第八章方差分析
医学统计学 -第08章 方差分析

第一节 方差分析的基本思想
看一个例子
例8-1 为研究钙离子对体重的影响作用,某研究者将36 只肥胖模型大白鼠随机分为三组,每组12只,分别给 予高脂正常剂量钙(0.5%)、高脂高剂量钙(1.0%)和高 脂高剂量钙(1.5%)三种不同的饲料,喂养9周,测其 喂养前后体重的差值。问三组不同喂养方式下大白鼠 体重改变是否不同?
• 三种喂养方式体重改变的平均值各不相同,这种变异 称为组间变异
•
是组内均值
X
与总均值
i
X
之差的平方和
360
340
组间变异反映了:
320
三种喂养方式的差异(影响), 300
同时也包含了随机误差。
280
260
240
k ni
220
SS组间
(Xi X )2
200
i1 j
180
X甲
X
X乙
X丙
甲
乙
丙
3、组内变异(SS组内,variation within groups)
0.05
2、根据公式计算SS、MS及F值,列于方差分析表内(计 算过程省略)
变异来源 总变异 组间 组内(误差)
完全随机设计的方差分析表
平方和 SS 自由度
均方MS
47758.32
35
31291.67
2
15645.83
16466.65
33
498.99
F值
31.36
3、确定P值,作出判断
分子自由度=k-1=2,分母自由度=n-k=33,查F 界值表(方差分析用)
表 8-1 三种不同喂养方式下大白鼠体重喂养前后差值(g)
正常钙(0.5%) 高剂量钙(1.0%) 高剂量钙(1.5%)
单向方差分析

F 分布曲线
17
F 界值表
5
附表5 F界值表(方差分析用,单侧界值) 上行:P=0.05 下行:P=0.01
分母自由度 υ2
•
分子旳自由度,υ1
1
2
3
4
5
6
161 200 216 225 230 234 1
4052 4999 5403 5625 5764 5859
18.51 19.00 19.16 19.25 19.30 19.33 2
t Yi Yh Se
Yi Yh
,
MS组内(
1 n1
1 n2
)
N a 组内
29
例四个均值旳Bonferroni法比较
设α=α’/c=0.1/6=0.0167,由此t旳临 界值为t(0.0167/2,20)=2.6117
18.5 28.0
t(A: B)
3.48 2.6117, 24 4 20
以F命名,故方差分析 又称 F 检验 (F
test)。用于推断两 个或多种总体均数有 无差别 。
3
方差分析旳优点: 不受比较组数旳限制,可比较多组均数 可同步分析多种原因旳作用 可分析原因间旳交互作用
4
完全随机设计资料(单原因)方差分析 One-way analysis of variance 第一节 方差分析旳基本思想
deviations from mean,SS)反应变异旳大小
10
1. 总变异: 全部测量值之间总
旳变异程度,计算公式
a ni
SS总
Yij Y
2
Y a ni 2 ij
C
i1 j1
i1 j1
N
第八章:方差分析

SSE xij xi
k ni i 1 j 1
2
计算结果为: SSE = 2708
三个离差平方和的关系
总离差平方和(SST)、组内离差平方和(SSE) 、组间离差平方和 (SSA) 之间的关系:
x
k i 1 j 1
ni
ij
x ni xi x xij x
外包装底色对产品销量是否有显著影响?
市场 北京 上海 深圳 西安 成都 红色 36 35 27 29 38 橙色 28 26 31 30 24 紫色 30 32 28 26 35 蓝色 22 27 20 21 29
什么是方差分析?
【 例 】为了对几个行业的服务质量进行评价,消费者协会 在4个行业分别抽取了不同的企业作为样本。最近一年中消 费者对总共23家企业投诉的次数如下表:
2.
