第8章 方差分析
统计学课件(贾俊平)人大课件8

x(i1,2, ,k) 1.各组平均值
与总平均值 的离差平方和
2.反映各总体的样本均值之间的差i异程度,又称组间平方和
x
3.该平方和既包括随机误差,也包括系统误差
4.计算公式为
8 - 31
k ni
SSA
k
xi x2 ni xi x2
i1j1
i1
▪ 前例的计算结果:SSA = 76.8455
8 - 25
经济、管理类 基础课程
统计学
构造检验的统计量 (计算水平的均值 )
1.假定从第i个总体中抽取一个容量为ni的简单随机样本,第i个总体的样本均值为该样本的全部观察值
总和除以观察值的个数
2.计算公式为
8 - 26
ni
xij
xi
j1
ni
(i 1,2,,k)
式中: ni为第 i 个总体的样本观察值个数 xij 为第 i 个总体的第 j 个观察值
经济、管理类 基础课程
统计学
构造检验的统计量 (三个平方和的关系)
总离差平方和(SST)、误差项离差平方和(SSE)、水平项离差平方和 (SSA) 之间的关系
k
n i
k
xijx2
n i
k
xijx2 n i xix2
i 1j 1
i 1j 1
i 1
SST = SSE + SSA
8 - 32
…
水平Ak
1
x11
x12
…
x1k
2
x21
x22
…
x2k
:
:
:
:
:
:
:
:
:
:
n
xn1
茆诗松《概率论与数理统计教程》(第2版)(课后习题 方差分析与回归分析)【圣才出品】

第8章 方差分析与回归分析一、方差分析1.在一个单因子试验中,因子A有三个水平,每个水平下各重复4次,具体数据如下:表8-1试计算误差平方和s e、因子A的平方和S A与总平方和S T,并指出它们各自的自由度.解:此处因子水平数r=3,每个水平下的重复次数m=4,总试验次数为n=mr=12.首先,算出每个水平下的数据和以及总数据和:T1=8+5+7+4=24.T2=6+10+12+9=37.T3=0+1+5+2=8.T=T l+T2+T3=24+37+8=69.误差平方和S e由三个平方和组成:于是而2.在一个单因子试验中,因子A有4个水平,每个水平下重复次数分别为5,7,6,8.那么误差平方和、A的平方和及总平方和的自由度各是多少?解:此处因子水平数r=4,总试验的次数n=5+7+6+8=26,因而有误差平方和的自由度因子A的平方和的自由度总平方和的自由度3.在单因子试验中,因子A有4个水平,每个水平下各重复3次试验,现已求得每个水平下试验结果的样本标准差分别为1.5,2.0,1.6,1.2,则其误差平方和为多少?误差的方差σ2的估计值是多少?解:此处因子水平数r=4,每个水平下的试验次数m=3,误差平方和S e由四个平方组成,它们分别为于是其自由度为,误差方差σ2的估计值为4.在单因子方差分析中,因子A有三个水平,每个水平各做4次重复试验.请完成下列方差分析表,并在显著性水平α=0.05下对因子A是否显著作出检验.表8-2 方差分析表解:补充的方差分析表如下所示:表8-3 方差分析表对于给定的显著性水平,查表知,故拒绝域为,由于,因而认为因子A是显著的.此处检验的p值为5.用4种安眠药在兔子身上进行试验,特选24只健康的兔子,随机把它们均分为4组,每组各服一种安眠药,安眠时间如下所示.表8-4 安眠药试验数据在显著性水平下对其进行方差分析,可以得到什么结果?解:这是一个单因子方差分析的问题,根据样本数据计算,列表如下:表8-5于是根据以上结果进行方差分析,并继续计算得到各均方以及F 比,列于下表:表8-6在显著性水平下,查表得,拒绝域为,由于故认为因子A (安眠药)是显著的,即四种安眠药对兔子的安眠作用有明显的差别.此处检验的p 值为6.