环形加热炉设计与仿真论文

合集下载

平均直径18m的管坯环形加热炉设计

平均直径18m的管坯环形加热炉设计
2 S M 、1 C l V P1 0 7 i n 2 r Mo G、 1
()炉顶 。炉 顶砌 筑从 炉 内向炉外 依 次为 :低 2
水 泥浇 注 料 ( 度 2 0 mm) 厚 3 ,轻 质浇 注 料 ( 度 7 厚 0 a ,磷 酸盐珍 珠岩 砖 ( rm) 厚度 6 m) 0r 。 a
De a l d i h r i l st e d sg ft e f r a e i v l i g t u n c o y t e c mb s i n s s e , t e me t ie n t e a t e i h e i n o u n c , n o v n hef r a e b d , h o u to y t m c h h — c a i a q i me t a d t e a t ma i n r l t d t h l c rc la d i sr me t ls s e .T e o e a i n o h h n c le u p n , n h u o to e a e o t e e e ti a n n t u n a y t ms h p r t ft e o
4 7
烧 嘴 的加热 一段 、加热二 段 和均 热段 几部 分组 成 。 平 均 直径 1 的管 坯 环形 加 热 炉 的供 热 能 力 m 8 和各段 热 量分 配情 况 见 表 1 ,加 热炉 的平焰 烧 嘴 的 设 置见 表 2 。
1 )天然气平焰烧嘴分配 该环 形加 热炉 的供 热 由不设烧 嘴 的预 热段 ,设
10 ) .5
最大烟气量
空气 预热 温度
2 4 /( 气 过 量 系 数 54 0m3 空 h
o 1 5 t . ) = 0
4 ~50 50 0

大型节能环形加热炉的研制

大型节能环形加热炉的研制
Ab t a t T e a e e c i e d a c d tc n lg d wo kp o e s d p e e i no  ̄3 m i iee eg a i g a n lr e n u ・ s r c : h p rd s r sa v n e h o o y a r r c s o td i d s f b 6 b g sz n r y s v n n u a mi g f r p b e n a n g h
收 稿 日期 :2 1—20 ;修 回 日期 :2 1—31 0 01—3 0 1 —5 0
月点火 以来,一直正常 运行,满足 了管 坯穿孔前 的加 热 需要,主要技术参数如下:
环形炉 中径/ mm 炉膛宽度/ m m 3 0 6 0 0 5 8 0 2
炉膛净空高度/ m m
管径外径/ mm 管坯 长度/ mm
De e o m e t t d f g S z e g a i gAn u a a i g F r a e v lp n u y o ieEn r y S v n n l rHe t u n c S Bi n WANG n , ZHANG —a g , YNG if GUO n — o g , ZHANG i u n Ya Yu fn Z —a , Yo g h n S— a y
n c .Ke n f cu i g p c s ,o t ae y ma u a t r r e s p i m d f a in a d r s l o s f r o e a i n a lo i t d c d n o mu mo i c t n e u t fu e at p r t r a s n r u e .De eo i g d r ci n a d i o e o e o v lp n i t n e o p b e s a c d ma u a tr f n u a e t gf ma e ae s mma i e . o r l msi r e rh a n f cu e o n lr a i ne n a h n u c r u rz d Ke r s a n l rh a i g f m a e c s a e p r l ld u l r S mp i d o t l y t m ; f u -e t n U— p t rc o e a t i n y wo d : n u a e t n u c ; a c d a al o b e C Sa l u e c nr se e o t o s o rs c i t e wa e o ld p ri o o y t

