数学分析17-4174 泰勒公式与极值问题

合集下载

Taylor公式和极值问题

Taylor公式和极值问题

§ 4 Taylor 公式和极值问题(一) 教学目的:掌握二元函数的高阶偏导数与泰勒公式的定义,掌握二元函数的极值的必要条件与充分条件. (二) 教学内容:二元函数的高阶偏导数;中值定理与泰勒公式;二元函数的极值的必要条件与充分条件. 基本要求:(1)掌握二元函数的高阶偏导数与泰勒公式的定义,能够根据二元函数的极值的必要条件与充分条件寻找二元函数的极值与最大(小)值.(2) 较高要求:掌握混合偏导数与求导次序无关的定理的证明以及二元函数的极值的必要条件充分条件定理的证明.(三) 教学建议:(1) 布置适量的求二元函数的高阶偏导数和求二元函数的极值与最值的习题. (2) 讨论混合偏导和与求导次序无关的多种定理证明的习题有一定的难度,只对较好学生布置有关习题.————————————————————一. 高阶偏导数:1. 高阶偏导数的定义、记法:例9 ,2yx ez += 求二阶偏导数和23xy z ∂∂∂.例10 xy arctg z =. 求二阶偏导数.上面两个例子中,关于y x 和,的不同顺序的两个二阶偏导数都相等,,但是这个结论并不对任何函数都成立,例如⎪⎩⎪⎨⎧=≠+-=)0,0(),(,0)0,0(),(,),(2222y x y x yx yx xy y x f ⎪⎩⎪⎨⎧=≠+-+=)0,0(),(,0)0,0(),(,)(4(),(2224224y x y x y x y y x x y y x f x⎪⎩⎪⎨⎧=≠+--=)0,0(),(,0)0,0(),(,)(4(),(2224224y x y x y x y y x x x y x f y1lim)0,0(),0(lim)0,0(00-=∆∆-=∆-∆=→∆→∆yy yf y f f y x x y xy1lim)0,0()0,(lim)0,0(0=∆∆=∆-∆=→∆→∆xx xf x f f y y y x yx由此可知,),(y x f 关于y x 和,的不同顺序的两个二阶混合偏导数与求次序有关。

多元函数的Taylor公式与极值问题课件

多元函数的Taylor公式与极值问题课件

实际应用中的考虑因素
实际问题的背景
在应用极值理论时,需要考虑实际问题的背景和限制条件,如物 理定律、约束条件等。
数据的不确定性
在实际问题中,数据往往存在不确定性,需要考虑这些不确定性 对极值分析的影响。
模型的适用性
在应用极值理论时,需要考虑模型的适用性,确保模型能够准确 地反映实际情况。
07
与望
05
利用Taylor公式求解极
方法概述
定义
Taylor公式是用于近似表达一 个多元函数在某点附近的行 为
的公式。
形式
Taylor公式的一般形式为 f(x)≈f(a)+f'(a)(x−a)+12f''(a) (x−a)2+…+1n!f(n)(a)(x−a)n
+…。
应用
利用Taylor公式,我们可以找 到函数在某点的极值。
06
极求解的注事与 技巧
常见错误分析
忽视函数的定义域
在求解极值问题时,必须先确定函数的定义域,否 则可能导致错误的结论。
对导数的理解不足
导数描述了函数在某一点的切线斜率,若对导数的 理解不准确,可能导致错误的极值点判断。
未考虑多极值点的情况
在某些情况下,函数可能有多个极值点,需要全面 考虑,避免遗漏。
定义
一元函数在某点的Taylor公式是 该函数在该点附近的一个多项式 近似表示。
形式
一元函数的Taylor公式的一般形 式为 f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... + f^(n)(a)(x -a)^n/n! + Rn(x)

4 多元函数的taylor公式与极值问题2 工科数学分析基础

4 多元函数的taylor公式与极值问题2 工科数学分析基础

3 + 3 = 9−5 3 + 3 = 9+ 5
3, 3.
故原点至已知曲线上点的最小距离与最大距离分
别为
dmin = 9 − 5 3 , dmax = 9 + 5 3 . 例3 已知圆柱面
x2 + y2 + z2 − x y − yz − zx − 1 = 0 , (4)
2007年8月
南京航空航天大学 理学院 数学系
南京航空航天大学 理学院 数学系
10
三、应 用 举 例
定理 1 指出的方法称为拉格朗日乘数法. 下面
用这种方法先来求解本节开头给出的两个例题.
例1 解 此例以往的解法是从条件式解出显函数,
例如
z
=
V xy
,
代入目标函数后,
转而求解
S = 2V ( x + y) + x y xy
的普通极值问题. 可是这样做并不总是方便的, 而
Ω = { P | P ∈ D, ϕk (P) = 0, k = 1, 2, , m }. 若存在 P0 ∈ Ω , δ > 0, 使得
f (P0 ) ≤ f (P) , ∀ P ∈ Ω ∩ U (P0;δ ) ( 或 ∀ P ∈ Ω ),
则称 f (P0 ) 是 f (P) 在约束条件 Φ 之下的极小值 (或最小值) , 称 P0是相应的极小值点 (或最小值 点). 类似地又可定义条件极大 (或最大) 值.
目标函数: S = 2z( x + y) + x y; 约束条件: x yz = V .
2007年8月
南京航空航天大学 理学院 数学系
2
例2 设曲线 z = x2 + y2, x + y + z = 1. 求此曲线上 的点到原点距离之最大、最小值. 对此问题有

泰勒公式与极值问题

泰勒公式与极值问题

⎧ x2 − y2 2 2 , x + y ≠0 ⎪ xy 2 2 f ( x, y ) = ⎨ x + y . ⎪0, 2 2 + =0 x y ⎩
4. 混合偏导
f xyx ( x , y ), f xxy ( x , y ), f yxx ( x , y ).
是否一定相等?何时相等?
若Z=f(x,y)的两个偏导函数 fx(x,y)与fy(x,y)关于x和y存在偏导数,则称 f(x,y)具有二阶偏导数。 z=f(x,y)的二阶偏导数有四种情形:
分析:
f ( x + Δx , y ) − f ( x , y ) f x ( x , y ) = lim , Δx →0 Δx
Δy →0
f xy ( x , y ) = lim
Δy →0
f x ( x , y + Δy ) − f x ( x , y ) Δy
f y ( x + Δx , y ) − f y ( x , y ) Δx
§4 泰勒公式与极值问题 一、高阶偏导数 问题:
1. 以下符号的含义:
∂2 z ∂2 z ∂2 z ∂2 z , f xy ( x , y ), , f yx ( x , y ), , f yy ( x , y ). , f xx ( x , y ), 2 2 ∂x∂y ∂y∂x ∂y ∂x
2. 二阶偏导数的定义(极限形式). 3. 典型例子:求二元函数f(x,y)在的二阶偏导数:
ϕ ( x ),ψ ( y )
问题答:
5. 若记 则
ϕ ( x ) = f ( x , y + Δy ) − f ( x , y ), ψ ( y ) = f ( x + Δx , y ) − f ( x , y ),

高教版数学分析第4版课件17-4

高教版数学分析第4版课件17-4

f ( x0 , y0 y) f ( x0 , y0 ) ( y0 y) ( y0 ).
用前面相同的方法, 又可得到
F ( x, y) f yx ( x0 3 x, y0 4 y) x y
( 0 3 ,4 1).
当 x, y 不为零时,由 (5), (6) 两式又得
极值问题
其中f xy,f y x这两个既有x,又有y的高阶偏导数称为 混合偏导数. 类似地可以定义更高阶的偏导数, 例如 z f ( x, y)
的三阶偏导数共有八种情形:
数学分析 第十七章 多元函数微分学
高等教育出版社
§4 泰勒公式与极值问题
高阶偏导数
中值定理和泰勒公式
极值问题
z 3z
x
y0x0
1 x
y
f ( x0 x, y0 y)
f ( x0 , y0 y) f ( x0 x, y0 ) f ( x0, y0 ) ; (1)
类似地有
1
f
y
x ( x0 ,
y0 )
lim
x0
lim
y0
x
y
f ( x0 x,
y0 y)
f ( x0 x, y0 ) f ( x0, y0 y) f ( x0, y0 ) . (2) 为使 fx y ( x0, y0 ) f y x ( x0, y0 ) 成立,必须使 (1)、(2)
(3)
证令
F ( x, y) f ( x0 x, y0 y) f ( x0 x, y0 ) f ( x0 , y0 y) f ( x0, y0 ),
于是有 ( x) f ( x, y0 y) f ( x, y0 ).
F ( x, y) ( x0 x) ( x0) .

