特级教师张齐华《圆的认识》PPT
特级教师张齐华《圆的认识》PPT

我们从周围的事物中发现了圆,了解、掌 握了圆的特点,知道在日常生活中如何利 用圆。在宇宙中圆无处不在,圆的许多秘 密人们还没有发现。同学们要努力探索圆, 为科技进步作出你们的贡献!
等圆的半径和直径有什么关系?
o
o
所有半径都相等。 等圆里
所有直径都相等。
C
F
B
M
o
D
N H
一起动手:
1.请同学们在圆纸片上画出半径,10秒钟,看 能画出多少条?直径呢?
2.请同学们用直尺量一量画出的半径有多少 厘米?你发现了什么?直径呢?
3.请分四人小组讨论: 在同一个圆里,半径有什么特征?直径有什么 特征?它们之间有什么关系?
• o
在同一个圆里,有( 无数 )条半径,它们的长度都( 相等 )
❖2、把有针尖的一只脚固定在一点(即圆心)上
❖3、把装有铅笔尖的一只脚旋转一周, 就画出一个圆。
1、用圆规画出半径是2厘米的一个圆,并用字母 O、r、d分别标出它的圆心、半径、和直径。
2、画出直径是4厘米的一个圆。
学校田径运动会即将举行,你有办法 帮学校在操场上画出一个半径为10米的 圆吗?
1 、判断:
• o
在同一个圆里,有( 无数 )条直径,它们的长度都( 相等 )
r• r do
rr r
• do
r
d
• o
r
r
r
d•
d=r+r
o
r
d=2r
r=
d 2
在同一个圆里,直径是半径的2倍,半径是直径的一半.
r
(米) 2
1.4
5
d
(米)
0.8
6
圆的画法: 定半径 定圆心 旋转一周
圆的认识免费ppt课件

交点的求法
将两个圆的方程联立,解 出交点坐标。
圆的组合图形
圆与直线的组合图形
当直线与圆相切或相交时,会形成一些特殊的组合图形,如扇形 、弓形等。
圆与圆之间的组合图形
两个或两个以上的圆可以形成一些特殊的组合图形,如椭圆、双曲 线等。
圆与其他图形的组合图形
圆与其他图形也可以组合成一些复杂的图形,如圆形花坛、圆形水 池等。
感谢您的观看
THANKS
05
圆的拓展知识
圆的切线
01
02
03
切线的定义
切线是指与圆只有一个公 共点的直线,这个公共点 叫做切点。
切线的判定
若直线与圆心的距离为零 ,则该直线为圆的切线。
切线的性质
切线垂直于过切点的半径 ,且切线长度等于半径长 度。
圆的交点
交点的定义
两个或两个以上的圆相交 于某一点,该点叫做交点 。
交点的性质
04
圆的定理
圆内角定理
总结词
圆内角定理描述了圆内角与其所对应 的弧之间的关系。
详细描述
圆内角定理指出,在同圆或等圆中, 相等的圆心角所对应的弧相等,相等 的圆周角所对应的弧也相等。这个定 理是圆的基本性质之一,是解决与圆 相关问题的重要依据。
圆外角定理
总结词
圆外角定理描述了圆外角与其所对应的弦之间的关系。
半径
从圆心到圆上任意一点的线段称为半径,半径的长度等于直 径的一半。点沿圆周移动一 圈的距离之和,计算公式为 C = 2πr ,其中 r 是圆的半径。
面积
圆的面积是圆所占平面的大小,计算 公式为 A = πr^2,其中 r 是圆的半径 。
《圆的认识》圆PPT优秀课件

对称轴
辩一辨 找一找
A
E
D
o
B C
圆心:点O
直径:线段AB 半径: 线段OE、 OB、 OA
合作探究
要求:小组合作, 在刚才画的一个圆中,标画出 它的半径、直径。再用画一画,量一量、比一 比的方法去探究: 1.圆的半径、直径你能画有多少条?长度怎样? 2.同一个圆里 ,半径与直径有什么关系? 3.圆规两脚张开的距离与你画的圆有什么关系?
总结一下吧 在同一圆中
圆心(o): 1个 确定圆的位置
} 半径(r): 无数条 决定圆的大小 直径(d): 所有直径长度相等,所有半径长度相等;
直径与半径 的关系:
}
d=2r r=d÷2
r= d—2 r=—12d
练习
填一填。
3.2 1.8
6 1.6
5
练习
判断,并说明理由
1.所有圆的直径都相等。(×) 2.两端都在圆上的线段叫做直径。(×) 3.在同一圆内,只可以画100条半径。(×) 4.一个圆的直径长度是10cm,它的半径
圆的认识
-.
生活中的“圆”
比一比,分一分
圆是曲线围成的封闭的平面图形。
动动手 画一画
用你准备的工具画一个圆。 想一想:你用的工具在画圆时
有什么优势或劣势?
说一说
1、介绍一下圆规的各部分。 2、如果再画,你会选择什么工具? 3、用圆规来画圆要注意些什么?
再来画一画
用你的圆规再熟练的画3个 大小不同的圆吧。
填一填 认一认
r
o
d
圆心o:圆 中心 的一点。
半径r: 连接 圆心 和 圆上 任意 一点的线段。
直径dБайду номын сангаас通过 圆心 并且 两端都在圆上 的线段。
圆的认识ppt课件

