2018年秋八年级数学北师大版下册课件:4.2 提公因式法(共26张PPT)
合集下载
【精品】数学八年级下北师大版4.2提公因式法同步课件(31张)

跟踪练习
1 多项式8x2y2-14x2y+4xy3各项的公因式是( B ) A.8xy B.2xy C.4xy D.2y
2 式子15a3b3(a-b),5a2b(b-a)的公因式是( C )
A.5ab(b-a)
B.5a2b2(b-a)
C.5a2b(b-a)
D.以上均不正确
3 下列各组式子中,没有公因式的是( B ) A.4a2bc与8abc2 B.a3b2+1与a2b3-1 C.b(a-2b)2与a(2b-a)2 D.x+1与x2-1
为( B )
A.-6
B.6
C.-2或6
D.-2或30
7
如果多项式- 1
1 5
abc+
1 5
ab2-a2bc的一个因式
是- 5 ab,那么另一个因式是( A )
A.c-b+5ac
B.c+b-5ac
C.c-b+ 1 ac 5
D.c+b- 1 ac 5
8 【中考·潍坊】因式分解:x2-2x+(x-2)= __(_x_+__1_)(_x_-__2_)_.
3 导引:(1)题每一项都含有公因数978,把978作为公因式提
出;(2)题先对所求式提取公因式,再整体代入计算.
解:(1)原式=978×(85+7+8)=978×100=97 800.
(2)2x4y3-x3y4=x3y3(2x-y)=(xy)3(2x-y).
Байду номын сангаас
当2x-y= 1 ,xy=2时,原式=23× 1= 8 .
当多项式第一项的系数是负数 时,通常先提出“-”号,使 括号内第一项的系数成为正数. 在提出“-”号时,多项式的 各项都要变号.
想一想 提公因式法因式分解与单项式
北师大版八年级下册数学4.2提公因式法课件(共20张PPT)

3x (3x-2y+z)
7x 3y2 –42x2y 3 把一个多项式化为几个整式乘积的形式,叫做把这个多项式分解因式. 8 a 3 b2 –12ab 3 + ab 4a2 b – 2a b2 + 6abc
7x2y2
4a2 b – 2a b2 + 6abc 2ab
四 数学
四 数学
如果一个多项式的各项含有公 因式,那么就可以把这个公因式提 出来,从而将多项式化成两个因式 乘积的形式,这种分解因式的方法 叫做提公因式法。
余的项是1。 3、 当多项式第一项系数是负数,通常先提出“-”号,
使括号内第一项系数变为正数,注意括号内各项 都要变号。
四 数学
例1 把12a4b3+16a2b3c2分解因式.
公因式: 4a2b3
解:12a4b3+16a2b3c2
=4a2b3·3a2+ 4a2b3 ·4c2
= 4a2b3 (3a2 + 4c2)
注
意
提公因式后,另一个因式: ①项数应与原多项式的项数一样; ②不再含有公因式.
四 数学
例2 把2ac(b+2c)- (b+2c)分解因式.
解:2ac(b+2c) -(b+2c) = (b+2c)(2ac-1)
注 意
公因式可以是数字、字母,也可 以是单项式,还可以是多项式.
四 数学
例3、把下列多项式分解因式:
四 数学
例4、把-x3+x2-x分解因式.
解:原式=-(x3-x2+x)
例3、把下列多项式分解因式:
=-x(x -x+1) = ab·8a2b - ab·12b2 c +ab·1
北师大版初中八年级下册数学课件 《提取公因式法》因式分解PPT(第1课时)