方差分析的基本假定
1. 每个总体都服从正态分布 (每个行业被投诉的次数必须服从正态分布) 2. 各个总体的方差相同 ( 4个行业被投诉次数的方差都相等) 3. 观测值是独立的 (每个行业被投诉的次数与其他行业被投诉的次数独立)
方差分析的基本假设
H 0 : m1 m2 mk H1 : m1 , m2 , , mk 不全相等
2.计算误差
计算全部观测值的均值以及各水平下的组均值 计算总误差 计算组内误差 计算组间误差
计算总误差( SST)
1. 全部观察值 xij 与总平均值 x 的离差平方和 2. 反映全部观察值的离散状况 3. 其计算公式为
SST xij x
k ni i 1 j 1 2
方差分析
差异源
组间 组内
SS
1456.609 2708
第08章+单因素方差分析

方差分析的基本原理
在一个多处理试验中,可以得出一系列不同的观测值。 造成观测值不同的原因是多方面的,有的是处理不同引起 的,处理效应或条件变异,有的是试验过程中偶然性因素 的干扰和测量误差所致,既试验误差。方差分析的基本思 想是将测量数据的总变异按照变异原因不同分解为处理效 应和试验误差,并作出其数量估计。 通过方差比较以确 定各种原因在总变异中所占的重要程度,即用处理效应和 试验误差在一定意义下进行比较,如二者相差不大,说明 试验处理对指标影响不大,如二者相差较大,处理效应比 试验误差大得多,说明试验处理影响是很大的,不可忽视。 从而作为统计推断。
变差na来源5 5 平方和 自由度
均方每一个xij都F减去65
SST
处= 理a
误差i=1
n j =1
xi2j 13C1.7=4277 .28 4129 .96
25.58
20
=3124.794.32
0.78
42.23**
S*S*A
总1和 a = α=n0.i0=11
xi2.
1C47=.312308 5
计之前就要明确关于模型的基本假设。对于单因素方差分析 来说,两种模型无多大区别。
第八章 单因素方差分析
三、单因素方差分析的检验及例题验算
(得样一本固)的定方方效差式应分不模同型析,与的致随检使机验所效程得应结模序论型不方同差。分随析机的效程应序模完型全适一用样于,水但平由的于总获 体1,、而正固规定检效验应模程型序只适用于所选定的α个水平。也就是说,随机效应 模2型、Ⅰ可单推因方断素差总方齐体状差性况分检,析验而的固实定效战应检模验型程不序能推断总体状况。
卫生统计学第八章正交试验方差分析

WENKU DESIGN
正交试验设计定义与原理
正交试验设计定义
正交试验设计是研究多因素多水平的一种设计方法,它是根 据正交性从全面试验中挑选出部分有代表性的点进行试验, 这些有代表性的点具备了“均匀分散,齐整可比”的特点。
正交试验设计原理
正交试验设计是利用正交表来安排与分析多因素试验的一种 设计方法。它是由试验因素的全部水平组合中,挑选部分有 代表性的水平组合进行试验的,通过对这部分试验结果的分 析,了解全面试验的情况。
THANKS
感谢观看
REPORTINGΒιβλιοθήκη https://VS
正交表特点
每列中不同数字出现的次数相等;任意两 列中数字的排列方式齐全而且均衡。
正交试验设计步骤
挑因素,选水平
根据试验的目的和专业知识,挑选出与考察指标有关的因素。对选出的因素要分清主次,合理安排。 选取的水平数应根据实际情况而定,过少会导致结果不准确,过多则可能数据分布的规律性较差,代 表性差;
通过建立线性模型来描述各因素 与结果之间的关系,从而进行方 差分析和参数估计。
PART 03
正交试验方差分析步骤
REPORTING
WENKU DESIGN
数据整理与描述性统计
整理试验数据
按照试验因素和水平整理数据,列出试验指标的观察值。
计算总均值和总变异
计算所有观察值的总和、均值、离差平方和等描述性统计量。
选正交表,进行表头设计
根据确定的列数(C)与水平数(t)选择相应的正交表。选择的原则是首先满足列数,其次是水平数。若 有2个或2个以上正交表满足条件时则应选取行数最少的一个;
正交试验设计步骤
明确试验方案,进行试验;
第八章 方差分析与相关分析

第八章方差分析与相关分析一.方差分析1.基本概念方差分析的概念:比较组间方差是否可以用组内方差来进行解释,从而判断若干组样本是否来自同一总体。
方差分析,又称为ANOVA(Analysis Of Variance)分析。