174泰勒公式与极值问题(2)

174泰勒公式与极值问题(2)

4
y
f
(x,y)
1 ( x y)4 ,
4 (1 x y)4
(0 1).
例 5 求 f ( x, y) x y 在点 (1,4) 的泰勒公式 ( 到二
阶为止 ), 并用它计算 1. 08 3. 96 . 解 由于 x0 1, y0 4, n 2, 因此有
f ( x, y) x y , f (1,4) 1,
yx
n1
k
fyx0 n1
(fx(x0x0)
, yh0
,
y0(
yyk0)..
其中,
x
m
f
m f xm
,
m
l
x y
f
ml f xmy
l
,
h
x
k
y
p
f
p
C
r p
h
r
k
r0
pr
p f xry pr
证明分析 : 设(t) f (x0 th, y0 tk), t [0,1]
由一元函数的泰勒定理,有:
g(x, y)是半正定的, 顺序主子式全 0 ;
(2) g(x, y)是负定的,, (1 )k | aij |1k 0 其中| aij |1k 为k 阶顺序主子式.
g(x, y)是半负定的,.(1 )k | aij |1k 0
(3)
a b
b c
0时, g ( x,
y)是不定的.
充分条件的讨论
, P0 不是极值点;
(4)
f xx
f yy
f
2 xy
(P0) 0时
,
P0可能是极值点 , 也可能不是极值点 .
例 14.求 f (x, y) x2 5y2 6x 10y 6的极值。