《2024年基于PLC的环形炉温度控制系统设计与应用》范文

《2024年基于PLC的环形炉温度控制系统设计与应用》范文

《基于PLC的环形炉温度控制系统设计与应用》篇一一、引言在工业生产过程中,温度控制是一个关键环节,特别是在环形炉的加热工艺中。

为确保产品质量、生产效率和能源利用效率,开发一种基于PLC(可编程逻辑控制器)的环形炉温度控制系统显得尤为重要。

本文将详细介绍基于PLC的环形炉温度控制系统的设计与应用,并分析其在实际生产中的效果。

二、系统设计1. 硬件设计本系统主要由PLC控制器、温度传感器、执行器(如加热器、冷却器等)以及人机界面(HMI)等部分组成。

其中,PLC控制器负责接收温度传感器的信号,并根据设定的控制算法输出控制信号给执行器,实现对环形炉温度的控制。

(1)PLC控制器:选用高性能的PLC控制器,具备高速运算、高精度控制等特点,可满足环形炉温度控制的复杂要求。

(2)温度传感器:选用具有高精度、快速响应特性的温度传感器,以实现对环形炉温度的实时监测。

(3)执行器:包括加热器和冷却器等,根据PLC控制器的指令进行工作,实现对环形炉温度的调节。

(4)人机界面:提供友好的操作界面,方便操作人员对系统进行监控和操作。

2. 软件设计软件设计主要包括PLC控制程序的编写和HMI界面的设计。

(1)PLC控制程序:根据环形炉的温度控制要求,编写相应的控制程序。

通常采用PID(比例-积分-微分)控制算法,实现对环形炉温度的精确控制。

同时,程序还应具备自诊断、报警等功能,以便及时发现并处理系统故障。

(2)HMI界面:设计友好的操作界面,包括温度显示、控制参数设置、报警信息提示等功能。

操作人员可通过HMI界面实时监控环形炉的温度,并根据需要设置控制参数。

三、系统应用本系统已广泛应用于各类环形炉的温度控制,如冶金、化工、建材等行业的生产线中。

在实际应用中,系统表现出较高的稳定性和可靠性,有效提高了环形炉的温度控制精度和能源利用效率。

同时,系统还具备自诊断和报警功能,方便操作人员及时发现并处理系统故障,保障了生产的顺利进行。

加热炉毕业设计论文(借鉴分享)

加热炉毕业设计论文(借鉴分享)

加热炉毕业设计论文(借鉴分享)目录1.文献综述 (1)1.1加热炉的概念及分类 (1)1.1.1加热炉的概念 (1)1.1.2加热炉的分类 (1)1.2加热炉的一般组成部分 (2)1.2.1炉膛(工作室) (2)1.2.2烟道、烟闸与烟囱 (4)1.2.3炉子基础与钢结构 (5)1.3炉子热平衡及燃料消耗 (5)1.3.1基本概念 (5)1.3.2炉子燃料消耗 (6)1.3.3燃料变化后燃料消耗量的变化 (6)1.4炉子生产率及影响因素 (6)1.4.1概述 (6)1.4.2热工因素对炉子生产率的影响 (7)1.4.3工艺因素对炉子生产率的影响 (8)1.5提高炉子热效率的途径 (9)1.5.1减少炉膛废气带走的热量 (9)1.5.2烟气余热的回收 (9)1.6加热炉的现状及发展趋势 (10)1.6.1概述 (10)1.6.2工业炉的提高和改进措施。

(10)2.方案论证 (14)2.1设计方案 (14)2.2方案论证 (15)2.2.1炉型的选择 (15)2.2.2装出料方式 (15)2.2.3供热方式 (15)2.2.4烧嘴的布置与选型 (15)2.2.5换热器结构 (15)3.热工计算 (16)3.1原始技术数据 (16)3.2热工计算 (16)3.2.1燃料燃烧计算 (16)3.2.2炉膛热交换计算 (19)3.2.3金属加热时间计算 (22)3.2.4炉子主要尺寸的计算 (28)3.2.5炉膛热平衡与燃料消耗计算 (31)3.2.6煤气烧嘴的选用 (36)3.2.7空气换热器设计计算 (37)3.2.8空气管路阻力损失及鼓风机的选择 (44)3.2.9烟道阻力损失及烟囱计算 (50)结论 (55)致谢 (56)参考文献 (57)英文原文 .............................................. 错误!未定义书签。

