而实现对植物性状的改良。

农杆菌转化法的原理简单清晰,通过这种方法可以实现对植物基因的改造,为农业生产提供了重要的技术手段。

在实际应用中,农杆菌转化法已经成功应用于多种作物,如水稻、小麦、玉米、大豆等,为作物的抗病虫害、耐逆境等性状的改良提供了有效途径。

总的来说,农杆菌转化法作为一种重要的植物基因转化技术,其原理清晰,操作简单,成功率高,因此在农业生产和基因工程领域有着广泛的应用前景。

随着技术的不断进步和完善,相信农杆菌转化法将会为农业生产和作物改良带来更多的机遇和挑战。

20 【终版】农杆菌介导的烟草转gfp基因(叶盘法)

20 【终版】农杆菌介导的烟草转gfp基因(叶盘法)

1 实验背景什么是“植物转基因技术”“转基因植物”?植物转基因技术:把从动物、植物或微生物中分离获得的目的基因,或者经过修饰的目的基因,通过各种方法转移重组到植物基因组内,使之稳定遗传并赋予植物新的遗传性状的方法。

转基因植物:通过植物转基因技术获得的、整合有外源基因的植物个体。

1 实验背景为什么要进行植物转基因?优势:◆农业:生产抗逆、高产、优质、抗病虫、除草剂、营养品质改良等优良性状的作物;遗传育种等。

◆制药、化工等:可作为生物反应器,生产药用蛋白和有用次生代谢物,或生产某些有机化合物等。

◆园艺:美化生活等,如蓝玫瑰等。

◆科学研究:生物学、遗传学等多领域基础研究等。

1 实验背景怎样将外源基因转入植物?间接转化法(载体介导)病毒介导法农杆菌介导法(双子叶/单子叶)种质系统介导法胚囊和子房注射法生殖细胞侵染法花粉管通道法直接转化法物理法化学法基因枪法(单子叶植物)显微注射法电击法超声波法PEG 法脂质体法1 实验背景各种转基因方法的区别是什么?(引自崔广荣,2003)1 实验背景针对不同植物,怎样选择转基因方法?目前转基因植株中,约80%以上通过“农杆菌介导转化法”获得。

植株特点首选方法备注对农杆菌敏感农杆菌介导法效率高,方法成熟,转基因植株遗传稳定。

原生质体培养容易直接转化法(如PEG 法)转化率高,可克服转基因植株嵌合体的难题。

多胚珠花粉管通道法提高转化率子房中有较大单胚珠植物(如核果类)显微注射法提高转化率转化难度大的植物基因枪法其它方法不可行时的备选放射性农杆菌发根农杆菌Agrobacterium rhizogenes根瘤农杆菌Agrobacterium tumefaciens旋钩子农杆菌1 实验背景农杆菌为什么能够介导基因转入植物?土壤农杆菌革兰氏阴性菌RiTi 质粒(tumor inducing plasmid )约150~200 kb向植物细胞传递外源基因Ti1 实验背景农杆菌为什么能够介导基因转入植物?Vir 区:毒性区,包含多个致病基因,能激活T-DNA 的加工、剪切、复制及转入植物细胞,并使农杆菌表现出毒性。

