运放基本电路
集成运放组成的基本运算电路

K2
C 1μF
R2 1M
K1 +15V
vS
-
R1 100K
A
vO
+
R′ 100K
-15V
vo
1 R1
t
0 vsdt
积分运算电路
4. 积分运算电路
将实验数据及波形填入下述表格中:
vs波形
vs幅度值
vo波形
vo频率
vo幅度值
5. 用积分电路转换方波为三角波
电路如下图所示。图中电阻R2的接入是为了抑制由 IIO、VIO所造成的积分漂移,从而稳定运放的输出零 点。
A
vO
υS
+
R′ 10K
-15V
v0
(1
RF R1
)vs
同相比例运算电路
2. 实现同相比例运算
将实验数据及波形填入下述表格中:
输入信号vs1 (V)
有效值
波形
输入信号vs2 (V)
有效值
波形
有效值
输出电压vo (V)
峰值
波形
注:上表针对正弦波输入,若是其他信号输入表作相应改变。
3. 减法器(差分放大电路)
减法器(差分放大电路)运算仿真电路
3. 减法器(差分放大电路)
减法器(差分放大电路)运算仿真电路
3. 减法器(差分放大电路)
将实验数据及波形填入下述表格中:
输入信号vs1 (V)
有效值
波形
输入信号vs2 (V)
ቤተ መጻሕፍቲ ባይዱ
有效值
波形
有效值
输出电压vo (V)
峰值
波形
注:上表针对正弦波输入,若是其他信号输入表作相应改变。
vs波形
运放基本应用电路

运放基本应用电路运放基本应用电路运算放大器是具有两个输入端,一个输出端的高增益、高输入阻抗的电压放大器。
若在它的输出端和输入端之间加上反馈网络就可以组成具有各种功能的电路。
当反馈网络为线性电路时可实现乘、除等模拟运算等功能。
运算放大器可进行直流放大,也可进行交流放大。
R f使用运算放大器时,调零和相位补偿是必须注意的两个问题,此外应注意同相端和反相端到地的直流电阻等,以减少输入端直流偏流 U I 引起的误差。
U O 1.反相比例放大器 电路如图1所示。
当开环增益为 ∞(大于104以上)时,反相放大器的闭环增益为: 1R R U U A f I O uf -== (1) 图1 反相比例放大器 由上式可知,选用不同的电阻比值R f / R 1,A uf 可以大于1,也可以小于1。
若R 1 = R f , 则放大器的输出电压等于输入电压的负值,因此也称为反相器。
放大器的输入电阻为:R i ≈R 1直流平衡电阻为:R P = R f // R 1 。
其中,反馈电阻R f 不能取得太大,否则会 产生较大的噪声及漂移,其值一般取几十千欧 到几百千欧之间。
R 1的值应远大于信号源的 O 内阻。
2.同相比例放大器、同相跟随器 同相放大器具有输入电阻很高,输出电阻很低的特点,广泛用于前置放大器。
电路原理图如图2所示。
当开环增益为 ∞(大于104以上 图2 同相比例放大器 )时,同相放大器的闭环增益为:1111R R R R R U U A f f I O uf +=+== (2) 由上式可知,R 1为有限值,A uf 恒大于1。
同相放大器的输入电阻为:R i = r ic其中: r ic 是运放同相端对地的共模输入电阻,一般为108Ω;放大器同相端的直流平衡电阻为:R P = R f // R 1。
若R 1 ∞(开路),或R f = 0,则A u f 为1,于是同相放大器变为同相跟随器。
此时由于放大器几乎不从信号源吸取电流,因此 U可视作电压源,是比较理想的阻抗变换器。
模电课件集成运放基本电路