英文翻译 .............................................. 错误!未定义书签。

环形加热炉的设计优化

环形加热炉的设计优化
根据坯 料 规 格, 炉 子 的 供 热 制 度 分 为 预 热
Vol. 30 Nபைடு நூலகம். 2
冶金能源
Mar. 2011
ENERGY FOR METALLURGICAL INDUSTRY
37
段、加热段和均热段。一般各段温度控制为预热 段 800 ~ 950℃ ,加 热 段 1100 ~ 1260℃ ,均 热 段 1280℃ ,排烟温度为 800 ~ 850℃ 。 1. 3 机械设备
( 2) 烧嘴的布置 一般环形加热炉的烧嘴均安装在炉子的内外 墙和炉顶上,且都垂直于炉墙表面布置,其目的 是保证炉膛各段温度均匀。顶燃烧嘴对炉顶整体 性产生一定的影响。尤其当燃气压力波动时,在 烧嘴附近产生局部高温,严重影响炉顶寿命。 通过多年从事环形加热炉调试的实践,提出 燃烧器布置及供热负荷分配的原则。即烧嘴的单 个供热能力不要过大,应采用小烧嘴多点布置, 这样可使炉内各段的温度场均匀,钢坯断面温差 小,有利于提高钢坯的加热质量; 切忌烧嘴能力 过大、安装集中,造成预热段过长、温度较低而 起不到很好的预热作用; 而且钢坯到了加热带集 中加热,不但容易造成钢坯内外温度不均匀,还 容易使钢坯表面产生过热或过烧,产生较多的烧 损。在设置烧嘴的数量上,既要考虑到炉内温度 场均匀性,又要考虑清理和检修方便。对于炉膛 宽度小于 4m 的炉子,顶燃烧嘴的作用就比较小
2016全新精品资料全新公文范文全程指导写作独家原创15环形加热炉的设计优化36金能源energyformetallurgicalindustryvol30no2mar2011环形加热炉的设计优化辽宁科技大学2016全新精品资料全新公文范文全程指导写作独家原创15多年从事环形炉的设计监造施工调试对原有环形加热炉存在的设计缺陷及使用中的不足之处有了深入了解并对其进行了探讨和研究

加热炉温度控制系统设计与仿真研究

加热炉温度控制系统设计与仿真研究

内蒙古科技大学本科生毕业设计说明书(毕业论文)题目:加热炉温度控制系统设计与仿真研究学生姓名:潘*学号:************专业:测控技术与仪器班级:测控04-2班指导教师:闫**加热炉温度控制系统设计与仿真研究摘要在钢铁企业中,为了将钢坯加热到轧制所规定的工艺要求,必然地要求对加热炉内的温度进行有效的控制,使之保持在某一特定的范围内。