方差分析可以一次检验多组样本,避免了t检验一次只能比较两组的缺陷。
方差分析只能反映出各组样本中存在着差异,但具体是哪一组样本存在差异,无法进行判定。
考察下列例子:某厂使用四种不同颜色对产品进行包装,经过在五个城市的试销,获得销售数据如下(单观察数据的列平均值,列平均值的差异反映出不同颜色包装的销售业绩差异。
此时,需要判断这种差异与同一颜色包装在不同城市间的差异相比,是否显著。
如果不显著,则这种2.方差分析原理计算观察值的组间方差和组内方差,并计算两者的比值,如果该比值比较小,说明组间方差与组内方差比较接近,组间方差可以用组内方差来解释,从而说明组间差异不存在。
●●建立原假设“H0:各组平均数相等”●●构造统计量“F=组间方差/组内方差”●●在计算组间方差时,使用自由度为(r-1),计算组内方差时,使用自由度为(n-r)。
●●F满足第一自由度为(r-1),第二自由度为(n-r)的F分布。
●●查表,若F值大于0.05临界值,则拒绝原假设,认为各组平均数存在差异。
根据方差计算的原理,生成方差分析表如下:其中:组间离差平方和 SSA (Sum of Squares for factor A) =39.084误差项离差平方和 SSE (Sum of Squares for Error) =76.8455总离差平方和 SST (Sum of Squares for Total)=115.9295P-value值为0.000466,小于0.05,所以拒绝原假设。
3.双因素方差分析观察下列销售数据,欲了解包装方式和销售地区是否对于销售业绩有影响,涉及到双因素的方差分析。
此时需分别计算SSA、SSB与SSE之间的比值是否超过临界值。
生物统计-8第八章单因素方差分析
01
确定因子和水平
确定要分析的因子(独立变量) 和因子水平(因子的不同类别或 条件)。
建立模型
02
03
模型假设
根据因子和水平,建立方差分析 模型。模型通常包括组间差异和 组内误差两部分。
确保满足方差分析的假设条件, 包括独立性、正态性和同方差性。
方差分析的统计检验
01
F检验
进行F检验,以评估组间差异是否 显著。F检验的结果将决定是否拒
生物统计-8第八章单因素方差分析
目录
• 引言 • 方差分析的原理 • 单因素方差分析的步骤 • 单因素方差分析的应用 • 单因素方差分析的局限性 • 单因素方差分析的软件实现
01
引言
目的和背景
目的
单因素方差分析是用来比较一个分类变量与一个连续变量的关系的统计分析方法。通过此分析,我们可以确定分 类变量对连续变量的影响是否显著。
VS
多元性
单因素方差分析适用于单一因素引起的变 异,如果存在多个因素引起的变异,单因 素方差分析可能无法准确反映实际情况。 此时需要考虑使用其他统计方法,如多元 方差分析或协方差分析等。
06
单因素方差分析的软件 实现
使用Excel进行单因素方差分析
打开Excel,输入数据。
点击“确定”,即可得到单因素方差分析 的结果。
输出结果,并进行解释和 解读。
谢谢观看
背景
在生物学、医学、农业等领域,经常需要研究一个分类变量对一个或多个连续变量的影响。例如,研究不同品种 的玉米对产量的影响,或者不同治疗方式对疾病治愈率的影响。
方差分析的定义
定义
方差分析(ANOVA)是一种统计技术,用于比较两个或更多组数据的平均值 是否存在显著差异。在单因素方差分析中,我们只有一个分类变量。
第八章 方差分析
xij (i 1,2,, r , j 1,2,, s)
1 r s 1 s 记= ij 表示总平均值, i .= ij 表示因素A的第i个水平的平均值, . rs i 1 j 1 s j 1
1 r . j= ij 表示因素B的第j个水平的平均值 . r i 1
行业类型 计算机
3.94 2.76 8.95 3.23
每股净收益
3.04 4.69 1.52 5.05
医药
公用
2.89
-2.26
1.65
0.66
2.59
2.22
1.09
1.77
-1.07
-0.15
2.30
2.10
-3.10
2.89 1.12 -3.21 2.11
例8.3:某汽车销售商欲了解三种品牌的汽车X,Y,Z和四种标
ANOVA过程简介
ANOVA过程用于均衡数据的方差分析。
对非均衡数据的方差分析问题,SAS系统要求用GLM(一般 线性模型)来处理(单因素时也可以用ANOVA).
GLM过程也可以处理均衡数据的方差分析问题,但效率低于 ANOVA.