R f 8 R f 20
R2
R3
加减运算电路旳设计环节 R1 24k 先根据函数关系画出电路,R2然 后30计k算参数
解(1) 画出电路 (2) 计算电阻
平衡电阻
R3 12k R 80k
Rf
R’ // R1 // R2 =Rf // R3
uo
Rf R1
ui1
Rf R2
ui 2
Rf R3
ui 3
(由2虚)断因:为i叠 加i点为0虚地,i输i1 入ii信2 号ii3之间i f
满u足i1 线u0性 叠u加i2 定 0u理 ,互ui不3 影0u响。u0 uo
R1
R2
R3
Rf
uo 由由u虚R虚Rf 短地uu:i:1 u0i2 ui3
ui3 ui2
ii3 ii2
R3 R2
Rf
若 R1 = R2 = R3 = R
换作用
1反相微分器 平衡电阻R’=Rf
iC
C
duC dt
由虚断:i i 0 iC i i f i f
iC
u uo Rf
C d ui
dt
由“虚
地u” 0
u
uo
iC
R
f
C
iiCi
ui
dui t
RuC
dt
u
u R
if ii+
Rf
uo
2实际应用旳微分器Zf
uRωi ↑限i→Zi制11/输uω入Ci电↓- →流i,C ↑降→低高高频u频噪o 噪声声uo Cf相位补u 偿i,+ 克制自激振荡
由虚短: u u
uo ui2
R1 R f RRf R2 R R1
运算放大器单电源供基本电路大全

运算放大器单电源供基本电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
运放常见电路

运放常见电路
一、非反馈式运放常见电路
1. 比较器电路
比较器电路是一种非反馈式运放电路,通过将输入信号与参考电压进行比较,输出高低电平信号。
比较器电路可以用于数字电路中的信号处理和控制。
2. 跟随器电路
跟随器电路是一种非反馈式运放电路,用于将输入信号的变化转换为输出信号的变化,通常用于信号放大和模拟信号处理。
3. 倍增器电路
倍增器电路是一种非反馈式运放电路,通过将输入信号经过放大和整流处理后,输出信号的幅值是输入信号幅值的倍数。
倍增器电路常用于信号处理和测量仪器。
二、反馈式运放常见电路
1. 反相放大器电路
反相放大器电路是一种基本的反馈式运放电路,通常用于信号放大和滤波。
在该电路中,输入信号经过运放放大后,再通过反向输入回路与输入端接通,实现负反馈,使放大倍数得以精
确控制。
2. 非反相放大器电路
非反相放大器电路是一种基本的反馈式运放电路,通常用于信号放大和滤波。
与反相放大器电路不同的是,在该电路中,在输入端和反向输入回路之间串联了一个电阻,起到电压分压作用,使得放大倍数为正值。
3. 低通滤波器电路
低通滤波器电路是一种反馈式运放电路,它可以滤除高频成分,只保留低频成分。
在该电路中,输入信号经过运放放大后,通过并联的电容和电阻与反向输入回路相连,形成一个一阶低通滤波器。
4. 高通滤波器电路
高通滤波器电路是一种反馈式运放电路,它可以滤除低频成分,只保留高频成分。
在该电路中,输入信号经过电容和电阻串联后,与运放的反向输入端相连,形成一个一阶高通滤波器。
常用运算放大器16个基本运算电路

5. 微分运算电路
微分运算电路如图 5 所示,
XFG1
R2 15kΩ
C2
22nF
V3
R1
C1
4
12 V
2
1kΩ
22nF
U1A
1
3
T L082CD
8
V2 12 V
XSC1
A +_
B +_
Ext Trig +
_
图5
电路的输出电压为 uo 为:
uo = −R2C1 dui dt
式中, R2C1 为微分电路的时间常数。若选用集成运放的最大输出电压为UOM ,
式中,Auf = 1+ RF / R1 为同相比例放大电路的电压增益。同样要求 Auf 必须小于 3, 电路才能稳定工作,当 f = fo 时,带通滤波器具有最大电压增益 Auo ,其值为:
Auo = Auf / (3 − Auf )
10. 二阶带阻滤波电路
二阶带阻滤波电路如图 10 所示,
C1
1nF R1
_
图 15 全波整流电路是一种对交流整流的电路,能够把交流转换成单一方向电 流,最少由两个整流器合并而成,一个负责正方向,一个负责负方向,最典 型的全波整流电路是由四个二极管组成的整流桥,一般用于电源的整流。 全波整流输出电压的直流成分(较半波)增大,脉动程度减小,但变压器需 要中心抽头、制造麻烦,整流二极管需承受的反向电压高,故一般适用于要 求输出电压不太高的场合。
R1 10kΩ
4 2
12 V
U1A 1
3
8 TL082CD
R3 9kΩ
V2 12 V
D2 1N4148
XSC1
A +_
运放常用电路