而温度的维持又要求燃料在炉内稳定地燃烧。

加热炉燃烧过程是受随机因素干扰的,具有大惯性、纯滞后的非线性过程。

本设计针对加热炉燃烧控制系统,主要介绍的控制方案有单回路控制系统、串级比值控制系统、单交叉限幅控制系统、双交叉限幅控制系统,并对每一种控制方案进行了理论分析。

运用MATLAB软件对温度控制系统进行了较为全面的仿真和性能分析。

通过分析比较可以得出结论,双交叉限幅对加热炉温度的控制优于其它的控制方案。

双交叉限幅的炉温控制系统使煤气流量和空气流量相互限制,既防止了燃烧中冒黑烟,也防止了空气过剩,达到控制加热炉温度,提高煤气燃烧率,避免环境污染等目的。

关键词:加热炉;单交叉限幅控制;双交叉限幅控制;MATLAB仿真Temperature Control of Heating Furnace System Design andSimulink StudyAbstractIn the enterprises where producing iron and steel, in order to heat up billet to the technological requirements of rolling, the temperature inside the furnace must be controlled effectively so that it remains in a specific range. Maintaining the temperature needs the stable burning of fuel inside the furnace. Furnace combustion process is a non-linear process which is subject to the random interference, great inertia and the pure time delay.The design for the furnace combustion control system is mainly on the control of a single-loop control programme, the ratio of cascade control system, control system limiting unilateral, bilateral limiting control system, and analyses each of the control programme on theory. Using MATLAB software makes a more comprehensive simulation and performance analysis on the temperature control system. Through analysis and comparison we can conclude that bilateral limiting control system is superior to others in the furnace temperature control. The temperature control system of bilateral limiting control system makes gas flow and air flow restrict on each other, which not only prevent the burning of black smoke, but also prevent the excess air, to reach the purposes of controlling the furnace temperature, enhancing the rate of combustion gas and avoiding pollution and others.Key words: furnace; single-limiting control; bilateral-limiting control; MA TLAB Simulation目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 概述 (1)1.2 国内现状 (2)1.3 本设计的研究内容 (2)第二章加热炉工艺简介 (3)2.1 加热炉的组成 (3)2.2 加热炉的温度加热方式 (3)2.3 加热炉工艺流程 (3)2.4 加热炉温度控制要求 (5)2.4.1 燃烧系统 (6)2.4.2 炉膛负压 (7)2.5 空燃比 (8)第三章加热炉的温度控制系统 (10)3.1 单闭环控制系统 (11)3.2 炉膛负压控制系统 (12)3.3 串级比值燃烧控制系统 (13)3.4 单交叉限幅燃烧控制系统 (15)3.4.1 单交叉限幅燃烧控制系统工作原理 (15)3.4.2 单交叉限幅燃烧控制系统特点 (17)3.5 双交叉限幅燃烧控制系统 (17)3.5.1 双交叉限幅燃烧控制原理图 (17)3.5.2 双交叉限幅燃烧控制系统的工作原理 (18)3.5.3 双交叉限幅燃烧控制特点 (20)第四章加热炉温度控制系统仿真 (23)4.1 对象模型的建立 (23)4.2 系统各装置数学模型的建立 (24)4.3 仿真软件简介 (26)4.4 加热炉炉温控制系统仿真结果分析 (27)4.4.1 炉温单回路控制仿真 (27)4.4.2 燃料空气串级比值控制仿真 (31)4.4.3 单交叉限幅控制仿真 (34)4.4.4 双交叉限幅控制仿真 (36)4.5 总结 (38)第五章系统的检测变送装置及正反作用 (39)5.1 检测变送 (39)5.1.1 差压式流量计 (39)5.1.2 热电偶 (39)5.2 系统仪表正反作用的确定 (40)参考文献 (41)致谢 (42)第一章绪论1.1 概述加热炉是热轧生产过程的重要热工设备,其能耗占到钢铁工业总能耗的25%。

年产200万吨圆筒管式加热炉设计

年产200万吨圆筒管式加热炉设计

摘要管式加热炉是一种火力加热设备,它利用燃料在炉膛内燃烧时产生的高温火焰与烟气作为热源,加热在炉管中高速流动的介质,使其达到工艺规定的温度,以供给介质在进行分馏、裂解或反应等加工过程中所需要的热量,保证生产正常进行。

本设计为年产200万吨原油圆筒管式加热炉,在本设计中主要完成对辐射段、对流段以及烟道的工艺尺寸的计算、热量的衡算、钢结构的计算及校核和加热炉各零部件的选用。

其中辐射室工艺尺寸包括辐射室炉管的直径、炉管的壁厚、炉管的长度、炉管的根数、辐射室的外形尺寸等;对流室的工艺尺寸包括对流炉管的形式、炉管的直径、炉管的壁厚、炉管的排数及每排的根数、热量衡算的部分包括计算燃料量、燃烧器的规格和根数。