举一反三
2. 利用分解因式计算:(-2)²ºº¹+(-2)²ºº²× 1 2
解:(-2)²ºº¹+(-2)²ºº²×1 =(-2)²ºº¹×[1-(-2) ×] 2
1
=(-2)²ºº¹×0
2
=0
随堂检测
1.下列各式中,没有公因式的是( C )
A.ab-bc
B.y²-y
C.x²+2x+1 D.mn²-nm+m²
D
3. 把首项系数变为正数.
(1)-2x²y-2xy²=-()
(2)-2x²+3x-1=-() 2x²y+2xy²
2x²-3x+1
活动探究
探究点一 问题1:多项式ac+bc每项含有哪些因式?有相同的因式吗?3x²+x呢? mb²+nb+b呢? 解:多项式ac+bc的ac项含因式a、c、ac;bc项含因式b、c、bc.相同因式:c 多项式3x²+x含因式3、x、x²3x、3x²相同因式:x 多项式mb²+nb+b含因式m、b、b²mx²、n;相同因式:b
4.2提取公因式法 第1课时
八年级下册
学习目标 1 能确定多项式各项的单项式公因式; 2 会用提公因式法把多项式分解因式.
前置学习
1. 下列各式公因式是a的是()D
A. ax+ay+5B.3ma-6ma²C.4a²+10abD.a²-2a+ma
2. -6xyz+3xy²-9x²y的公因式是()
A.-3xB.3xzC.3yzD.-3xy
活动探究
探究点二 问题1:把下列各式因式分解: (1)3x+x³;(2)7x³-21x²; (3)8a³b²-12ab³c+ab;(4)-24x³+12x²-28x. 解:(1)原式=3•x+x²•x=x(3+x²); (2)原式=7x²•x+7x²•3=7x² (x-3); (3)原式=ab•8a²b-ab•12b²c+ab=ab(8a²b-12b²c+1); (4)-(24x³-12x²+28x)=-(4x•6x²-4x•3x+4x•7) =-4x(6x²-3x+7).
八年级数学北师大版初二下册--第四单元 4.2《提公因式法》课件

北师版初中数学八年级下册
第四单元
第二课
导入新课
1、分解因式的概念: 把一个多项式化为几个整式乘积的形式,
叫做把这个多项式分解因式.
2、整式的乘法与因式分解有什么关系吗?
分解因式与整式乘法是互逆运算. 3、口答:
(1)x(x+1)=_x_2_+_x__
(3)x2+x=_x_(_x_+_1_)_
(2)2x(3x+7)=_6_x_2_-_1_4_x__ (4)6x2-14x=_2_x_(_3_x_+_7_)
注意:把(x-3)看成一个整体.
新课学习
(2)y(x+1)+y2(x+1)2. 分析:多项式可看成y(x+1)与+y2(x+1)两项.
相同的部分是y(x+1), 则公因式为y(x+1)
解:y(x+1)+y2(x+1)2 =y(x+1)[1+y(x+1)] =y(x+1)(xy+y+1 )
新课学习
ma+mb+mc=m(a+b+c) 提公因式法一般步骤: 1、找到该多项式的公因式; 2、将原式除以公因式,得到一个新多项式; 3、把它与公因式相乘.
新课学习
如何准确地找到多项式的公因式呢?
1、系数 所有项的系数的最大公因数; 2、字母 应提取每一项都有的字母,且字母的 )a(x-y)+b(y-x) 分析:多项式可看成a(x-y)与+b(y-x)两项.
其中x-y与y-x互为相反数, 可将+b(y-x)变为-b(x-y), 则a(x-y)与-b(x-y)的公因式为(x-y) 解:a(x-y)+b(y-x) =a(x-y)-b(x-y) =(x-y)(a-b) 注意:指数为奇数时,交换位置,要添加“-”
第四单元
第二课
导入新课
1、分解因式的概念: 把一个多项式化为几个整式乘积的形式,
叫做把这个多项式分解因式.
2、整式的乘法与因式分解有什么关系吗?
分解因式与整式乘法是互逆运算. 3、口答:
(1)x(x+1)=_x_2_+_x__
(3)x2+x=_x_(_x_+_1_)_
(2)2x(3x+7)=_6_x_2_-_1_4_x__ (4)6x2-14x=_2_x_(_3_x_+_7_)
注意:把(x-3)看成一个整体.
新课学习
(2)y(x+1)+y2(x+1)2. 分析:多项式可看成y(x+1)与+y2(x+1)两项.
相同的部分是y(x+1), 则公因式为y(x+1)
解:y(x+1)+y2(x+1)2 =y(x+1)[1+y(x+1)] =y(x+1)(xy+y+1 )
新课学习
ma+mb+mc=m(a+b+c) 提公因式法一般步骤: 1、找到该多项式的公因式; 2、将原式除以公因式,得到一个新多项式; 3、把它与公因式相乘.
新课学习
如何准确地找到多项式的公因式呢?
1、系数 所有项的系数的最大公因数; 2、字母 应提取每一项都有的字母,且字母的 )a(x-y)+b(y-x) 分析:多项式可看成a(x-y)与+b(y-x)两项.
其中x-y与y-x互为相反数, 可将+b(y-x)变为-b(x-y), 则a(x-y)与-b(x-y)的公因式为(x-y) 解:a(x-y)+b(y-x) =a(x-y)-b(x-y) =(x-y)(a-b) 注意:指数为奇数时,交换位置,要添加“-”
北师大版八年级下册数学《提公因式法》因式分解PPT教学课件