运放常用电路运放是一种重要的电子元器件,它可以被应用于各种领域,包括放大、滤波、计算、比较、振荡等等。
在实际应用中,运放常用电路有很多种,下面我们来了解一些常见的运放电路。
1. 基本放大电路基本放大电路是运放应用中最基本的电路之一,它可以实现信号的放大。
它由一个运放、两个电阻和一个输入信号源组成。
其中一个电阻与输入信号源串联,另一个电阻与运放的负输入端和输出端串联,正输入端接地。
基本放大电路的放大倍数由两个电阻的比值决定,可以通过改变电阻值来实现放大倍数的调节。
2. 反馈放大电路反馈放大电路是一种通过反馈来控制放大倍数的电路。
它由一个运放、两个电阻和一个反馈电阻组成。
其中一个电阻与输入信号源串联,另一个电阻与运放的负输入端和反馈电阻串联,正输入端接地。
反馈电阻的作用是将输出信号反馈到运放的负输入端,从而使运放输出稳定,放大倍数受到控制。
3. 滤波电路滤波电路是一种可以滤除不需要的频率成分的电路。
它由一个运放、电容和电阻组成。
其中一个电阻和一个电容串联,另一个电阻与运放的负输入端和输出端串联,正输入端接地。
滤波电路可以分为低通滤波电路和高通滤波电路两种,具体的滤波效果取决于电容和电阻的数值。
4. 比较电路比较电路是一种可以比较两个输入信号大小的电路。
它由一个运放、两个输入信号和一个参考电压源组成。
其中一个输入信号与参考电压源相比较,另一个输入信号与运放的正输入端相连。
当参考电压大于输入信号时,输出为正电压;当参考电压小于输入信号时,输出为负电压。
5. 振荡电路振荡电路是一种可以产生周期性信号的电路。
它由一个运放、电容和电阻组成。
其中一个电容和一个电阻串联,另一个电阻与运放的正输入端和输出端串联,负输入端接地。
振荡电路可以分为正弦波振荡电路和方波振荡电路两种,具体的振荡频率和波形取决于电容和电阻的数值。
以上是常见的五种运放常用电路,它们都有各自不同的应用场景和特点。
在实际应用中,我们可以根据需要选择不同的运放电路来实现特定的功能。
运算放大器基本电路大全

运算放大器基本电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运放基本电路包括反相放大电路、非反相放大电路、比较器电路和积分器电路等。
1.反相放大电路:反相放大电路的基本组成部分是一个运放和两
个电阻。
输入信号通过一个电阻输入到运放的负输入端,正输
入端接地,输出信号通过另一个电阻反馈到负输入端。
这种电
路的特点是输入信号和输出信号反相,增益可以通过两个电阻
的比值来控制。
2.非反相放大电路:非反相放大电路的基本组成部分也是一个运
放和两个电阻,但是输入信号是通过一个电阻输入到正输入端,负输入端接地,输出信号通过另一个电阻反馈到正输入端。
这
种电路的特点是输入信号和输出信号同相,增益同样可以通过
两个电阻的比值来控制。
3.比较器电路:比较器电路的基本组成部分是一个运放和两个输
入端,其中一个输入端为参考电压,另一个输入端为输入信号。
当输入信号大于参考电压时输出高电平,小于参考电压时输出
低电平。
这种电路常用于模拟信号和数字信号之间的转换。
4.积分器电路:积分器电路的基本组成部分是一个运放、一个电
阻和一个电容。
输入信号通过电阻输入到运放的负输入端,正
输入端接地,输出信号通过电容反馈到负输入端。
这种电路的
特点是输出信号是输入信号的积分,可以用于信号的滤波和积
分运算等。