为研究咖啡因对人体功能的影响,特选30名体质大致相同的健康男大学生进行手指叩击训练,此外咖啡因选三个水平:每个水平下冲泡l0杯水,外观无差别,并加以编号,然后让30位大学生每人从中任选一杯服下,2h后,请每人做手指叩击,统计员记录其每分钟叩击次数,试验结果统计如下表:表8-7请对上述数据进行方差分析,从中可得到什么结论?解:我们知道,对数据作线性变换不会影响方差分析的结果,这里将原始数据同时减去240,并作相应的计算,计算结果列入下表:表8-8于是可计算得到三个平方和把上述诸平方和及其自由度填入方差分析表,并继续计算得到各均方以及F比:表8-9若取查表知,从而拒绝域为,由于.故认为因子A(咖啡因剂量)是显著的,即三种不同剂量对人的作用有明显的差别.此处检验的p值为7.某粮食加工厂试验三种储藏方法对粮食含水率有无显著影响.现取一批粮食分成若干份,分别用三种不同的方法储藏,过一段时间后测得的含水率如下表:表8-10(1)假定各种方法储藏的粮食的含水率服从正态分布,且方差相等,试在下检验这三种方法对含水率有无显著影响;(2)对每种方法的平均含水率给出置信水平为0.95的置信区间.解:(1)这是一个单因子方差分析的问题,由所给数据计算如下表:表8-11三个平方和分别为。
单因素方差分析(3)

是固随((Ⅲ随当当,定机34(、N机))等FF对不模模<>3若效=方FF计 判于)等型型00拒..应差i00算断不判方=a::551,,绝模时统假等断n差当PPiH当当当型:计设重,假时><0FS00时FFF:进量复设:..S>00><<进TFH55行FFF的T, ,0a=0行00.0L0...平m0005S接拒555:,i平,D,,h=a方1a受绝检P均PPPn2j和<n=<假假e>>验1数=0’000,sx.设设或...00成i0T002j5总5255;,D,对,等,,的uHx同N拒n检拒检接接.2.观cA时绝a,验绝验受受n测:进H等SH。HH次S0行2000检、A、、、数成=验接接拒 拒不0对1n;受受绝绝再ti=n检1是HHHHx验AAAAai2.n::::。次ii22xN,.2. 而0000。;;。
计之前就要明确关于模型的基本假设。对于单因素方差分析 来说,两种模型无多大区别。
10
第八章 单因素方差分析
三、单因素方差分析的检验及例题验算
(样固本一定的)效方方应式差模不型分同与,析随致的机使检效所验应得模程结型论序方不差同分。析随的机程效序应完模全型一适样用,于但水由平于的获总得体, 而1固、定正效规应检模验型只程适序用于所选定的α个水平。也就是说,随机效应模型 可2推、Ⅰ断单总方因体差素状齐方况性,差而检分固验析定的效实应模战型检不验能程推序断总体状况。 (1Ⅱ()方1零)差假假分设设析:检假验设样本间平均数差异不显著;
11
第八章 单因素方差分析
三、单因素方差分析的检验及例题验算
《教育统计学》名词解释重点

第一章绪论1,教育统计学是运用数理统计学的原理来研究教育问题的一门应用科学。
2,教育统计学分为描述统计、推断统计和实验设计三类。
(1)描述统计:计算集中量(算术平均数、中位数、众数、加权算术平均数、几何平均数、调和平均数)来反映集中趋势;计算差异量(全距、四分位距、百分位距、平均差、标准差、差异系数)反映离散程度;计算偏态量及峰态量反映分布形态;计算相关量(积差相关系数、等级、点二列、二列、四分、C相关系数、肯德尔和谐系数、多系列相关系数)反映一致性程度。
(2)推断统计包括总体参数估计和假设检验两部分。
3,随机现象三个特性:一,一次试验有多种可能的结果,其所有结果是已知的;二,试验之前不能预料那一种结果会出现;三,在相同条件下可以重复试验。
随机事件:随机现象的每一种结果。
随机变量:把能表示随机现象各种结果的变量称之4,总体:是我们研究的具有某种共同特性的个体的总和。
样本数目大于30称为大样本,小于等于30称为小样本。
第二章数据的初步整理1,教统资料来源有经常性资料和专题性资料。