(3)8a3b2-12ab3c+ab;(4)-24x3+12x2-28x.
(3)8a3b2-12ab3c+ab
(4)-24x3+12x2-28x
=ab·8a2b-ab·12b2c+ab·1
=-( 24x3-12x2+28x)
=ab(8a2b-12b2c+l);
=-(4x·6x2-4x·3x+4x·7)
第四章 因式分解
提公因式法
知识回顾
1. 因式分解的概念
把一个多项式化为几个整式的积的形式,这种变形叫做把这
个多项式分解因式 .
2. 整式乘法与分解因式之间的关系.
互为逆运算
获取新知
1.多项式ma+mb+mc有哪几项?
ma, mb, mc
2.每一项的因式都分别有哪些?
依次为m, a和m, b和m, c
-
1
2
时此式的值.
解:x(x+y)(x-y)-x(x+y)2
=x(x+y)[(x-y)-(x+y)]
=-2xy(x+y).
1
2
当x+y=1,xy=- 时,
1
原式=-2×(-
2
)×1=1.
随堂练习
1.多项式a(m-2)+(m-2)分解因式等于( B
)
A.2(m-2)
B.(m-2)(a+1)
C.(m-2)(a-1)
解:原式=(a-1)(7+x).
(4)(2a+b)(2a-3b)-3a(2a+b).
解:原式= (2a+b)(2a-b-3a)
=-(2a+b)(a+3b).
请在下列各式等号右边填入“+”或“-”号,使等式成立.
(1) 2-a=____(
- a-2)
北师大版八年级数学下册提公因式法课件(第2课时25张)

号,注意多项式的各项变号.
导入新知
4.2 提公因式法/
2.公因式的确定:定系数,定字母,定指数.
最大公约数
相同的字母 最低次幂
例如,多项式 − 的公因式为:
思考:
(1)提公因式时,公因式可以是多项式吗?
(2)若公因式为多项式,怎样运用提公因式法分解因式?
素养目标
4.2 提公因式法/
(4)( − ) = +
() − − =
− + ;(6)-s2+t2=
视察:以上各多项式有什么特点?
− ;
( − ) ;
− (s2-t2).
只有符号不同
探究新知
结论1
4.2 提公因式法/
两个只有符号不同的多项式是否有关系,有如下
判断方法:
(1)当相同字母前的符号相同时,两个多项式相等.
课堂检测
4.2 提公因式法/
基础巩固题
1. 下列多项式中,不能用提公因式法因式分解的是( A )
A. − +
B. ( − ) − ( − )
C. −
D. + − ( + )
2. 把多项式 ( − ) +( − ) 分解因式结果正确的是( B )
(3)( + ) −( + );
(4) − + − ;
(5)( − ) +( − );
(6) − − ( − ) .
解:
(3)( + ) − + = ( + )( + − );
(4) − + − = ( − )( − );
如: − 和− + ,即 − = − + ;
导入新知
4.2 提公因式法/
2.公因式的确定:定系数,定字母,定指数.
最大公约数
相同的字母 最低次幂
例如,多项式 − 的公因式为:
思考:
(1)提公因式时,公因式可以是多项式吗?
(2)若公因式为多项式,怎样运用提公因式法分解因式?
素养目标
4.2 提公因式法/
(4)( − ) = +
() − − =
− + ;(6)-s2+t2=
视察:以上各多项式有什么特点?
− ;
( − ) ;
− (s2-t2).
只有符号不同
探究新知
结论1
4.2 提公因式法/
两个只有符号不同的多项式是否有关系,有如下
判断方法:
(1)当相同字母前的符号相同时,两个多项式相等.
课堂检测
4.2 提公因式法/
基础巩固题
1. 下列多项式中,不能用提公因式法因式分解的是( A )
A. − +
B. ( − ) − ( − )
C. −
D. + − ( + )
2. 把多项式 ( − ) +( − ) 分解因式结果正确的是( B )
(3)( + ) −( + );
(4) − + − ;
(5)( − ) +( − );
(6) − − ( − ) .
解:
(3)( + ) − + = ( + )( + − );
(4) − + − = ( − )( − );
如: − 和− + ,即 − = − + ;