ANOVA过程简介
ANOVA过程的一般格式:
PROC ANOVA<options>; CLASS variables; MODEL dependents=effects</options>; BY variables; FREQ variable; MEANS effects</options>;
一、单因素方差分析模型
设因素X有k个水平,每个水平可视为一个小总体,分别用
X1 , X 2 ,, X k 来表示。记 j的总体均值为 j , X
第八章 方差分析
X ij = m j eij
2
SS t 总变异 df t = N 1
SS b 组间(处理)变异 df b = k 1
SS w 组内(误差)变异 df w = N k
均方
平方和 均方 = 自由度 SS e 组内(误差)均方 MS w = MS e = df e SS b 组间(处理)均方 MSb = MStr = df b
2 e 2 e
m =
j m
2
k 1
=
2 j
k 1
2
当H 0为真时,E MS error = E MStreatm ent 当H 0为假时,E MS error E MStreatm ent
平方和的分解 sum of squares
• 平方和的优越性在于其可加性
– 过程:包含27个词的表过3遍后要求被试写下 记住的词
因素“加工方式”有 5 个水平 j= 1 ,2 ,… ,k (k = 5 )
co unting i= 1 ,2 ,… ,n n= 1 0 9 8 6 8 10 4 6 5 7 7 To ta l(Tj) M e an SD V a ria nce 70 7 .0 0 1 .8 3 3 .3 3 rhy ming 7 9 6 6 6 11 6 3 8 7 69 6 .9 0 2 .1 3 4 .5 4 a dje ctiv e 11 13 8 6 14 11 13 13 10 11 110 1 1 .0 0 2 .4 9 6 .2 2 ima g e ry 12 11 16 11 9 23 12 10 19 11 134 1 3 .4 0 4 .5 0 2 0 .2 7 inte ntio na l 10 19 14 5 10 11 14 15 11 11 120 1 2 .0 0 3 .7 4 1 4 .0 0 503 =∑ X 1 0 .0 6 4 .0 1 1 6 .0 6 to ta l
第八讲-方差分析
x2 ij
j 1i 1
xij
N
k
2
SS B n j X j X t
i 1
2
k
j 1
nj
2
( xij)
i 1
nj
k nj
j 1i 1
xij
N
SSW SST SSB
2
nj
x k nj
x n j1 i1
k
2
ij j 1
ij i 1
j
3、确定自由度
df k 1 B
df N k W
二、(单因素)随机区组实验设计
1、模型
处理1
处理2 ……
区组1 被试1 x11 被试1 x21 ……
区组2 被试2 x12 被试2 x22 ……
处理k
被试1 xk1
被试2
xk
2
……… ……… ……
区组a 被试a x1a 被试a x2a ……
……
被试a xka
■注:每个区组内被试分配方式可以是以下 三种
T1
T2
8
39
20
26
12
31
14
45
10
40
T3
T4
17
32
工创问 具造题
21 20
23 28
教 程
丰 富 教
性 思 维
解 决 模
17
25
程教式 程教
20
29
程
T1: T2: T3: T4:CoRT
变异来源 自由度 平方和
处理 误差
总
3
1553.7
16 378.80
19 1932.55
均方
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、单因素试验(one factor trial):试验中仅有一个处理因 素,但取不同水平,而其它因素保持不变。又称完全随 机设计(completely random design),即将观察对象随 机地分为若干组,每组给予同一处理因素的不同水平, 以观察处理因素的不同水平间有无差异。
60.87
30.33
10.96
ni
x ij
j1
ni
xi
ni
x
2 ij
j1
329.92 6
54.99
18720.97
372.59 6
62.10
23758.12
20.68 229.17 7
32.74
8088.59
48.23 191.00 7
27.29
6355.43
1122.68 26
43.18
56923.11
方差分析(Analysis of variance,ANOVA):1923年
由英国统计学家 R. A. Fisher 首先提出,以F 命名其统计 量,故方差分析又称F 检验。
应用条件: ① 各样本必须是相互独立的随机样本——独立性; ② 各样本来自正态分布总体——正态性; ③ 各样本总体方差相等——方差齐性。
x
(N )
(x )
( x 2)