数学分析17.4多元函数微分学之泰勒公式与极值问题

数学分析17.4多元函数微分学之泰勒公式与极值问题

第十七章 多元函数微分学4泰勒公式与极值问题一、高价偏导数概念1:二元函数z=f(x,y)的二阶偏导数有如下四种情形: (1)⎪⎭⎫ ⎝⎛∂∂∂∂x z x =22x z ∂∂=f xx (x,y); (2)⎪⎭⎫ ⎝⎛∂∂∂∂x z y =yx z 2∂∂∂=f xy (x,y); (3)⎪⎪⎭⎫ ⎝⎛∂∂∂∂y z x =x y z 2∂∂∂=f yx (x,y); (4)⎪⎪⎭⎫ ⎝⎛∂∂∂∂y z y =22y z ∂∂=f yy (x,y). 二元函数z=f(x,y)的三阶偏导数有共有八种情形,如:⎪⎪⎭⎫ ⎝⎛∂∂∂∂22x z x =33x z ∂∂=3x f (x,y);⎪⎪⎭⎫ ⎝⎛∂∂∂∂22x z y =y x z 23∂∂∂=y x 2f (x,y);……例1:求函数z=e x+2y 的所有二阶偏导数和23xy z ∂∂∂. 解:∵z x =e x+2y ; z y =2e x+2y ;∴z xx =ex+2y ; z xy =2e x+2y ; z yx =2e x+2y ; z yy =4e x+2y ;23x y z ∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂x y z x 2=2e x+2y .例2:求函数z=arctan xy 的所有二阶偏导数.解:∵z x =22x y 1xy -⎪⎭⎫ ⎝⎛+=-22y x y +; z y =2x y 1x1⎪⎭⎫ ⎝⎛+=22y x x +; ∴z xx =222)y (x 2x y +; z xy =-222222)y (x y 2y x +-+=22222)y (x x y +-; z yx =222222)y (x x 2y x +-+=22222)y (x x y +-; z yy =-222)y (x 2x y +.注:既有关于x又有关于y的高阶偏导数,称为混合偏导数.定理17.7:若f xy(x,y)和f yx(x,y)都在点(x0,y0)连续,则f xy(x0,y0)=f yx(x0,y0). 证:令F(△x,△y)=f(x0+△x,y0+△y)-f(x0+△x,y0)-f(x0,y0+△y)+f(x0,y0),φ(x)=f(x,y0+△y)-f(x,y0),则F(△x,△y)=φ(x0+△x)-φ(x0).∵f存在关于x的偏导数,∴φ可导,应用一元函数的中值定理,有φ(x0+△x)-φ(x0)=φ’(x0+θ1△x)△x=[f x(x0+θ1△x,y0+△y)-f x(x0+θ1△x,y0)]△x, (0<θ1<1).又由f x存在关于y的偏导数,∴对以y为自变量的函数f x(x0+θ1△x,y) 应用一元函数的中值定理,又有φ(x0+△x)-φ(x0)=f xy(x0+θ1△x,y0+θ2△y)△x△y, (0<θ1,θ2<1).∴F(△x,△y)=f xy(x0+θ1△x,y0+θ2△y)△x△y, (0<θ1,θ2<1).若令ψ(y)=f(x0+△x,y)-f(x0,y),则有F(△x,△y)=ψ(y0+△y)-φ(y0).同理可得F(△x,△y)=f yx(x0+θ3△x,y0+θ4△y)△x△y, (0<θ3,θ4<1).当△x,△y不为零时,就有f xy(x0+θ1△x,y0+θ2△y)=f yx(x0+θ3△x,y0+θ4△y), (0<θ1,θ2,θ3,θ4<1).又f xy(x,y)和f yx(x,y)都在点(x0,y0)连续,∴当△x→0,△y→0时,上式两边极限存在且相等,∴f xy(x0,y0)=f yx(x0,y0).注:n元函数m阶混合偏导数在某点都连续时,则与顺序无关.概念2:设z 是通过中间变量x,y 而成为s,t 的函数,即z=f(x,y), 其中x=φ(s,t), y=ψ(x,t). 若函数f,φ,ψ都具有连续的二阶偏导数,则作为复合函数z 对s,t 同样存在二阶连续偏导数,即由一阶偏导数: s z ∂∂=s x x z ∂∂∂∂+s y y z ∂∂∂∂,t z ∂∂=t x x z ∂∂∂∂+ty y z ∂∂∂∂,可得二阶偏导数: 22s z ∂∂=s x x z s ∂∂⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂⋅∂∂s x s x z +s y y z s ∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂⋅∂∂s y s y z =s x x z 22∂∂ ⎝⎛∂∂+s x s y y x z 2∂∂⎪⎭⎫∂∂∂∂∂+22s x x z ∂∂⋅∂∂+s y y z 22∂∂ ⎝⎛∂∂+s y s x x y z 2∂∂⎪⎭⎫∂∂∂∂∂+22s y y z ∂∂⋅∂∂ =222s x x z ⎪⎭⎫ ⎝⎛∂∂∂∂+2s x s y y x z 2∂∂∂∂∂∂∂+222s y y z ⎪⎭⎫ ⎝⎛∂∂∂∂+22s x x z ∂∂⋅∂∂+22s y y z ∂∂⋅∂∂. 同理可得: 22t z ∂∂=222t x x z ⎪⎭⎫ ⎝⎛∂∂∂∂+2t x t y y x z 2∂∂∂∂∂∂∂+222t y y z ⎪⎭⎫ ⎝⎛∂∂∂∂+22t x x z ∂∂⋅∂∂+22t y y z ∂∂⋅∂∂. t s z 2∂∂∂=t x s x x z 22∂∂∂∂∂∂+t y s x y x z 2∂∂ ⎝⎛∂∂∂∂∂+⎪⎭⎫∂∂∂∂s y t x +t y s y y z 22∂∂∂∂∂∂+t s x x z 2∂∂∂⋅∂∂+t s y y z 2∂∂∂⋅∂∂=s t z 2∂∂∂.例3:设z=f(x,y x ), 求22x z ∂∂,yx z 2∂∂∂. 解:记z=f(u,v), u=x, v=yx ,由复合函数求导公式有:x z ∂∂=x u u f ∂∂∂∂+x v v f ∂∂∂∂=u f ∂∂+vf y 1∂∂, ∴22xz ∂∂= ⎝⎛∂∂∂∂u f x +⎪⎭⎫∂∂v f y 1=x u u f 22∂∂∂∂+x v v u f 2∂∂∂∂∂+ ⎝⎛∂∂∂∂∂x u u v f y 12+⎪⎭⎫∂∂∂∂x v v f 22 =22uf ∂∂+v u f y 22∂∂∂+222v f y 1∂∂. y x z 2∂∂∂= ⎝⎛∂∂∂∂u f y +⎪⎭⎫∂∂v f y 1=y u u f 22∂∂∂∂+y v v u f 2∂∂∂∂∂-v f y 12∂∂+ ⎝⎛∂∂∂∂∂y u u v f y 12+⎪⎪⎭⎫∂∂∂∂y v v f 22=-v u f y x 22∂∂∂-v f y 12∂∂-223vf y x ∂∂.二、中值定理和泰勒公式概念3:若区域D 上任意两点的连线都含于D ,则称D 为凸区域,即 若D 为凸区域,则对任意两点P 1(x 1,x 2), P 2(x 2,y 2)∈D 和一切λ(0≤λ≤1), 恒有P(x 1+λ(x 2-x 1),y 1+λ(y 2-y 1))∈D.定理17.8:(中值定理)设二元函数f 在凸开域D ⊂R 2上连续,在D 的所有内点都可微,则对任意两点P(a,b),Q(a+h,b+k)∈D ,存在θ(0<θ<1), 使得f(a+h,b+k)-f(a,b)=f x (a+θh,b+θk)h+f y (a+θh,b+θk)k.证:令φ(t)=f(a+th,b+tk),它是定义在[0,1]上的一元函数;∵φ(t)在[0,1]上连续,在(0,1)上可微;∴根据一元函数中值定理, 存在θ(0<θ<1), 使得φ(1)-φ(0)=φ’(θ). 由复合函数的求导法则知, φ’(θ)=f x (a+θh,b+θk)h+f y (a+θh,b+θk)k. 又由D 为凸区域知,(a+θh,b+θk)∈D, ∴f(a+h,b+k)-f(a,b)=f x (a+θh,b+θk)h+f y (a+θh,b+θk)k.注:对闭凸域D ,任意两点P 1(x 1,x 2), P 2(x 2,y 2)∈D 和一切λ(0<λ<1),都有 P(x 1+λ(x 2-x 1),y 1+λ(y 2-y 1))∈intD ,则对D 上连续,intD 内可微的函数f , 只要P ,Q ∈intD ,也存在θ∈(0,1)使中值定理成立. 如,若D 为圆域{(x,y)|(x-ξ)2+(y-ζ)2≤r 2}, f 在D 上连续,在intD 内可微,则中值定理成立;若D 为矩形区域[a,b]×[c,d],则不能保证对D 上任意两点P ,Q 都有中值定理成立.推论:若函数f 在区域D 上存在偏导数,且f x ≡f y ≡0,则f 在区域D 上为常量函数.证:设P 和P ’是区域D 上任意两点,由于D 为区域,可用一条完全在D 内的折线连接PP ’. 设x 1为折线上第一个折点, 直线段Px 1上每一点P 0(x 0,y 0), 存在邻域U(P 0)⊂D, 由中值定理知, 在U(P 0)内任一点M(x m ,y m )有f(M)-f(P 0)=f x (θ1)(x m -x 0)+f y (θ1)(y m -y 0), ∵f x ≡f y ≡0,∴f(M)-f(P 0)=0, 即f(M)=f(P 0),∴在U(P 0)内f 是常数函数. 由Px 1上每一点都有这样的邻域U(P 0),使得f(x,y)=常数.由有限覆盖定理知,存在有限个邻域U(P 1),…,U(P N )覆盖Px 1, ∴f(P)=f(x 1), 以x 1,…,x n 表示折线上的所有折点,同理有f(P)=f(x 1)=…=f(x n )=f(P ’). 又由P ,P ’在区域D 内的任意性,知在D 内,f(x,y)=常数.例4:对f(x,y)=1xy 2x 12+-应用微分中值定理,证明存在θ(0<θ<1),使得1-2=2(1-3θ)(1-2θ+3θ2)-3/2.解:f 定义在E={(x,y)|x 2-2xy+1>0}上,凸区域D={(x,y)|x 2+y 2≤1}⊂E. 