管道
在建筑和家庭装修中,圆形管道通常被用来 连接水管、电线和暖气管道等,因为这种形 状可以保证液体或气体流畅地流动,减少堵 塞和磨损。
艺术中的圆的应用
雕塑
许多雕塑作品如球体、花瓶和头 像等都采用圆形设计,因为这种 形状可以增强作品的美感和立体
对未来进一步学习和研究圆的展望
01
深入研究圆的性质
进一步学习和研究圆的性质, 包括圆与其他图形的联系和区 别,以及圆在各种不同情况下 的表现。
02
探讨圆的实际应用
通过研究和实践,进一步探索 圆在各个领域中的应用,如建 筑设计、机械设计、包装设计 等。
03
圆的拓展学习
学习与圆有关的其他知识,如 立体几何、解析几何等,以更 全面地了解圆的性质和应用。
平面图形。
圆的相关公式和定理
圆的中心位置由圆心决定,圆心到圆周上任 意一点的距离都相等。圆的面积和周长与半 径有关,半径越大,面积和周长也越大。
圆的性质
包括圆的周长公式(C=2πr)、圆的面积公 式(S=πr²)以及垂径定理、圆周角定理等
。
圆的应用
圆在现实生活中有着广泛的应用,如车轮、 方向盘、钟表等都采用了圆形的形状,因为 它具有旋转不变性和对称性。
04
发展圆的创新应用
通过研究和创新,发展更多具 有创新性和实用性的圆的应用 ,推动科学技术的发展。
感谢您的观看
THANKS
使用铅笔和尺子,从圆心 开始,以确定的半径为长 度,绘制出一条弧线。
完成绘制
在完成绘制后,检查是否 符合所需的形状和大小。
使用代码绘制圆
定义圆心和半径
《圆的认识》PPT课件 (公开课获奖)2022年华师大版 (5)

AC
D
B
如图,在△ABC
中,DE∥BC,AH分别交DE,BC于 G,H,求证:
DG GE BH HC
A
D B
E G
H
C
如图:在⊿ABC中 , ∠C = 90°,BC =8,AC =6.点P从 点B出发 ,沿着BC向点C以2cm/秒的速度移动;点Q从点C出 发 ,沿着CA向点A以1cm/秒的速度移动 .如果P、Q分别从B、 C同时出发 ,问:
A
40°
80°
B C
A′
40°
B′
60 °
C′
根据以下条件能否判定△ABC与△A′B′C′相似 ?为 什么 ?
∠A =40° ,AB =3 ,AC =6
∠A′ =40° ,A′B′ =7 ,A′C′ =14
A
3 40° 6
B C
A′
40°
7 14
B′
C′
根据以下条件能否判定△ABC与△A`B`C`相似 ?为 什么 ?
C′ C
23
A
1 O
4
B
∴ ∠1 = ∠2, ∠3 = ∠4
又∵∠1 +∠2 +∠3 + ∠4 = 180°
半∴圆∠或ACB直径=∠所2 对+∠的3 圆=1周80角°÷都2相等 ,都等于90°
=90°
90°的圆周角所对的弦是圆的直径
探索3:
思考:半圆所对的圆周角与 它所对的圆心角有关系吗 ? A
C
O
A
B
C
3. 如图,在直径为AB的半圆中,O为圆心,C、D 为半圆上的两点,∠COD=50°,则
∠CAD=_2_5__°__;
4、在⊙O中 ,一条弧所对的圆心角和圆周角分别为
圆的认识(全单元)PPT课件