专题性资料包括(1)教育调查。
按调查方法分为现情调查、回顾调查和追踪调查;按调查范围分全面调查和非全面调查(抽样调查和典型调查)。
(2)教育实验。
分为单组实验(指对同一实验对象先后实施两种实验处理)、等组实验(指在甲乙两组条件基本相同的情况下,对之实行不同的实验处理)和轮组实验(指在实验组和对照组分别进行两种实验处理,并且每种处理各重复一次,也即每个或多个单组实验的联合)2,数据的分类。
按来源分为点计数据和度量数据;按随机变量取值情况分为间断型随机变量(取值个数有限、独立的、两个单位之间不能再划分细小单位、一般用整数表示,如优劣程度、品德爱好打分)和连续性随机变量(个数无限、单位之间可以再划分、可以用小数表示如身高体重、完成作业的时间等)。
3,频数分布表制作步骤:求全距;决定组数和组距;决定组限;登记频数。
4,用累计频数表示的频数分布表称为累计频数分布表。
魏宗舒《概率论与数理统计教程》(第2版)(章节题库 方差分析及回归分析)【圣才出品】

第8章 方差分析及回归分析1.今有某种型号的电池三批,它们分别是A、B、C三个工厂所生产的,为评比其质量,各随机抽取5只电池为样品,经试验得其寿命(h)如表8-1所示:表8-1试在显著性水平0.05下检验电池的平均寿命有无显著的差异,若差异是显著的,试求均值差和的置信水平为95%的置信区间。
解:以依次表示工厂A、B、C生产的电池的平均寿命。
提出假设:;:不全相等。
由已知得S T,S A,S E的自由度分别为n-1=15-1=14,s-1=2,n-s=15-3=12,从而得方差分析如表8-2所示:表8-2因=17.07>3.89=(2,14),故在显著性水平0.05下拒绝,认为平均寿命的差异是显著的。
由已知得,极限误差E为从而分别得和的一个置信水平为95%的置信区间为(±5.85)=(6.75,18.45),(±5.85)=(-7.65,4.05),(±5.85)=(-20.25,-8.55)。
2.为了寻找飞机控制板上仪器表的最佳布置,试验了三个方案,观察领航员在紧急情况的反应时间(以秒计),随机地选择28名领航员,得到他们对于不同的布置方案的反应时间如表8-3所示:表8-3试在显著性水平0.05下检验各个方案的反应时间有无显著差异,若有差异,试求的置信水平为0.95的置信区间。
解:提出假设::不全相等已知得又的自由度分别为n -1=28-1=27,s -1=3-1=2,n -s =28-3=25,从而得方差分析如表8-4所示:表8-4因=11.3>3.39=(2,14),故在显著性水平=0.05下拒绝,认为差异是显著的。
以下来求置信水平为1-=0.95的置信区间,今2.0595,则从而分别得的一个置信水平为0.95的置信区间为(±1.78)=(0.72,4.28),(±1.95)=(2.55,6.45),(±1.78)=(0.22,3.78)。
统计学原理——假设检验与方差分析

二、假设检验中的两类错误**
第Ⅰ类错误/弃真错误 (type Ⅰ error)
当原假设为真时拒绝原假设。犯第Ⅰ类错误的概率
通常记为 。
第Ⅱ类错误/取伪错误(type Ⅱ error)
n1 P 40010.2 320 f 5
所以为大样本分布,检验统计量 Z 近似服从 正态分布。样本数据显示:
p 100 0.25 400
Z p P0 0.25 0.20 0.05 2.5
P 1 P 0.21 0.2 0.02
n
400
在显著性水平 0.05 情况下,查表可知,
比RMB 245.95小或者比RMB 274.05大。所以,在双侧 检验(见下图8-1)中有两个拒绝域。
拒绝域
接受域
拒绝域
245.95
260.00
274.05
图8-1 双边检验的拒绝域与接受域
[例8-2] 在例8-1的假设检验中,如果样本的均值