又f x =-()321xy 2x y-x +-; f y =()321xy 2x x+-,且f,f x ,f y 都在D 上连续,取(1,0),(0,1)∈D ,根据微分中值定理,存在θ(0<θ<1), 使得 f(1,0)-f(0,1)=f x (θ,1-θ)-f y (θ,1-θ), 即21-1=-[]321θ)-θ(12θθ)-(1-θ+--[]321θ)-θ(12θθ+-=(1-3θ)(1-2θ+3θ2)-3/2,∴1-2=2(1-3θ)(1-2θ+3θ2)-3/2.定理17.9:(泰勒定理)若函数f 在点P 0(x 0,y 0)的某邻域U(P 0)上有直到n+1阶的连续偏导数,则对U(P 0)内任一点(x 0+h,y 0+k), 存在相应的 θ∈(0,1),使得有二元函数f 在点P 0的n 阶泰勒公式:f(x 0+h,y 0+k)=f(x 0,y 0) + ⎝⎛∂∂x h +⎪⎪⎭⎫∂∂y k f(x 0,y 0)+ ⎝⎛∂∂x h !21+2y k ⎪⎪⎭⎫∂∂f(x 0,y 0)+… + ⎝⎛∂∂x h !n 1+n y k ⎪⎪⎭⎫∂∂f(x 0,y 0)+ ⎝⎛∂∂+x h !1)(n 1+1n y k +⎪⎪⎭⎫∂∂f(x 0+θh,y 0+θk).证:令φ(t)=f(x 0+th,y 0+tk),其定义域为[0,1],且满足一元函数泰勒条件; ∴φ(1)=φ(0)+φ’(0)+!21φ”(0)+…+!n 1φ(n)(0)+!)1(n 1+φ(n+1)(θ), (0<θ<1). 应用复合函数求导法则,可求得φ(t)的各阶导数:φ(m)(t)= ⎝⎛∂∂xh +m y k ⎪⎪⎭⎫∂∂f(x 0+th,y 0+tk), (m=1,2,…,n+1). 当t=0时,则有 φ(m)(0)= ⎝⎛∂∂x h +m y k ⎪⎪⎭⎫∂∂f(x 0,y 0), (m=1,2,…,n) 及φ(n+1)(θ)= ⎝⎛∂∂x h +1n y k +⎪⎪⎭⎫∂∂f(x 0+θh,y 0+θk),将φ(m)(0), φ(n+1)(θ)代入φ(1),得f(x 0+h,y 0+k)=f(x 0,y 0)+ ⎝⎛∂∂x h +⎪⎪⎭⎫∂∂y k f(x 0,y 0)+ ⎝⎛∂∂x h !21+2y k ⎪⎪⎭⎫∂∂f(x 0,y 0)+… + ⎝⎛∂∂x h !n 1+n y k ⎪⎪⎭⎫∂∂f(x 0,y 0)+ ⎝⎛∂∂+x h !1)(n 1+1n y k +⎪⎪⎭⎫∂∂f(x 0+θh,y 0+θk), (0<θ<1).注:1、中值公式为泰勒公式在n=0时的特列情形;2、若只要求余项R n =o (ρn ) (ρ=22k h +),则仅需f 在U(P 0)内存在直到n 阶连续偏导数,便有f(x 0+h,y 0+k)=f(x 0,y 0)+∑= ⎝⎛∂∂n 1p x h !p 1+py k ⎪⎪⎭⎫∂∂f(x 0,y 0)+o (ρn ).例5:求f(x,y)=x y 在点(1,4)的泰勒公式(到二阶),并用它计算(1.08)3.96. 解:∵f(1,4)=1; f x (1,4)=yx y-1|(1,4)=4; f y (1,4)=x y lnx|(1,4)=0;f xx (1,4)=y(y-1)x y-2|(1,4)=12; f yy (1,4)= x y (lnx) 2|(1,4)=0;f xy (1,4)=f yx (1,4)=x y-1+yx y-1lnx|(1,4)=1.∴x y =1+4(x-1)+6(x-1)2+(x-1)(y-4)+ o (ρ2). 当x=1.08, y=3.96时,有 (1.08)3.96≈1+4×0.08+6×0.082-0.08×0.04=1.3552.三、极值问题定义:设函数f 在点P 0(x 0,y 0)的某邻域U(P 0)内有定义,若对于任何点P(x,y)∈U(P 0),有f(P)≤f(P 0)或f(P)≥f(P 0),则称f 在点P 0取得极大(或极小)值,统称为极值. 极大值点、极小值点统称极值点.注:1、极值点只限于定义域的内点;2、若f 在点(x 0,y 0)取得极值,则当固定y=y 0时,一元函数f(x,y 0)必定在x=x 0取相同的极值;同理,一元函数f(x 0,y)在y=y 0也取相同的极值.例6:设f(x,y)=2x 2+y 2, g(x,y)=22y -x -1,h(x,y)=xy ,讨论原点(0,0)是不是它们的极值点.解:∵f(x,y)=2x 2+y 2≥f(0,0)=0,∴原点(0,0)是f 的极小值点; 又对任何(x,y)∈{(x,y)|x 2+y 2≤1},有 g(x,y)=22y -x -1≤g(0,0)=1,∴原点(0,0)是g 的极大值点;但在原点的任意邻域内,对I,III 象限的任意点有h(x,y)>h(0,0)=0; 对II, IV 象限中的任意点有h(x,y)<h(0,0)=0; ∴(0,0)不是h 的极值点.定理17.10:(极值必要条件)若函数在点P 0(x 0,y 0)存在偏导数,且在P 0取得极值,则有f x (x 0,y 0)=0, f y (x 0,y 0)=0. 反之,若函数在点P 0满足上式,则称点P 0为f 的稳定点.注:1、极值点一定是稳定点,但稳定点不一定是极值点. 如例6中的函数h ,原点为其稳定点,但不是其极值点.2、函数在偏导数不存在的点也有可能取得极值,如f(x,y)=22y x +在原点没有偏导数,但f(0,0)=0是f 的极小值.概念4:假定f 具有二阶连续偏导数,并记H f (P 0)=⎪⎪⎭⎫ ⎝⎛)(P f )(P f )(P f )(P f 0y y 0y x 0xy 0xx =0P y y y x xy xx f f f f ⎪⎪⎭⎫ ⎝⎛,称之为P 0的黑赛矩阵.定理17.11:(极值充分条件)设二元函数f 在点P 0(x 0,y 0)的某邻域U(P 0)上具有二阶连续偏导数,且P 0是f 的稳定点,则当H f (P 0)是正定矩阵时,f 在点P 0取得极小值;当H f (P 0)是负定矩阵时,f 在点P 0取得极大值;当H f (P 0)是不定矩阵时,f 在点P 0不取极值.证:由f 在点P 0的二阶泰勒公式,及f x (P 0)= f y (P 0)=0,得f(x,y)-f(x 0,y 0)=21(△x,△y)H f (P 0)(△x,△y)T +o (△x 2+△y 2).当H f (P 0)正定时,对任何(△x,△y)≠(0,0),恒有二次型Q(△x,△y)=(△x,△y)H f (P 0)(△x,△y)T >0,∴存在一个与△x,△y 无关的正数q, 使得Q(△x,△y)≥2q(△x 2+△y 2). 从而对充分小的U(P 0), 只要(x,y)∈U(P 0), 就有f(x,y)-f(x 0,y 0)≥q(△x 2+△y 2)+o (△x 2+△y 2)=(△x 2+△y 2)(q+o (1))≥0, 即f 在点P 0取得极小值;同理, 当H f (P 0)负定时,f 在点P 0取得极大值; 当H f (P 0)不定时,若f 取极值,不妨设取极大值,则沿任何过P 0的直线x=x 0+t △x, y=y 0+t △y, f(x,y)=f(x 0+t △x,y 0+t △y)=φ(t) 在t=0亦取得极大值. 由一元函数取极大值的充分条件知 φ”(0)≤0. 而φ’(t)=f x △x+f y △y, φ”(t)=f xx △x 2+2f xy △x △y+f yy △y 2,又φ”(0)=(△x,△y)H f (P 0)(△x,△y)T , 即H f (P 0)必须为负半定,矛盾! 同理,若f 取极小值,则H f (P 0)必须为正半定,亦矛盾!∴当H f (P 0)是不定矩阵时,f 在点P 0不取极值.注:根据正半定或负半定对称阵所属主子行列式的符号规则,定理17.11又可写成为:若函数f 如定理所设,P 0是f 的稳定点,则有:(1)当f xx (P 0)>0, (f xx f yy -f xy 2)(P 0)>0时,f 在点P 0 取得极小值;(2)当f xx (P 0)<0, (f xx f yy -f xy 2)(P 0)>0时,f 在点P 0取得极大值;(3)当(f xx f yy -f xy 2)(P 0)<0时,f 在点P 0不能取得极值;(4)当(f xx f yy -f xy 2)(P 0)=0时,不能肯定f 在点P 0是否取得极值.例7:设f(x,y)=x2+5y2-6x+10y+6的极值.解:当f x=2x-6=0, f y=10y+10=0时, x=3, y=-1,即点(3,-1)是f的稳定点. ∵f xx=2>0, f yy=10, f xy=0, 即有(f xx f yy-f xy2)(3,-1)=20>0,∴f在点(3,-1)取得极小值f(3,-1)=9+5-18-10+6=-8.又f在R2上处处存在偏导数,∴(3,-1)是f唯一的极值点.例8:讨论f(x,y)=x2+xy是否存在极值.解:当f x=2x+y=0, f y=x=0时, x=0, y=0,即点(0,0)是f的稳定点.∵f xx=2, f yy=0, f xy=1, 即有(f xx f yy-f xy2)(0,0)=-1<0,∴(0,0)不是f的极值点. 又f在R2上处处存可微,∴f不存在极值.例9:设f(x,y)=(y-x2)(y-2x2),试用定理17.11能否判定f在原点是否取得极值?如果不能,请试用其它方法判定?解:∵f x(0,0)=8x3-6xy|(0,0)=0, f y(0,0)=2y-3x2|(0,0)=0, ∴原点是f的稳定点. 又f xx=24x2-6y, f yy=2, f xy=-6x, 即有(f xx f yy-f xy2)(0,0)=0,∴由定理17.11无法判定f在原点是否取得极值.但当x2<y<2x2时,有f(x,y)<f(0,0),而当y>2x2或y<x2时,f(x,y)>f(0,0),∴f不可能在原点取得极值.例10:证明:圆的所有外切三角形中,以正三角形的面积为最小. 