使用基因工程技术进行植物转基因的关键步骤

使用基因工程技术进行植物转基因的关键步骤

使用基因工程技术进行植物转基因的关键步骤基因工程技术在植物领域的应用越来越广泛,其中最重要的应用之一就是植物转基因。

通过植物转基因,科学家们能够改变植物的基因组,使其获得更好的抗病性、耐旱性、抗虫性以及提高产量等特性。

下面将介绍植物转基因的关键步骤。

1. 目标基因的挑选和克隆植物转基因的第一步是选择需要改变的目标基因。

根据需求,科学家们可以选择增强某种抗性、改善某种品质或增加植物的营养价值等。

一旦确定目标基因,就需要在染色体上将其克隆出来,以便后续的基因转移。

2. 基因载体的构建转基因技术中,基因载体是一个不可或缺的工具。

基因载体是一个DNA分子,用于将目标基因转移到植物细胞中。

一般来说,研究人员会选择合适的质粒作为基因载体,并将目标基因插入到其中。

此外,基因载体还可以含有选择标记基因,用于筛选转基因植株。

3. 基因传递技术选择适当的基因传递技术是植物转基因的关键步骤之一。

常用的基因传递技术有农杆菌介导的转化、生物质粒介导的转化和基因枪转化等。

农杆菌介导的转化是最常用的方法之一,它利用一种土壤中的细菌农杆菌,通过插入一段目标基因的DNA序列到其载体上,然后转移到植物组织中。

而生物质粒介导的转化则是将目标基因导入含有质粒的金属微粒,通过炮弹或其他装置将其射入植物的细胞中。

4. 选择标记基因筛选转基因植株为了筛选出转基因植株,科学家会在基因载体中加入选择标记基因。

选择标记基因常常与目标基因一起转移。

通过选择合适的标记基因,可以利用生物学、生化或者抗生素抑制等方法筛选出含有目标基因的转基因植株。

5. 转基因植株的再生和培养一旦得到转基因植株,接下来的步骤是将其再生和培养。

科学家们将含有目标基因的转基因组织继续培养,通过选择合适的培养基和生长条件,促进其生长和分化。

在培养过程中,经过筛选得到的转基因植株会不断繁殖,直到形成一批具备目标基因特征的转基因植株。

最后,进行多代观察和评估,确保目标基因在转基因植株中稳定遗传。

植物遗传转化步骤

植物遗传转化步骤

植物遗传转化步骤
植物遗传转化是指通过人为手段,将外来基因导入植物细胞内,使其产生新的遗传特征。

植物遗传转化的步骤主要包括以下几个方面: 1. 基因载体构建:基因载体是将所需基因导入植物细胞内的载体,包括质粒、病毒、人工染色体等。

构建基因载体需要选择适当的载体和适合的启动子、终止子、选择标记等元件。

2. 转化体系建立:植物遗传转化需要建立一套合适的转化体系,包括培养基的配制、细胞培养和再生体系等。

转化体系的搭建需要考虑到不同物种、基因载体和转化方法的特点。

3. 基因导入:基因导入可以通过直接基因转移、基因炮击、农
杆菌介导转化等手段进行。

其中,农杆菌介导转化是最常用的基因导入方法。

在基因导入过程中,可以使用选择标记来筛选生产基因转化植株。

4. 识别和筛选:基因转化后的植物细胞需要进行识别和筛选。

常用的识别方法包括PCR检测、Southern杂交、Northern杂交等。

筛选方法可以通过细菌耐草酸和遗传标记等手段进行。

5. 品系选育:经过基因转化的植物需要进行品系选育,通过选
择有利的基因型和表型,后代将具有更好的遗传特征。

品系选育需要进行多代重复筛选,最终得到具有稳定表达和优良性状的转化植株。

6. 安全评价:基因转化后的植物需要进行安全评价,包括对植
物生长性状、代谢产物、土壤微生物等方面的评价。

安全评价是确保基因转化植物的生态安全性和食品安全性的重要环节。

农杆菌介导的水稻转化

农杆菌介导的水稻转化

农杆菌介导的水稻转化实验目的学习农杆菌介导的将目的基因导入水稻的方法。

实验原理随着分子生物学的发展,越来越多的参与植物抗病有关的基因被分离出来,如防卫反应有关的基因、参与抗病信号传导的基因,参与对病原物识别的基因等,要鉴定这些基因在植物抗病性中的作用和地位,就要构建转化植物的双元载体如超量表达、反义和RNA干涉的双元载体转化植物,来明确该基因在植物抗病中的作用。

水稻上常用的遗传转化方法分为DNA直接导入法和农杆菌介导的转化法。

DNA直接导入法主要包括PEG(polyethylene glycol)介导的转化法、电击转化法、基因枪转化法和花粉管通道转化法。

其中PEG法、电穿孔法以原生质体为受体,由于对原生质体再生的依赖而在应用上受到很大限制。

基因枪法优点是受体广泛,不受寄主范围的限制,转化率较高,但和其它DNA直接导入法一样存在共同的缺点:外源DNA的整合方式复杂,常常是多拷贝插入,较易出现转基因沉默现象,转化的外源基因片断不能太大(上限是16-20kb),转入基因的分离有时呈非孟德尔遗传等。

同DNA直接导入法相比,农杆菌介导的转化法不需要原生质体的培养,简便易行,能有效地转入较大的外源DNA片断;转化效率高,转化的外源基因整合位点比较稳定(一般在T-DNA 25bp处与植物基因组整合),整合的外源基因基本上保持其结构的完整性;整合的外源基因多为单拷贝或低拷贝;整合的外源基因在转基因植株中的显性表达率较高,共抑制现象相对较少;转入的外源基因通常以孟德尔遗传规律遗传。

所以已成为转化单子叶植物的首选方法。

一、目标基因对农杆菌的转化1.1农杆菌感受态细胞的制备1.取-70℃保存的农杆菌EHA105于含50μg/ml利福平YM平板划线,28℃黑暗培养。

2.挑取单菌落接种于5ml YM液体培养基中,220rpm 28℃振荡培养12-16小时。

3.取2ml菌液转接于100ml YM液体培养基中,28℃,220rpm振荡培养至OD600=0.5。

植物表达载体转化农杆菌操作步骤

植物表达载体转化农杆菌操作步骤

植物表达载体转化农杆菌操作步骤第一部分:农杆菌介导转化水稻1、农杆菌选择:LBA4404、EHA105、GV31012、农杆菌活化:将保存的农杆菌在固体LB培养基上画线(或加或不加抗生素,LBA4404:Rif或Str;EHA105:Rif或 Str;GV3103:庆大霉素。