由表1可见,26只家兔的血清ACE浓度各不相同,称为总 变异;四组家兔的血清ACE浓度均数也各不相同,称为组间 变异;即使同一组内部的家兔血清ACE浓度相互间也不相同, 称为组内变异。
该例的总变异包括组间变异和组内变异两部分,或者说可 把总变异分解为组间变异和组内变异。组内变异是由于家兔间 的个体差异所致。组间变异可能由两种原因所致,一是抽样误 差;二是由于各组家兔所接受的处理水平不同。
单因素方差分析
本质:不考虑个体差异的影响,仅涉及一个处理因素, 但处理因素可以有两个或多个水平。
在实验研究中按随机化原则将受试对象随机分配到一个 处理因素的多个水平中去,然后观察各组的试验效应; 在观察研究(调查)中按某个研究因素的不同水平分组, 比较该因素的效应。
要求:样本含量尽可能相等或相差不大。
用途:用于单因素试验设计的处理因素的多个水平的样 本效应(均数)间比较,其统计推断是推断各样本所代表 的各总体效应(均数)是否相等。
eg: P188 例8-1
(一)方差分析的基本思想 1、基本思想:
eg: 有4组进食高脂饮食的家兔,接受不同药物处理后,测 定其血清肾素血管紧张素转化酶(ACE)浓度(表1),试 比较四组家兔的血清ACE浓度。
随机区组设计的方差分析,是将总变异中的离均差平方和 SS 及其自由度 df 分别分解成处理间、区组间和误差3部分,然 后分别求得以上各部分的变异(MS处理、MS区组和MS误差),进 而得出统计量F值(MS处理/MS误差、MS区组/MS误差)。
用途: ① 两个或多个总体均数间的比较; ② 回归方程的线性假设检验; ③ 多元线性回归分析中偏回归系数的假设检验; ④ 分析两个或多个因素间的交互作用; ⑤ 两样本的方差齐性检验等。
第一节 单因素方差分析 (one-way ANOVA)
一、方差分析的原理和方法
1、试验研究的三要素: 处理因素(factor):是指研究者根据研究目的而施加给实验 对象的各种人为设置的干预措施。
✓ 水平(lever):处理因素所处的不同状态或内部分类。
受试对象:是接受处理因素的主体。
实验效应(effect):处理因素作用于研究对象而产生的反 应、效应。
三要素贯穿于整个实验研究过程,从不同侧面影响着 实验研究的结果,在实验设计中必须予以足够重视。
eg: 用两种药物治疗糖尿病病人,观察比较两组病人血糖、尿糖 的下降情况。 这里所用的药物为处理因素,不同的给药途径为处理因素的 水平,糖尿病病人为受试对象,血糖值、尿糖值为实验效应。
的大小确定 P 值,作出统计推断。
eg1: 完全随机设计的方差分析,是将总变异中的离均差平方和 SS 及其自由度 df 分别分解成组间和组内两部分,SS组间 / df组间和SS组内 /df组内分别为组间变异(MS组间)和组内变异(MS组内),两者之比 即为统计量F(MS组间/MS组内)。
eg2:
方差分析的基本思想:
根据研究目的和试验设计类型,将所有观察单位的总变 异按设计或需要分为两个部分,一部分为组内变异(抽样误 差——个体变异或随机测量变异,即随机因素引起的随机误差),另 一部分为组间变异(包括组内变异和可能存在的处理因素引起的变 异),然后由组间变异除以组内变异,若远远大于1,则处理 因素可能有影响,即各组之间有差异。
表1 对照组及各实验组家兔血清ACE浓度(u/ml)
实验组
对照组 A降脂药 B降脂药 C降脂药
61.24
82.35
26.23
25.46
58.65
56.47
46.87
38.79
46.79
61.57
24.36
13.55
37.43
48.79
38.54
19.45
66.54
62.54
42.16
34.56
59.27
方差分析:对不同处理因素或同一处理因素的 不同水平的实验效应有无差异的分析。
2、方差分析的分类: 根据处理因素的个数分为:
单因素(one-way ANOVA) 双因素(two-way ANOVA) 多因素方差分析(multi-way ANOVA)
根据处理因素的水平分为:
固定效应模型(fixed-effects model) 随机效应模型(random-effects model)
学时分配:3学时(理论)
单因素方差分析 多重比较(自学) 两因素方差分析(自学) 交叉设计的方差分析(自学)
学习目的和要求
掌握方差分析的基本思想和要求、熟练运用方差分析 步骤和方差分析表进行单因素方差分析 ;
熟悉两两间多重比较的方法;
了解运用方差分析表进行两因素方差分析的方法、用
Excel 进行方差分析的运算。
总变异
个体变异
随机测量变异
可能的处理 因素的变异
组间变异
系统性误差
组内变异
随机误差
个体变异 随机测量变异
方差分析是将总变异中的离均差平方和(sum of squares, SS)及其自由度(freedom,df)分别分解成相应的若
干部 分,然后求各相应部分的变异;再用各部分的变异与组
内 (或误差)变异进行比较,得出统计量 F 值;最后根据 F 值