证:记圆的半径为1,任一外切三角形切点间弧长分别为α,β,γ,其中γ=2π-(α+β),则外切三角形的面积可以表示为:S=tan 2α+tan 2β+tan 2γ= tan 2α+tan 2β-tan2β+α, 0<α,β<π.当S α=21(sec 22α-sec 22β+α)=0, S β=21(sec 22β-sec 22β+α)=0时,α=β=32π,即S 有稳定点(32π,32π). ∵S αα(32π,32π)=43>0, S ββ(32π,32π)=23,S αβ(32π,32π)=43, 即有(S ααS ββ-S αβ2)(32π,32π)=36>0,∴S 在(32π,32π)取得极小值. 又S 在定义域内处处存在偏导数,∴(32π,32π)是S 唯一的极小值点,∴当α=β=32π, γ=2π-(α+β)=32π,即外切三角形为正三角形时,面积最小.例11:(最小二乘法问题)设通过观测或实验得到一列点(x i ,y i ),i=1,2,…,n.它们大体上在一条直线上,即大体上可用直线方程来反映变量x 与y 之间的对应关系. 现要确定一直线使得与这n 个点的偏差平方和最小(最小二乘方).解:设所求直线方程为y=ax+b ,则这n 个点的偏差平方和可表示为: f(a,b)=∑=+n 1i 2i i )y -b (ax .当f a =2∑=+n 1i i i i )y -b (ax x =0, f b =2∑=+n1i i i )y -b (ax =0时,整理得⎪⎪⎩⎪⎪⎨⎧=+=+∑∑∑∑∑=====n1i i n 1i i n1i i i n 1i i n 1i 2i y bn x a y x x b x a , 解方程组,得f(a,b)的稳定点: a 0=∑∑∑∑∑=====⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-n 1i 2n 1i i 2i n 1i i n 1i i n1i i i x x n y x y x n , b 0=2n1i i n 1i 2i n 1i i n 1i i i n 1i i n 1i 2i x x n x y x y x ⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∑∑∑∑======. 又A=f aa =2∑=n 1i 2ix >0, B=f ab =2∑=n1i i x , C=f bb =2n, D=AC-B 2=4n ∑=n1i 2ix -4(∑=n1i i x )2>0,从而f(a,b)在点(a 0,b 0)取得极小值,根据实际可知该极小值就是最小值.习题1、求下列函数的高阶偏导数.(1)z=x 4+y 4-4x 2y 2, 二阶偏导数;(2)z=e x (cosy+xsiny), 二阶偏导数;(3)z=xln(xy), y x z 23∂∂∂,23y x z ∂∂∂;(4)u=xyze x+y+z , r q p r q p zy x z ∂∂∂∂++; (5)z=f(xy 2,x 2y), 二阶偏导数;(6)u=f(x 2+y 2+z 2), 二阶偏导数; (7)z=f(x+y,xy,yx), z x ,z xx ,z xy .解:(1)z x =4x 3-8xy 2, z y =4y 3-8x 2y, z xx =12x 2-8y 2, z yy =12y 2-8x 2, z xy =z yx =-16xy. (2)z x =e x (cosy+xsiny)+e x siny=e x (cosy+siny+xsiny), z y =e x (xcosy-siny), z xx =e x (cosy+siny+xsiny)+e x siny=e x (cosy+2siny+xsiny), z yy =-e x (xsiny+cosy), z xy =z yx =e x (cosy-siny+xcosy).(3)∵x z ∂∂=ln(xy)+1, 22x z ∂∂=x 1, y x z 2∂∂∂=y 1, ∴y x z 23∂∂∂=0; 23yx z∂∂∂=-2y 1. (4)方法一:∵x u ∂∂=(yz+xyz)e x+y+z, ∴p p xu ∂∂=(pyz+xyz)e x+y+z ;∵y x u p 1p ∂∂+=(pz+pyz+xz+xyz)e x+y+z, ∴q p q p y x u ∂∂+=(qpz+pyz+qxz+xyz)e x+y+z ,∵zy x uq p q p ∂∂+=(qp+qpz+py+pyz+qx+qxz+xy+xyz)e x+y+z , ∴r q p r q p zy x z∂∂∂∂++=(rqp+qpz+rpy+pyz+rqx+qxz+rxy+xyz)e x+y+z . 方法二:u=xyze x+y+z =xe x ·ye y ·ze z . 由归纳法知: (xe x )(p)=(x+p)e x , (ye y )(q)=(y+q)e y , (ze z )(r)=(z+r)e x ,∴r q p r q p zy x z∂∂∂∂++=(xe x )(p)(ye y )(q)(ze z )(r)=(x+p)(y+q)(z+r)e x+y+z . (5)∵z x =y 2f 1+2xyf 2, z y =2xyf 1+x 2f 2,∴z xx =y 4f 11+4xy 3f 12+4x 2y 2f 22+2yf 2, z yy =2xf 1+4x 2y 2f 11+4x 3yf 21+x 4f 22, z xy =z yx =2yf 1+y 2(2xyf 11+x 2f 12)+2xf 2+2xy(x 2f 22+2xyf 21) =2yf 1+2xf 2+2xy(x 2f 22+y 2f 11)+5x 2y 2f 21.(6)设w=x 2+y 2+z 2, 则u=f(w). ∵u x =2xf ’(w), u y =2yf ’(w), u z =2zf ’(w), ∴u xx =2f ’(w)+4x 2f ”(w), u yy =2f ’(w)+4y 2f ”(w), u zz =2f ’(w)+4z 2f ”(w), u xy =u yx =4xyf ”(w); u yz =u zy =4yzf ”(w); u zz =u zx =4xzf ”(w). (7)z x =f 1+yf 2+y1f 3,z xx =f 11+yf 12+y 1f 13+y(f 21+yf 22+y 1f 23)+y 1(f 31+yf 32+y1f 33) =f 11+f 23+f 32+y(f 12+f 21)+y 2f 22+y 1(f 13+f 31)+2y 1f 33 = f 11+2yf 12+y2f 13+y 2f 22+2f 23+2y1f 33. z xy =f 11+xf 12-2y x f 13+f 2+y(f 21+xf 22-2y x f 23)-2y 1f 3+y 1(f 31+xf 32-2y x f 33) =f 11+(x+y)f 12+ ⎝⎛y 1-⎪⎪⎭⎫2y x f 13+xyf 22 -3y x f 33+f 2-2y 1f 3.2、设u=f(x,y), x=rcos θ, y=rsin θ, 证明:22ru ∂∂+r u r 1∂∂+222θu r 1∂∂=22x u ∂∂+22y u∂∂.证:∵r u ∂∂=r x x u ∂∂∂∂+r y y u ∂∂∂∂=cos θxu ∂∂+sin θy u∂∂,θu ∂∂=θx x u ∂∂∂∂+θy y u ∂∂∂∂=rcos θy u ∂∂-rsin θxu ∂∂;∴22r u ∂∂=cos 2θ22x u ∂∂+2sin θcos θy x u 2∂∂∂+sin 2θ22yu ∂∂, 22θu ∂∂=r 2cos 2θyu 22∂∂-rsin θy u ∂∂+r 2sin 2θ22x u ∂∂-rcos θx u ∂∂-2r 2sin θcos θy x u 2∂∂∂; 又r u r 1∂∂=r 1cos θx u ∂∂+r1sin θy u∂∂,222θu r 1∂∂= cos 2θy u 22∂∂-r1sin θy u ∂∂+sin 2θx u ∂∂-r 1cos θx u ∂∂-2sin θcos θy x u 2∂∂∂; ∴22r u ∂∂+r u r 1∂∂+222θu r 1∂∂=22x u ∂∂+22yu∂∂.3、设u=f(r), r2=x 12+x 22+…+x n 2,证明:212x u ∂∂+222x u ∂∂+…+2n 2x u ∂∂=22dru d +dr dur 1-n .证:记∵k x u ∂∂=k x r dr du ∂∂=dr du r x k , ∴2k 2x u ∂∂=dr du rx r 132k⎪⎪⎭⎫ ⎝⎛-+r d u d r x 2222k , k=1,2,…,n ∴∑=∂∂n1k 2k2x u =212x u ∂∂+222x u ∂∂+…+2n 2x u ∂∂=22dr u d +dr du r 1r n ⎪⎭⎫ ⎝⎛-=22dr u d +dr dur 1-n .4、设v=r 1g ⎪⎭⎫ ⎝⎛-c r t , c 为常数,r=222z y x ++. 证明:v xx +v yy +v zz =2c1v tt .证:∵v x =-r x r 12g+r 1⎪⎭⎫⎝⎛-cr x g ’=-3r x g-2cr x g ’, v y =-3r y g-2cr y g ’, v z =-3r z g-2crz g ’; ∴v xx =522r r -3x g+42cr x g ’+422cr r -2x g ’+322r c x g ” =522r r -3x g+422cr r -3x g ’+322r c x g ”, v yy =522r r -3y g+422cr r -3y g ’+322r c y g ”, v zz =522rr -3z g+422cr r -3z g ’+322r c z g ”,∵522r r -3x +522r r -3y +522r r -3z =0, 422cr r -3x +422cr r -3y +422cr r -3z =0, 322r c x +322r c y +322r c z =r c 12, ∴v xx +v yy +v zz =rc 12g ”; 又v t =r 1g ’, v tt =r 1g ”, ∴v xx +v yy +v zz =2c 1v tt .5、证明定理17.8的推论. 