题目中都告诉了 我们什么?
讨论:
·r=1m
(1)正方形与圆之间部分的面积 是哪一部分?
(2)怎样计算阴影部分的面积?
正方形的面积-圆的面积=正方形与圆之间
部分的面积 正方形与圆之间部分 的面积是阴影部分的 面积。
也就是正方形比 圆多的面积。
.
108
r=1m
观察图形,说说你的想法。
圆的面积-正方形的面积=正方形与圆之间
三角形
长方形
梯形
正方形
平行四边形
由线段围成的平面图形
圆是平面上的一种曲线图形。 圆
圆的 认识
连接圆心和圆上任意一点的线段叫做半径
圆心 O 半径r 直径d
经过圆心并且两端都在圆上的线段叫做直径
.
7
同. 圆. 内. ,半径有无数条,长度都相等。
.
8
直径 d
同. 圆. 内. ,直径有无数条,长度都相等。
圆环,内圆
半径是2cm,
6cm
外圆半径是
6cm。圆圆环环面积= 外圆面积-内圆面积 的面积是多
少?
.
91
方法一
方法二
3.14×62 3=.134.1×42×236 3=.1141×3.404 –
3.14×(62 – 22) = 3.14×(36 – 4) = 3.14×32
1=21.5060.48 (cm2)
长是多少呢? 高是1m 。
.
上一页 下一页 43主页
圆的面积推导(转化思想)
.
44
.
45
.
46
.
47
.
48
.
49
.
50
.
51
《圆的认识》圆PPT优秀课件

圆心O 直径 d
d=6.4cm r=3.2cm
d=3.8dm r=1.9dm
d=2.5m r=1.25m
同圆内(等圆内),直径与半径的关系。
r
• do
r文明的人类社会,从精巧的手工艺品到气势 宏伟的各种建筑……到处都可以看到大大小小的圆。
感知圆
从奇妙的自然界到文明的人类社会,从精巧的手工艺 品到气势宏伟的各种建筑……到处都可以看到大大小小的 圆,你能说一说在生活中我们见到的圆吗?
生活中的圆。
人们在围观。
井盖
圆的相关概念
2厘米
0 1 2 3 4 5 67 8
认识圆
· 直径d O 圆心
· 1、半径、直径决定着圆的大小。
2、圆心决定着圆的位置。
想一想
直径 d
通过圆心并且两端都在圆上的线段叫做直径。
直径 d
通过圆心并且两端都在圆上的线段叫做直径,
一般用字母d表示。
如图,在长方形中有三个大小相等的圆,已知这个长方形的长是18厘 米,圆的直径是多少?长方形的周长是多少?
圆心—用字母O表示
.圆 心
O
画圆时针尖固定的一点叫做圆心
学一学
一个圆里的半径有无数条,直径有无数条。 同一圆内,所有的半径都相等,所有的直径都相等,直 径的长度是半径长度的2倍。 把圆沿任何一条直径对折,两边可以重合。
画圆(例如:圆规两脚间的距离为2cm)。
用
圆
一、定长 二、定点
规 三、旋转
画
圆
圆的认识与画圆圆的认识张齐华