本设计的要点是加热炉高的热效率,提高燃油的利用率。

常采用的措施有降低炉子的排烟温度、减小过热空气系数、减少化学部完全燃烧损失、减少机械不完全燃烧损失、减少炉壁散热等。

也可以设置烟气余热回收系统来提高加热炉的热效率。

关键字:加热炉;钢结构;炉管;辐射;对流;AbstractTubular-furnace heating equipment is a kind of firepower, which the use of fuel combustion in the furnace when the flame and flue gas temperature as a heat source, heating in the furnace tube in the high-speed flow of medium to reach the process temperature requirements, in order to supply medium during fractionation, decomposition or reaction process, such as the heat required to ensure normal production.The design for the annual production capacity of two million tons of crude oil cylinder tube furnace, in the completion of the design of the main paragraph of radiation, convection, as well as the size of the stack process, the heat balance, steel structure and the calculation and checking Selection of the various furnace components. Room size radiation technology, including radiation chamber furnace tube diameter, tube wall thickness, tube length, the root of the number of tube radiation, such as room dimensions; convection process room size, including the form of convection furnace tubes, furnace tube diameter, wall thickness of the tube, the tube row number and the root of the number of each row, the heat balance calculation of the part, including fuel, the specifications of the burner and root number.The gist of the present furnace design with high thermal efficiency and fuel utilization. Measures often used to reduce the furnace flue gas temperature, reducing the over-heated air coefficient, the Department of incomplete combustion to reduce the loss of chemicals to reduce the mechanical loss of incomplete combustion, reduce heat, such as furnace wall. Flue gas can also be set up waste heat recovery system to increase the thermal efficiency of furnace.Keywords: Furnace;Steel;Furnace tube;Radiation;Convection目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题背景 (1)1.2 本课题发展方向 (1)第2章设计要求和设计参数 (3)2.1 设计要求 (3)2.2 设计参数 (3)2.2.1 燃料油 (3)2.2.2 原油工艺条件 (3)2.2.3 过热蒸汽条件 (3)2.2.4 原油产品分率 (3)第3章工艺计算 (4)3.1 加热炉热负荷计算 (4)3.1.1 管式加热炉工艺计算所需的基础数据 (4)3.1.2 被加热介质的比焓 (4)3.1.3 被加热介质的热负荷 (5)3.2 燃烧过程计算 (6)3.2.1 燃料油燃烧物性 (6)3.2.2 加热炉设计的热效率计算 (6)3.3 辐射段计算 (9)3.3.1 辐射段基础数据 (9)3.3.2 辐射段炉体尺寸确定 (10)3.3.3 辐射段热平衡计算 (12)3.4 对流段计算 (14)3.4.1 核算对流段热负荷 (14)3.4.2 对流段工艺尺寸计算 (21)3.5 加热炉压力降 (25)3.5.1 炉管压力降 (25)3.5.2 加热介质进口压力降 (26)3.6 辐射炉管壁厚 (27)3.6.1 设计压力 (27)3.6.2 设计温度 (28)3.6.3 钢管材料 (28)3.6.4 钢管的计算壁厚 (29)3.7 烟囱设计 (29)3.7.1 烟囱直径 (29)3.7.2 烟囱高度计算 (29)第4章加热炉的检测、检验和试验 (35)4.1 炉管水压试验 (35)4.2炉管焊接接头的检测和检验 (35)第5章加热炉钢结构 (36)5.1 辐射室钢结构 (36)5.2 对流室钢结构 (36)5.3 平台梯子 (36)第6章余热回收系统 (38)第7章加热炉配件的设计选用 (39)7.1 辐射管的支撑 (39)7.2 看火门 (40)7.3 人孔门 (40)7.4 防爆门 (41)7.5 燃烧器的选择 (42)7.6 清扫门和吹灰器 (43)结论 (44)参考文献 (45)致谢 (46)第1章绪论1.1 课题背景近年来,随着石油化学工业的迅速发展,管式加热炉技术越来越引起人们的重视。