证:证明过程见17.8推论.6、通过对F(x,y)=sinxcosy 施用中值定理,证明对某θ∈(0,1),有43=3πcos 3πθcos 6πθ-6πsin 3πθsin 6πθ. 证:F x =cosxcosy, F y =-sinxsiny. 对点(3π,6π)和(0,0)运用中值定理知,存在某θ∈(0,1),有F(3π,6π)-F(0,0)=3πF x (3πθ,6πθ)+6πF y (3πθ,6πθ),即sin 3πcos 6π-sin0cos0=3πcos 3πθcos 6πθ-6πsin 3πθsin 6πθ, 又sin 3πcos 6π-sin0cos0=43,∴43=3πcos 3πθcos 6πθ-6πsin 3πθsin 6πθ.7、求下列函数在指定点处的泰勒公式:(1)f(x,y)=sin(x 2+y 2)在点(0,0) (至二阶);(2)f(x,y)=yx在点(1,1) (至三阶); (3)f(x,y)=ln(1+x+y)在点(0,0);(4)f(x,y)=2x 2-xy-y 2-6x-3y+5在点(1,-2). 解:(1)∵f(0,0)=sin0=0, f x (0,0)=2xcos(x 2+y 2)|(0,0)=0, f y (0,0)=0, f xx (0,0)=[2cos(x 2+y 2)-4x 2sin(x 2+y 2)]|(0,0)=2, f yy (0,0)=2, f xy (0,0)=f yx (0,0)=-4xysin(x 2+y 2)|(0,0)=0, f xxx (θx,θy)=[-12xsin(x 2+y 2)-8x 3cos(x 2+y 2)]|(θx,θy)=-4θxsin(θ2x 2+θ2y 2)-8θ3x 3cos(θ2x 2+θ2y 2), f xxy (θx,θy)=[-4ysin(x 2+y 2)-8x 2ycos(x 2+y 2)]|(θx,θy) =-4θysin(θ2x 2+θ2y 2)-8θ3x 2ycos(θ2x 2+θ2y 2), f yyx (θx,θy)=-4θxsin(θ2x 2+θ2y 2)-8θ3xy 2cos(θ2x 2+θ2y 2), f yyy (θx,θy)=-12θysin(θ2x 2+θ2y 2)-8θ3y 3cos(θ2x 2+θ2y 2), ∴sin(x 2+y 2)=x 2+y 2+R 2(x,y),其中R 2(x,y)=61[x 3f xxx (θx,θy)+3x 2yf xxy (θx,θy)+3xy 2f yyx (θx,θy) +y 3f yyy (θx,θy)] =-32[3θ(x 2+y 2)2sin(θ2x 2+θ2y 2) +2θ3(x 2+y 2)3cos(θ2x 2+θ2y 2)]. (2)∵f(1,1)=1, f x (1,1)=y1|(1,1)=1, f y (1,1)=-2y x|(1,1)=-1, f xx =0, f yy (1,1)=3y 2x |(1,1)=2, f xy (1,1)=f yx (1,1)=-2y1|(1,1)=-1, f xxx =f xxy =0, f yyx (1,1)=3y 2|(1,1)=2, f yyy (1,1)=-4y 6x|(1,1)=-6, f xxxx =f xxxy =f xxxy =f xxyy =0, f yyyx (1+θx,1+θy)=-4θy)(16+, f yyyy (1+θx,1+θy)=5θy)(1θx )24(1++. ∴yx=1+(x-1)-(y-1)-(x-1)(y-1)+(y-1)2+(x-1)(y-1)2-(y-1)3+R 3(x,y),其中 R 3(x,y)=241[4(x-1)(y-1)3f yyyx (1+θx,1+θy)+(y-1)4f yyyy (1+θx,1+θy)] =-431)]-θ(y [11)-1)(y -(x ++51)]-θ(y [11)-θ(x 1++(y-1)4. (3)∵k k x f ∂∂=k 1-k y)x (11)!-(k (-1)++=k k yf ∂∂, ∴k k x f(0,0)∂∂=kk y f(0,0)∂∂=(-1)k-1(k-1)!; ∵p -n p n y x f ∂∂∂=n1-n y)x (11)!-(n (-1)++, ∴p -n p n yx f(0,0)∂∂∂=(-1)n-1(n-1)!;∴ ⎝⎛∂∂x x p!1+py y ⎪⎪⎭⎫∂∂f(0,0)=∑=p 0i p iC p!1(-1)p-1(p-1)!x i y p-i =p (-1)1-p (x+y)p. ⎝⎛∂∂+x x 1)!(n 1+py y ⎪⎪⎭⎫∂∂f(θx,θy)=1n n 1-n 0p p 1n θy)θx (1n!)1(C 1)!(n 1+=+++-+∑x p y n-p =1n n θy)θx 1)(1(n )1(++++- (x+y)n+1. ∴ln(1+x+y)=p y)(x )1(p n1p 1-p +-∑=+(-1)n1n 1n θy)θx 1)(1(n )y x (++++++, (0<θ<1). (4)∵f(1,-2)=5, f x (1,-2)=(4x-y-6)|(1,-2)=0, f y (1,-2)=(-x-2y-3)|(1,-2)=0, f xx =4, f yy =-2, f xy =f yx =-1, ∴f 的三阶偏导数都为0, ∴2x 2-xy-y 2-6x-3y+5=5+2(x-1)2-(x-1)(y+2)-(y+2)2.8、求下列函数的极值点:(1)z=3axy-x 3-y 3 (a>0);(2)z=x 2-xy+y 2-2x+y ;(3)z=e 2x (x+y 2+2y). 解:(1)当z x =3ay-3x 2=0, z y =3ax-3y 2=0时,x=y=0或x=y=a, ∴函数z 有稳定点(0,0)和(a,a).又z xx (a,a)=-6a<0, z yy (a,a)=-6a, z xx (0,0)=0, z yy (0,0)=0, z xy =z yx =3a, 即有 (z xx z yy -z xy 2)(a,a)=27a 2>0; (z xx z yy -z xy 2)(a,a)=-9a 2<0, ∴(a,a)是极大值点, (0,0)不是极值点.(2)当z x =2x-y-2=0, z y =-x+2y +1=0时,x=1, y=0,∴函数z 有稳定点(1,0). 又z xx =2>0, z yy =2, z xy =z yx =-1, 即有z xx z yy -z xy 2=3>0;∴(1,0)是极小值点. (3)当z x =e 2x (2x+2y 2+4y+1)=0, z y =e 2x (2y+2)=0时,x=21, y=-1,∴函数z 有稳定点(21,-1). 又z xx =e 2x (4x+4y 2+8y+4), z xx (21,-1)=2e>0; z yy =2e 2x , z yy (21,-1)=2e; z xy =z yx =e 2x (4y+4), z xy (21,-1)=z yx (21,-1)=0, 即有(z xx z yy -z xy 2)(21,-1)=4e 2>0; ∴(21,-1)是极小值点.9、求下列函数在指定范围内的最大值与最小值:(1)z=x 2-y 2, {(x,y)|x 2+y 2≤4};(2)z=x 2-xy+y 2, {(x,y)||x|+|y|≤1}; (3)z=sinx+siny-sin(x+y), {(x,y)|x ≥0,y ≥0,x+y ≤2π}.解:(1)当z x =2x=0, z y =-2y=0时,x=0, y=0,∴函数z 有稳定点(0,0). 又z xx =2>0, z yy =-2, z xy =z yx =0, 即有z xx z yy -z xy 2=-4<0;∴(0,0)不是极值点. 当x 2+y 2=4时,y 2=4-x 2,∴z=2x 2-4. 由z ’=4x=0,得稳定点x=0, y=±2, z(0,2)=z(0,-2)=-4. 又x 2=4-y 2,∴z=4-2y 2.由z ’=-4y=0,得稳定点y=0, x=±2, z(2,0)=z(-2,0)=4. ∴在(2,0),(-2,0)取最大值4, 在(2,0),(-2,0)取最小值-4. (2)当z x =2x-y=0, z y =2y-x=0时,x=0, y=0,∴函数z 有稳定点(0,0). 又z xx =2>0, z yy =2, z xy =z yx =-1, 即有z xx z yy -z xy 2=3>0;∴z(0,0)=0是极小值. 当x+y=1, 即y=1-x 时, z=x 2-x(1-x)+(1-x)2=3x 2-3x+1, 由z ’=6x-3=0, 得稳定点x=21, y=21, z(21,21)=41;当x-y=1, 即y=x-1时, z=x 2-x(x-1)+(x-1)2=x 2-x+1, 由z ’=2x-1=0, 得 稳定点x=21,y=-21, z(21,-21)=43;当-x-y=1, 即y=-x-1时, z=x 2-x(-x-1)+(-x-1)2=3x 2+3x+1, 由z ’=6x+3=0, 得 稳定点x=-21,y=-21, z(-21,-21)=43; 又z(1,0)=z(0,1)=z(-1,0)=z(0,-1)=1, ∴函数在(1,0),(0,1),(-1,0),(0,-1)取最大值1, 在(0,0)取最小值0. (3)当z x =cosx-cos(x+y)=0, z y =cosy-cos(x+y)=0时,cosx=cosy, ∴函数的稳定点在x=y 或x+y=2π上.