为 X 240.00 ,当显著性水平为0.05时,原假设是否被 拒绝。
重点是三种不同情况下的假设检验方法,总体方差已 知时正态总体均值和总体比例的假设检验。
难点是总体方差未知时正态总体均值的假设检验和方 差分析。
第一节 假设检验
一、假设检验的概念
一、假设检验的概念
假设(hypothesis),又称统计假设,是对总体参数 的具体数值所作的陈述。
假设检验(hypothesis test) 是先对总体参数提出 某种假设,然后利用样本信息判断假设是否成立的过程。
(3) H0:μ = μ0 H1:μ<μ
《卫生统计学》考试重点复习资料
②权衡两类错误的危害以确定α的大小。 ③正确理解 P 值的意义,如果 P<α,宜说差异“有统计学意义”。
第八章 方差分析
名词解释
总变异:样本中全部实验单位差异称为总变异。其大小可以用全部观察值的均方(方差)表 示。 组间变异:各处理组样本均数之间的差异,受处理因素的影响,这种变异称为组间变异,其 大小可用组间均方表示。 组内变异: 各处理组内部观察值大小不等,这种变异称为组内变异,可用组内均方表示。 随机区组设计:事先将全部受试对象按自然属性分为若干区组,原则是各区组内的受试对象 的特征相同或相近,且受试对象数与处理因素的水平数相等。然后再将每个区组内的观察对 象随机地分配到各处理组,这种设计叫做随机区组设计。
构成比
某一组成部分的观察单 位数 同一事物各组成部分的 观察单位总数
100 %
③比又称相对比,是 A、B 两个有关指标之比,说明两者的对比水平,常以倍数或百分数表
示,其公式为:相对比=甲指标 / 乙指标(或 100%)
甲乙两个指标可以是绝对数、相对数或平均数等。
应用相对数时应注意哪些问题?
答:应用相对数时应注意的问题有:
相对数:是两个有联系的指标之比,是分类变量常用的描述性统计指标,常用相对数有率、
构成比、比等。
标准化法:是常用于内部构成不同的两个或多个率比较的一种方法。标准化法的基本思想就
是指定一个统一“标准”(标准人口构成比或标准人口数),按指定“标准”计算调整率,使
之具备可比性以后再比较,以消除由于内部构成不同对总率比较带来的影响。
料间的相对水平。 3) 报告比较结果时必须说明所选用的“标准”和理由。 4) 两样本标准化率是样本值,存在抽样误差。当样本含量较小时,还应作假设检验。
实验设计与数据处理第八章例题及课后习题答案doc资料
0
428
0 1.162084
492
0 1.162084
512
0
0
509
0
0
Signific ance F
7.93E-05
Lower Upper 下限 上限
95%
95% 95.0% 95.0%
465.4405 471.5595 465.4405 471.5595
5.242078 12.93644 5.242078 12.93644
0.002795085 2.593838854 0.122018
例8-2
回归方程: 由该回归方程 中偏回归系数 绝对值的大 小,可以得到 各因素和交互 作用的主次顺 序为:
y=0.50475+0.00 975z1+0.03375z 2+0.00475z1z20.00575z3+0.00 725z1z3
0 0 -41.73590203
y=468.5+9.09z1 -26.56z2+z3
标准误差
t Stat P-value
1.10193312 425.1619191 1.84E-10
1.385649972 6.55956341 0.002794
1.385649972 -19.17042163 4.36E-05
SS 0.0091125
0.001626 0.0108635
MS
F
0.0091125 33.62546
0.000271
试验号
z1 1 2 3 4 5 6 7 8 9 10 11
z2 1 1 1 1 -1 -1 -1 -1 0 0 0