如果不加抗生素就有可能造成这些菌株的Ti质粒丢失,导致农杆菌缺乏侵染性),抗生素浓度为:50μg/ml。

28℃培养。

3、农杆菌感受态细胞的制备:1)挑取单菌落接种于3ml LB液体培养基中,220rpm 28℃振荡培养至OD600=0.5。

2)吸取1.5ml菌液于离心管中,冰浴10min;3)5000(13000)rpm离心30s,弃去上清液;4)沉淀用1.5 ml 0.5M NaCl悬浮,冰浴20min;5)5000(13000)rpm离心30s,弃去上清液;6)每管用100μl 20mMCaCl2悬浮,用于转化;制备好的感受态细胞可马上使用,也可按每管200ul分装于无菌离心管中,于4℃保存48小时内使用,长期贮存时必须在液氮中速冻后转一70℃保存。

使用时从一70℃取出,置冰上融化后使用。

4、DNA直接转化农杆菌:1)50μl农杆菌感受态细胞中加入质粒DNA 0.1~1μg(5-10ul),之后冰浴30 min;2)放入液氮中5min(或1min),然后立即放入37℃水浴锅中水浴5min;3)取出离心管,加入0.5mlLB,28℃、220rpm振荡培养3~5hr;4)取出菌液于含相应抗生素的LB平板上涂板,在培养箱中28℃条件下倒置培养。

2天左右菌落可见。

(pEmu载体:AMP+Rif/Str;pK载体:Kan+Rif/Str;pTCK载体:Kan+Rif/Str)5、重组农杆菌鉴定:1)挑取单菌落,接种于含相应抗生素的LB液体培养基中,28℃振荡培养过夜。

(pEmu载体:AMP+Rif/Str;pK载体:Kan+Rif/Str;pTCK载体:Kan+Rif/Str)2)小量提取质粒DNA,加GTE同时加5μL溶菌酶(50μg "ml -1,贮藏浓度为50mg/ml或10mg/ml)。

农杆菌的活化培养及介导的遗传转化

农杆菌的活化培养及介导的遗传转化

一、目的要求通过实验掌握农杆菌的活化与培养技术与农杆菌介导获得目的基因的转化植株。

二、基本原理农杆菌共培养法最早是由Marton 等(1979 年)以原生质体为受体建立起来的,经过一系列改进后,目前已经成为最常用的转化方法。

共培养法是利用Ti 质粒系统,将农杆菌与植物原生质体、悬浮培养细胞、叶盘、茎段等共同培养的一种转化方法(图6-1)三、材料及方法1.含目的基因共整合载体或双元载体的根癌农杆菌。

2.植物幼苗。

(一)细菌培养液直接浸染法操作:(1)无菌受体材料的准备:叶片、茎段、胚轴、子叶等均可做受体材料,有两种来源。

①取自无菌试管苗。

②取自田间或温室栽培植株:叶片、茎尖、茎段用蒸馏水冲冼1 遍后,70%乙醇洗45 秒,0.1%升汞消毒6~8 分钟,无菌水冲洗三遍,无菌滤纸吸干水分。

(2)受体材料预培养:将无菌叶片剪成0.5cm×0.5cm 的小块或用6mm 打孔器凿成圆盘,无菌胚轴、茎切成约0.8~1cm 长的切段,接种在愈伤组织诱导或分化培养基上进行预培养,注意叶片近轴面向下:预培养2~3 天,材料切口处刚刚开始膨大时即可进行侵染。

(3)农杆菌培养:①从平板上挑取单菌落,接种到20mL 附加相应抗生素的细菌培养液体培为0.6~0.8。

②取OD600养基(pH7.0)中,在恒温摇床上,于27℃, 180r/ min 培养至OD600为0.6~0.8 的菌液,按1%~2%的比例,转入新配制的无抗生素的细菌培养液体培养基中,可在与上相同的条件下培养6 小时左右,OD为0.2~0.5 时即可用于转化;或同时加入600100~500μmol/的AS;(4)侵染:于超净工作台上,将菌液倒入无菌小培养皿中(可根据材料对菌液的敏感情况进行不同倍数的稀释)。

从培养瓶中取出预培养过的外植体,放入菌液中,浸泡适当时间(一般1~5 分钟,不同材料处理时间不同)。

取出外植体置于无菌滤纸上吸去附着的菌液。

(5)共培养:将侵染过的外植体接种在愈伤组织诱导或分化培养基上(烟草为MS 十IAA0.5mg/L BA2.0mg/L) ,在28℃暗培养条件下共培养2~4 天(光对某些植物的转化有抑制作用,故需暗培养,共培养时间因不同植物而异)。