当x=y 时cosx-cos2x=-2cos 2x+cosx+1=0, ∴cosx=cosy=-21或1,∴x=y=32π或x=y=0, z(32π,32π)=233, z(0,0)=0. 又在边界{(x,y)|x=0, 0≤y ≤2π}∪{(x,y)|y=0, 0≤x ≤2π}∪{(x,y)|x+y=2π}上, z=0, ∴函数在(32π,32π)取最大值233, 在边界上取最小值0.10、在已知周长为2p 的一切三角形中,求出面积为最大的三角形. 解:设三边分别为x,y,y. 则面积S=z)-y)(p -x)(p -p(p , x+y+z=2p. ∴S=p)-y y)(x -x)(p -p(p , (x,y)∈D={(x,y)|0≤x ≤p, 0≤y ≤p, x+y ≥p }. 根据S 偏导数的特点,可知S 与f=(p-x)(p-y)(x+y-p)有相同的稳定点. 又当f x =(p-y)(2p-2x-y)=0, f y =(p-x)(2p-2y-x)=0时, x=y=32p , z=2p-x-y=32p, 且S 在D 的边界上有S ≡0, ∴S 在(32p ,32p)处取得最大值,即 边长为32p 的等边三角形面积最大为S(32p ,32p)=9p 3.11、在xy 平面上求一点,使它到三直线x=0, y=0及x+2y-16=0的距离平方和最小.解:所求点(x,y)到三直线的距离平方和为:s=x 2+y 2+516)-2y +(x 2.当s x =2x+516)-2y +2(x =0, s y =2y+516)-2y +4(x =0时,x=58, y=516. ∴(58,516)是s 的稳定点. 又s 在R 2内处处存在连续的偏导数, ∴(58,516)是s 唯一的稳定点,也是s 的最小值点.12、已知平面上n 个点的坐标分别为A 1(x 1,x 1), A 2(x 2,y 2), …,A n (x n ,y n ),试求一点,使它与这n 个点距离的平方和最小.解: 设点(x,y)为所求,它与各点距离平方和为:S=∑=+n1i 2i 2i ])y -(y )x -[(x .当S x =2nx-2∑=n 1i i x =0, S y =2ny-2∑=n1i i y =0时,x=∑=n 1i i x n 1, y=∑=n1i i y n 1.又S 在R 2内处处存在连续的偏导数,∴(∑=n 1i i x n 1,∑=n1i i y n 1)是S 唯一的稳定点,也是S 的最小值点.13、证明:函数u=ta 4b)-(x 22eπta 21-(a,b 为常数)满足热传导方程:t u ∂∂=a 222xu∂∂.证:t u∂∂=-ta 4b)-(x 322e πta 41-+ta 4b)-(x 22222e t a 4b)-(x πta 21-. x u ∂∂=-ta 4b)-(x 222e ta 4b)-2(x πt a 21-, 22x u∂∂=-ta 4b)-(x 3322e πta 41+ta 4b)-(x 24222e t a 4b)-(x πt 2a 1-,∴a 222x u∂∂=-ta 4b)-(x 322e πta 41-+ta 4b)-(x 22222e t a 4b)-(x πta 21-=tu∂∂.14、证明:函数u=ln 22b)-(y a)-(x +(a,b 为常数)满足拉普拉斯方程:22x u ∂∂+22yu∂∂=0. 证:∵x u∂∂=2222b)-(y a)-(x b)-(y a)-(x a -x +⋅+=22b)-(y a)-(x a -x +, ∴22x u ∂∂=222222]b)-(y a)-[(x a)-(x 2b)-(y a)-(x +-+=22222]b)-(y a)-[(x a)-(x b)-(y +-; 同理可得22y u∂∂=22222]b)-(y a)-[(x b)-(y a)-(x +-; ∴22x u ∂∂+22yu ∂∂=0.15、证明:若函数u=f(x,y)满足拉普拉斯方程:22x u ∂∂+22yu∂∂=0;则函数v=f(22y x x +,22y x y+)也满足此方程. 证:记s=22y x x +, t=22y x y +, 则x s ∂∂=22222)y x (x y +-=-y t ∂∂,y s∂∂=-222)y x (x y 2+=xt ∂∂.x v ∂∂=x s s f ∂∂∂∂+x t t f ∂∂∂∂,22x v ∂∂=222x s s f⎪⎭⎫⎝⎛∂∂∂∂+2x t x s t s f 2∂∂∂∂∂∂∂+222x t t f ⎪⎭⎫ ⎝⎛∂∂∂∂+22x s s f ∂∂∂∂+22x tt f ∂∂∂∂; 同理22y v ∂∂=222y s s f ⎪⎪⎭⎫⎝⎛∂∂∂∂+2y t y s t s f 2∂∂∂∂∂∂∂+222y t t f ⎪⎪⎭⎫ ⎝⎛∂∂∂∂+22y s s f ∂∂∂∂+22y tt f ∂∂∂∂; ∵22x s ∂∂=-x y t 2∂∂∂,22y s ∂∂=y x t 2∂∂∂, ∴22x s ∂∂+22y s ∂∂=0, 同理22x t ∂∂+22yt∂∂=0. 又2x s ⎪⎭⎫ ⎝⎛∂∂=2y t ⎪⎪⎭⎫ ⎝⎛∂∂, 2x t ⎪⎭⎫ ⎝⎛∂∂=2y s ⎪⎪⎭⎫⎝⎛∂∂, x t x s ∂∂∂∂=-y t y s ∂∂∂∂,22s f ∂∂+22t f ∂∂=0, 代入上述各式子,可得22x v ∂∂+22yv∂∂=0.16、设函数u=φ(x+ψ(y)),证明y x u x u 2∂∂∂∂∂=22x uy u ∂∂∂∂.证:令s=x+ψ(y), 则∵x u ∂∂=ds d φ,y x u 2∂∂∂=dy d ψds φd 22, ∴y x u x u 2∂∂∂∂∂=dy d ψds φd ds d φ2;又y u ∂∂=dy d ψds d φ, 22x u ∂∂=22dsφd , ∴22x u y u ∂∂∂∂=dy d ψds φd ds d φ22=y x u x u 2∂∂∂∂∂.17、设f x ,f y 和f yx 在点(x 0,y 0)在某邻域内存在,f yx 在点(x 0,y 0)连续,证明:f xy 也存在,且f xy (x 0,y 0)=f yx (x 0,y 0). 证:由已知条件及中值定理得:F(△x,△y)=f(x 0+△x,y 0+△y)-f(x 0+△x,y 0)-f(x 0,y 0+△y)+f(x 0,y 0) =f yx (x 0+θ1△x,y 0+θ2△y)△x △y, 0<θ1,θ2<1,即有 f yx (x 0+θ1△x,y 0+θ2△y) =y1x )y ,f(x -)y x,f(x x y)y ,f(x -y)y x,f(x 00000000∆⎥⎦⎤⎢⎣⎡∆∆+-∆∆+∆+∆+. 又f yx 在点(x 0,y 0)连续,故对上式两边取△x →0得 f yx (x 0,y 0+θ2△y)=y)y ,f(x -)y x ,f(x 0000∆∆+,再让△y →0,由f yx 在点(x 0,y 0)连续及f xy 的定义知,f xy (x 0,y 0)=f yx (x 0,y 0).18、证明:若f x ,f y 在点(x 0,y 0)在某邻域内存在且在点(x 0,y 0)可微,则有f xy (x 0,y 0)=f yx (x 0,y 0).证:由已知条件及中值定理得:F(△x,△y)=f(x 0+△x,y 0+△y)-f(x 0+△x,y 0)-f(x 0,y 0+△y)+f(x 0,y 0) =[f x (x 0+θ1△x,y 0+△y)-f x (x 0+θ1△x,y 0)]△x, 0<θ1<1. 由f x 在点(x 0,y 0)可微知F(△x,△y)=f x (x 0+θ1△x,y 0+△y)-f x (x 0,y 0)]△x-f x (x 0+θ1△x,y 0)-f x (x 0,y 0)]△x =[f xx (x 0,y 0)θ1△x+f xy (x 0,y 0)△y+o (ρ)-f xx (x 0,y 0)θ1△x-o (ρ)]△x= f xy (x 0,y 0)△x △y+o (ρ)△x. ∴yx y)x ,f(lim (0,0)y )x,(∆⋅∆∆∆→∆∆=f xy (x 0,y 0). 同理, 由f y 在点(x 0,y 0)可微得yx y)x ,f(lim (0,0)y )x,(∆⋅∆∆∆→∆∆=f yx (x 0,y 0). ∴f xy (x 0,y 0)=f yx (x 0,y 0).19、设u=222z y x z y x111, 求(1)u x +u y +u z ;(2)xu x +yu y +zu z ;(3)u xx +u yy +u zz . 解:u x =22z y 2x z y1110=2xz+y 2-2xy-z 2=(y-z)(-2x+y+z), 同理 u y =(x-z)(-2y+x+z), u z =(x-y)(-2z+x+y),∴(1)u x +u y +u z =0; (2)xu x +yu y +zu z =3(z-y)(x-y)(x-z). 又∵u xx =2(z-y), u yy =2(x-z), u zz =2(y-x),∴(3)u xx +u yy +u zz =0.20、设f(x,y,z)=Ax 2+By 2+Cz 2+Dxy+Eyz+Fzx, 试按h,k,l 的正数幂展开f(x+h,y+k,z+l).解:∵f x =2Ax+Dy+Fz, f y =2By+Dx+Ez, f z =2Cz+Ey+Fx; f xx =2A, f yy =2B, f zz =2C; f xy =f yx =D, f xz =f zx =F, f yz =f zy =E.∴f(x+h,y+k,z+l)=f(x,y,z)+(2Ax+Dy+Fz)h+(2By+Dx+Ez)k+(2By+Dx+Ez)l +Ah 2+Bk 2+Cl 2+Dhk+Ekl+Fhl= f(x,y,z)+(2Ax+Dy+Fz)h+(2By+Dx+Ez)k+(2By+Dx+Ez)l+f(h,k,l).。