z3 1 1 -1 -1 1 1 -1 -1 0 0 0
概率论与数理统计教程-魏宗舒-课后习题解答答案-7-8章
概率论与数理统计教程-魏宗舒-课后习题解答答案-7-8章概率论与数理统计教程-魏宗舒-课后习题解答答案-7-8章第七章假设检验7.1 设总体2(,)N ξµσ~,其中参数µ,2σ为未知,试指出下⾯统计假设中哪些是简单假设,哪些是复合假设:(1)0:0,1H µσ==;(2)0:0,1H µσ=>;(3)0:3,1H µσ<=;(4)0:03H µ<<;(5)0:0H µ=.解:(1)是简单假设,其余位复合假设 7.2 设1225,,,ξξξ取⾃正态总体(,9)N µ,其中参数µ未知,x 是⼦样均值,如对检验问题0010:,:H H µµµµ=≠取检验的拒绝域:12250{(,,,):||}c x x x x c µ=-≥,试决定常数c ,使检验的显著性⽔平为0.05解:因为(,9)N ξµ~,故9(,)25N ξµ~ 在0H 成⽴的条件下,00053(||)(||)53521()0.053cP c P c ξµξµ-≥=-≥??=-Φ=55()0.975,1.9633c cΦ==,所以c =1.176。
7.3 设⼦样1225,,,ξξξ取⾃正态总体2(,)N µσ,20σ已知,对假设检验0010:,:H H µµµµ=>,取临界域12n 0{(,,,):|}c x x x c ξ=>,(1)求此检验犯第⼀类错误概率为α时,犯第⼆类错误的概率β,并讨论它们之间的关系;(2)设0µ=0.05,20σ=0.004,α=0.05,n=9,求µ=0.65时不犯第⼆类错误的概率。
解:(1)在0H 成⽴的条件下,200(,)nN σξµ~,此时00000()P c P ξαξ=≥=10,由此式解出010c αµ-=+在1H 成⽴的条件下,20(,)nN σξµ~,此时101010()(P c P αξβξµ-=<=<=Φ=Φ=Φ由此可知,当α增加时,1αµ-减⼩,从⽽β减⼩;反之当α减少时,则β增加。
第8章知觉实验认知方式
体验,以主观因素做为验证假设的标准。
认知风格的实验研究
7
以活动为中心的观点
以活动为中心的观点是对认知方式的动态 认识,主要包括两种方式,即学习方式和 教学方式。 学习风格主要指学生在学习过程中通常喜 欢采用的学习方式,即学生对学习方法的 定向或偏爱;它对获取信息,最大限度地 提高学生的学习效率具有重要作用。
认知风格的实验研究
2
“认知方式之父”——美国心理学家威特金(Witkin, 1954)的开创性研究:提出场独立性——场依存性 的概念,并通过实验进行了系统的研究。 认知方式将一向割裂的心理学中的两个领域—— 人格与认知统一了起来,可以说认知方式是一个 架于认知与人格之间的桥梁。 正如威特金等人在《认知方式的实质与成因》一 书中所述:“认知方式理论家的一个主要目标是 探索把有关人类行为的诸个研究领域统一起来。 我们认为场依存性理论就提供了一个把诸个领域 统一在一个共同概念框架中的方法” (Witkin&Goodenough,1981)
Kolb(1978)从两个维度将学习风格分成四类。
两个维度指聚合型—发散型、顺应型—同化型。
认知风格的实验研究 8
教学风格主要指教师在教学活动中所采取 方法的习惯模式。
Lippitt和White(1952)根据教师教育指导态度的不同, 将教学风格分为三种:权威型、放任型和民主 型。 Henso和Borthwick(1984)则将教学风格分为六类: 任务导向型、合作计划型、儿童中心型、学习 中心型、学科中心型和情绪兴奋型。
认知风格的实验研究
14
在水平Biblioteka 度上,思维方式可分为:局部型(local):个体在处理事物时倾向于关注细 节; 整体型(global):个体则喜欢总体地看待事物, 并对事物进行慨括。