圆的认识与画圆圆的认识张齐华圆的认识与画圆|圆的认识张齐华圆的认识与画圆教学内容:青岛版小学数学六年级上册55-57页信息窗1第一课时。
教学目标:1.结合生活实际,通过观察、操作等活动,认识圆及圆的特征;认识半径、直径,理解同一个圆里直径和半径的关系;会用圆规画圆;知道扇形和圆心角的概念。
2.通过观察、操作、想象等活动,发展学生的空间观念。
3.结合具体情境,体验数学与日常生活的密切联系,能用圆的知识解释生活中的简单现象,解决一些简单的实际问题。
4.通过学习圆,感受数学的魅力。
教学重点和难点:教学重点:体会圆的特征,熟练的按要求画圆。
教学难点:归纳圆的特征,发展空间观念,应用所学知识解决生活中的实际问题。
教具、学具:教师准备:多媒体课件、圆规、三角板。
学生准备:圆规、三角板。
教学重点:理解圆的概念及相关的知识点,理解轴对称图形。
一、自主预习1.情境导入:【多媒体展示】根据这些信息,你能提出什么问题?预设:轮子为什么设计成圆形的呢?为什么自古至今轮子都设计成圆形的呢?圆又有什么独特之处呢?从这节课开始,我们就来研究:完美的图形——圆,我们先来认识圆、画圆。
【板书课题:1.圆的认识与画圆】2.出示学习目标:本节课要达到以下学习目标:(出示目标:⑴认识圆,知道圆的各部分名称,掌握在同一个圆里半径和直径的关系。
⑵掌握用圆规画圆的方法。
⑶知道扇形和圆心角的概念。
3. 出示自学指导:过渡:为了完成本节课的学习目标。
请同学们看自学指导:(自学指导:认真看课本P55-57页的内容,重点看P55页画圆的方法,P56页圆的各部分名称,思考:(1)怎么画圆?通过画圆你能说一说圆的各部分名称吗?(2)在同一个圆里可以画多少条半径,多少条直径?(3)在同一个圆里,半径的长度都相等吗?直径呢?(4)同一个圆里直径和半径有什么关系?(5)什么样的图形是扇形?什么叫圆心角?6分钟后汇报自己的学习收获!4.学生自学过渡:目标的完成,离不开同学们高效自主的学习,下面请同学们根据自学指导开始自学,比一比谁看书最认真,谁自学效果最好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小圆半径=
圆的认识
直径 d
O 圆心
·
半径 r
·
同圆内,半径有无数条,长度都相等。 同圆内,直径有无数条,长度都相等。
同圆内,半径的长度是直径的一半,或者说直径是半径的2倍。
我们从周围的事物中发现了圆,了解、掌 握了圆的特点,知道在日常生活中如何利 用圆。在宇宙中圆无处不在,圆的许多秘 密人们还没有发现。同学们要努力探索圆, 为科技进步作出你们的贡献!
(2)从圆心到( A.圆心
B.直径长度
C )任意一点的线段,叫半径。 B.圆外 C.圆上
(3)通过圆心并且两端都在圆上的( B )叫直径。 A.直径 B.线段 C.射线
画出各种大小、不同颜色的
圆,组合出一幅美丽的图画。
看图回答:
5厘米
h a
4厘米
正方形边长=
30厘米
3厘米
圆的直径=
小圆直径=
长方形的宽=
(即半径)。 2、把有针尖的一只脚固定在一点(即圆心)上 3、把装有铅笔尖的一只脚旋转一周,
就画出一个圆。
1、用圆规画出半径是2厘米的一个圆,并用字母 O、r、d分别标出它的圆心、半径、和直径。 2、画出直径是4厘米的一个圆。
学校田径运动会即将举行,你有办法 帮学校在操场上画出一个半径为10米的 圆吗?
1 、判断:
(1)在同一个圆内只可以画100条直径。 ( × ) (2)所有的圆的直径都相等。 (
× )
(3)两端都在圆上的线段叫做直径。 ( × ) (4)等圆的半径都相等。 (
√
)Leabharlann ·O·O
等圆的半径(相等),直径( 相等).
2、 选择题:
(1)画圆时,圆规两脚间的距离是( A )。
A.半径长度
等圆的半径和直径有什么关系?
o
o
等圆里
所有半径都相等。
所有直径都相等。
讨论: 1、车轮为什么做成圆形的,车轴应安装 在哪里? 2、如果车轮做成正方形的、三角形的, 我们坐上去会是什么感觉呢?
一切平面图形中最美的是圆。
——毕达哥拉斯
长方形
正方形
平行四边形
梯形
三角形
直线图形
圆是曲线围成的封闭图形。 圆
小组合作探究要求:
以六人为单位,动手折一折、量一 量、比一比、画一画,你一定会有新的发 现!
•
o
在同一个圆里,有( 无数 )条直径,它们的长度都( 相等 )
r
d o
•
r
r
d
r
•
r o
r d o
•
r
r
r
d•
o
r
d=r+r
d=2r
d r= 2
在同一个圆里,直径是半径的2倍,半径是直径的一半.
r
(米)
2
1.4
5
d
(米)
0.8
6
圆的画法:
定半径
定圆心
旋转一周
1、把圆规的两脚分开,定好两脚间的距离
G
E C M o F B D N H
一起动手:
1.请同学们在圆纸片上画出半径,10秒钟,看 能画出多少条?直径呢? 2.请同学们用直尺量一量画出的半径有多少 厘米?你发现了什么?直径呢? 3.请分四人小组讨论: 在同一个圆里,半径有什么特征?直径有什么 特征?它们之间有什么关系?
•
o
在同一个圆里,有( 无数 )条半径,它们的长度都( 相等 )
(1) (2) (3)
图中哪些是半径?哪些是直径?哪些不 是,为什么?
G
E C M o F B D N H
圆心
O
圆中心的这一点叫做圆心。
圆心
连接圆心和圆上任意一点的线段叫做半径。
直径 d
通过圆心并且两端都在圆上的线段叫做直径。
(1) (2) (3)
图中哪些是半径?哪些是直径?哪些不是,为什么?