4 多元函数的Taylor公式与极值问题-1 工科数学分析基础

4 多元函数的Taylor公式与极值问题-1 工科数学分析基础

p
例 2 求 f ( x , y ) = x y 在点 (1,4) 的泰勒公式 ( 到二
阶为止 ), 并用它计算 1. 08 3. 96 .
解 由于 x0 = 1, y0 = 4, n = 2, 因此有
f ( x , y ) = x y , f (1,4) = 1,
2007年8月 南京航空航天大学 理学院 数学系 14
2007年8月 南京航空航天大学 理学院 数学系 3
f (a + h, b + k ) − f (a , b ) = f x (a + θ h, b + θ k ) h + f y (a + θ h, b + θ k ) k .
(1)
证 令 Φ ( t ) = f (a + t h, b + t k ) , 它是定义在 [0,1] 上
凸区域,则对任意两点 P1 ( x1 , y1 ), P2 ( x2 , y2 ) ∈ D, 和
一切 λ (0 ≤ λ ≤ 1), 恒有
P ( x1 + λ ( x2 − x1 ), y1 + λ ( y2 − y1 ) ) ∈ D .
2007年8月 南京航空航天大学 理学院 数学系 2
• P1 • ∀P ∈ D
2007年8月 南京航空航天大学 理学院 数学系
( p = 0,1,2,3,4),
16
∂⎞ ⎛ ∂ ∴ ⎜ x + y ⎟ f (0,0) = xf x (0,0) + yf y (0,0) = x + y , ∂y ⎠ ⎝ ∂x ∂⎞ ⎛ ∂ ⎜ x + y ⎟ f (0,0) ∂y ⎠ ⎝ ∂x = x 2 f xx (0,0) + 2 xyf xy (0,0) + y 2 f yy (0,0) = − ( x + y )2 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z 3z
x
x2
x3
f x3 ( x, y),
z 2z
y
x
2
x2 y
f x2 y ( x, y),
f x yx ( x, y), f x y2 ( x, y), f y3 ( x, y),
f y2 x ( x, y), f yx y ( x, y), f yx2 ( x, y).
2xy ( x2 y2 )2
,
2z y
x2 y2
x
y
y
x2
y2
(x2
y2 )2
,
2z x
x2 y2
yx
x
x2
y2
(x2
y2 )2
,
2z x 2 x y
y2
y
x2
y2
(x2
y2 )2
.
注意 在上面两个例子中都有
2z
2z
,
xy yx
即先对 x、后对 y 与先对 y、后对 x 的两个二阶偏导 数相等 (称这种既有关于 x, 又有关于 y 的高阶偏导 数为混合偏导数). 但是这个结论并不对任何函数都 成立,例如函数
f ( x0 x, y0 y)
f ( x0, y0 y) f ( x0 x, y0 ) f ( x0, y0 ) ; (1)
类似地有
1
f y x ( x0 ,
y0 )
lim lim
x0y0
x
y
f ( x0 x, y0 y)
f ( x0 x, y0 ) f ( x0, y0 y) f ( x0, y0 ) . (2) 为使 fx y ( x0, y0 ) f y x ( x0, y0 ) 成立,必须使 (1)、(2)
( x0 x) ( x0 ) fx y( x0 1 x, y0 2 y) x y . 由 (4) 则有
F ( x, y) fxy ( x0 1 x, y0 2 y) x y
( 0 1,2 1).
(5)
如果令
则有
2z y2
(2e x 2 y ) y
4e x2y;
3z yx2
x
2z
y
x
(2e x 2 y ) x
2e x 2 y
.
例2 求函数 z arctan y 的所有二阶偏导数. x

因为
z x
y x2 y2
,
z y
x2
x
y2
,
所以二阶偏导
数为
2z x2
x
y x2 y2
导数有如下四种形式:
f x x ( x,
y)
2z x2
x
z x
,
fx y(x,
y)
2z x y
y
z x
,
f y x ( x,
y)
2z yx
x
z y
,
2z z
fy y(x,
y)
y2
y
y
.
类似地可以定义更高阶的偏导数, 例如 z f ( x, y)
的三阶偏导数共有八种情形:
§4 泰勒公式与极值问题
就本节自身而言,引入高阶偏导数是导出 泰劳公式的需要;而泰劳公式除了用于近似 计算外, 又为建立极值判别准则作好了准备.
一、高阶偏导数 二、中值定理和泰勒公式 三、极值问题
返回
一、高阶偏导数
由于 z f ( x, y)的偏导数 fx ( x, y), f y( x, y) 一般仍 然是 x, y 的函数, 如果它们关于 x 与 y 的偏导数也 存在, 说明 f 具有二阶偏导数.二元函数的二阶偏
例1
求函数
z
e
x
2
y
的所有二阶偏导数和
3z y x2
.
解 由于
z ex2 y , z 2e x2 y ,
x
y
因此有
2z x2
(e x 2 y ) x
e x 2 y;
2 z (e x 2 y ) 2e x 2 y; xy y
2z (2e x 2 y ) 2e x 2 y; yx x
x lim x0 x
1.
由此看到, 这两个混合偏导数与求导顺序有关. 那么
在什么条件下混合偏导数与求导顺序无关呢? 为此 先按定义把 fx y ( x0, y0 ) 与 f y x ( x0, y0 ) 表示成极限形 式. 由于
f (x x, y) f (x, y)
fx
(
x,
y)
lim
x0
x
,
因此有
f x y ( x0 ,
y0 )
lim
y0
f x ( x0 , y0
y) y
f x ( x0 , y0 )
1 lim y0 y
lim
x0
f
( x0
x,
y0
y) x
f ( x0,
y0
y)
lim x0
f ( x0 x, y0 ) f ( x0, y0 ) x
lim lim 1 y 0 x 0 x y
,
0,
x2 y2 0, x2 y2 0.
进一步求 f 在点 (0,0) 关于 x 和 y 的两个不同顺序
的混合偏导数:
fx y (0,0)
lim
y0
fx (0, y) y
fx (0,0)
y lim y0 y
1,
f yx (0,0)
lim
x 0
f y( x,0) x
f y (0,0)
( x) f ( x, y0 y) f ( x, y0 ).
于是有
F ( x, y) ( x0 x) ( x0) .
(4)
对 应用微分中值定理,1 (0, 1), 使得
( x0 x) ( x0 ) ( x0 1 x) x [ fx ( x0 1 x, y0 y) fx ( x0 1 x, y0 ) ] x. 又 fx ( x0 1 x, y) 作为 y 的可导函数, 再使用微分 中值定理,2 (0, 1), 使上式化为
这两个累次极限相等. 下述定理给出了使 (1) 与 (2) 相等的一个充分条件.
定理 17.7 若 fx y ( x, y) 与 f y x ( x, y) 都在点 ( x0, y0 ) 连续,则
f x y ( x0 , y0 ) f y x ( x0 , y0 ) .
(3)
证令
F ( x, y) f ( x0 x, y0 y) f ( x0 x, y0 ) f ( x0, y0 y) f ( x0, y0 ),
x2 y2
f (x, y)
xy
x2
y2
,
x2 y2 0,
0,
x2 y2 0.
它的一阶偏导数为
f
x
(
x,
y)
y( x4 4x2 y2 ( x2 y2 )2
y4)
,
0,
x2 y2 0, x2 y2 0;
x(x4 4x2 y2 y4)
f
y
(
相关文档
最新文档