植物遗传转化步骤

植物遗传转化步骤

植物遗传转化步骤植物遗传转化是一种通过改变植物的遗传物质来实现特定目的的技术。

这一技术已经被广泛应用于植物育种、基因工程和农业生产中。

下面我们将介绍植物遗传转化的具体步骤。

一、选择目标植物和目标基因在进行植物遗传转化之前,首先需要确定目标植物和目标基因。

目标植物通常是经济作物或者重要的研究对象,而目标基因则是具有特定功能的基因,如抗病性、耐旱性等。

二、构建载体构建载体是进行植物遗传转化的重要步骤之一。

载体是将目标基因导入植物细胞的媒介,通常由DNA序列构成。

在构建载体时,需要将目标基因插入到适当的表达载体中,并加入其他必要的DNA片段,如启动子、终止子和选择标记基因等。

三、转化载体到植物细胞将构建好的载体导入植物细胞是植物遗传转化的核心步骤。

目前常用的转化方法有农杆菌介导的转化和基因枪法。

农杆菌介导的转化是将构建好的载体转化到农杆菌中,然后利用农杆菌侵染植物组织,将载体导入植物细胞。

基因枪法则是利用高压气体将载体直接“射击”到植物细胞中。

四、筛选转化植株在转化植物细胞后,需要进行筛选以获得含有目标基因的转化植株。

为了区分转化植株和未转化的植株,常常会在载体中加入选择标记基因。

选择标记基因通常会使转化植株对某种抗生素或除草剂具有耐受性,在培养基中添加相应抗生素或除草剂后,只有含有目标基因的转化植株能够生长下去。

五、培养和繁殖转化植株筛选出含有目标基因的转化植株后,需要进行培养和繁殖。

通常会将转化植株移至含有适当营养物质的培养基中进行生长,以获得足够数量的转化植株。

六、鉴定转化植株在培养和繁殖转化植株后,需要对其进行鉴定,确认其是否成功转化。

鉴定方法包括PCR扩增、Southern印迹和Western印迹等。

通过这些方法,可以检测目标基因在转化植株中的存在和表达情况。

七、后续分析和应用一旦确认转化植株成功,就可以进行后续的分子生物学和生理学分析,如基因表达分析、蛋白质功能研究等。

此外,转化植株也可以用于基因工程和农业生产中,如改良作物品质、提高产量等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简述利用农杆菌介导法进行植物基因转化的具体流程
农杆菌介导的植物基因转化技术是利用细菌“农杆菌”这一自然载体,将特定的基因从一个植物中转移到另一个植物,或者将外源基因引入到植物体内,以获得期望的新特性。

近年来,越来越多的研究者开始应用农杆菌介导的植物基因转化技术,以获得期望的新基因和新特征。

农杆菌介导的植物基因转化一般可以分为以下步骤:
(1)质粒制备:将要进行转化的外源基因连接到质粒上,形成可转化的质粒。

(2)农杆菌介导的转化:使用传统的农杆菌介导转化或者现代的抗性转化技术,将质粒转化到农杆菌中,从而形成转化的农杆菌。

(3)转化的农杆菌的特殊处理:将转化的农杆菌带入植物体内,通过不同的处理,使其能够将外源基因转入植物体内,形成期望的植物体。

(4)细胞内克隆:将转化后的植物细胞放入适当的生长培养基中,使其接受稳定的培养基环境,在此基础上进行细胞内克隆,以获得具备期望特性的植物体。

(5)鉴定特异性植物:为了取得具备期望特性的植物体,对转化过程中获得的基因进行特异性检测,以筛选出具有期望特性的基因组植物。

农杆菌介导的植物基因转化技术能够有效地促进基因转化,提高新基因的成功率。

在植物基因转化过程中,根据转化的具体目标,研
究者可以选择不同形式的农杆菌载体来进行转化,具有非常好的灵活性和适应性。

另外,农杆菌介导的植物基因转化技术在植物基因工程应用中占有重要地位。

此外,农杆菌介导的植物基因转化技术还可以改变植物的形态和特性,提高农作物的抗病性和对环境的适应性,改善其营养价值,以提高其品质和市场价值。

例如,可以将外源抗性基因引入到植物体内,使其具有抗病虫性;也可以将外源优生基因引入到植物体内,使其具有高效优良的生产性状;还可以将外源营养基因引入植物体内,使其具备营养价值。

因此,农杆菌介导的植物基因转化技术能够更好地改善农作物的性能,为农业的发展提供重要的帮助。

总之,农杆菌介导的植物基因转化技术是一种新型的植物基因转化技术,它可以有效地将外源基因引入植物体内,以获得期望的新特性,可大大提高农作物的生产效率,在植物育种及农业发展中发挥着重要作用。

相关文档
最新文档