180t/h环形加热炉的特点及应用

180t/h环形加热炉的特点及应用

形炉 内一共有 3 3 2个 料槽 。另外 ,此环 形加 热炉
采用基 于 P I D算法 的双 交叉 限 幅控制 系统 ,空燃
比控制 精确 ,空气 和燃 料 的跟 随作用 迅速 ,具有
良 好的系统动态性能 ,降低 了燃料消耗量 ,达到 了节 能 的 目的 。
2 主要 结构特 点
好 、生产节奏快 、产量高、资源消耗低、环境污 染小的理念设计 、制造的。为公司其他轧管厂后 续环形炉 的建造和使用提供 了宝贵 的经验。
摘 要 重点介绍了公司 1 8 0 t / h环形加热炉结 构特点和技术特点 ,以及新 技术 和新方法 的应 环形炉 结构 技术 节能
用。
关键词
Ap p l i c a t i o n a n d c h a r a c t e r i s t i c s o f 1 8 0 t / h a n n u l a r f u r n a c e




V0 1 . 3 2 No . 2 Ma r . 2 01 3
E NE RGY F OR ME T A LUJ R GI C AL I ND US T R Y
1 8 0 t / h环 形 加 热 炉 的特 点及 应 用
刘国诗 白 涛
( 天津 钢管集 团股 份有 限公 司)
流向与炉底的运动方向相反。物料依次经过预热
段、加热段 、均热段达到轧制温度和要求 ,由出
料夹钳夹出。为了节能降耗 , 在炉尾设置 了空气 预热器 、余热锅炉等设备进行热量回收利用。管
坯在炉内以辐射状单排或交错布料 ,每根管坯对 应一个料槽 ,有效地防止了粘钢的情况发生 ,环
收稿 日期 : 2 0 1 2— 0 9—1 0 刘 国诗( 1 9 8 6一 ) , 助理工程师 ; 3 0 0 3 0 1 天津市 东丽区。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要进入新世纪后随着工业的高速发展,钢铁企业的生产能力得到了不断地提升,环形加热炉技术也在不断的成熟,而传统的推钢式进出料机已经不适合在环形加热炉中使用,为了适应环形加热炉的进出料特点,在此专门为加热炉量身定做了环形加热炉装取料机。

此机型包括了整体机架,小车,钳杆这三部分。

运用夹紧气缸和升降气缸来实现钳杆对钢料的夹取和升降运动,同时钳杆装载在小车上,小车可以在机架的导轨上进退运动。

小车是用电动机驱动的,当电动机运行时,带动安装在电动机上的齿轮转动,我们在右横梁上装配了与小车齿轮可以啮合的齿条来实现小车在机架导轨上的运动。

在实际情况下充分根据环形加热炉的特点特地使用两台一样的装取料机分别安装在装料口和出料口。

两机同时进行装取料,极大地提高了加热钢料的效率,也更充分地发挥了环形加热炉的高效率的特性,提高了整个厂区的工作效率和经济效益,与当前我国提出的高产、优质、低耗的理念相吻合。

关键词:环形加热炉;装取料;有限元分析;高效ABSTRACTIn order to adapt to the rapid development in the new century, industrial steel enterprise production capacity has increased a lot then before, the annular heating furnace technology has been more mature, the traditional pushed steel type translation machine dose not suitable for using in the annular heating furnace any more. In order to adapt to the characteristics of the annular heating furnace a new type of feeding machine has been tailored specifically for the annular heating furnace is installed. The model of this machine includes the whole frame, car and clamp stem. Using clamping cylinder and the cylinder to lift the bar clamp on steel clip and lifting movement, and installed with the car pliers stem, can be translated on the rails in the frame. The car was droved by a electric motor, the electric motor was droved by the gears which installed in the motor. According to the characteristics of annular heating furnace, two feeding machines were installed respectively in the loading and discharging part. These two machines simultaneously outfit feeding, greatly improving the efficiency of heating steel, also improve the efficiency of the whole factory work efficiency and economic benefit and coincide with the current idea of high-yield, high-quality and low consumption.Keywords: annular heating furnace; Pack feeding; Finite element analysis; high Efficient目录摘要............................................................................................................. 错误!未定义书签。

ABSTRACT .................................................................................................. 错误!未定义书签。

1 绪论 (1)1.1课题来源及意义 (1)1.2环形加热炉的简单介绍 (2)1.2.1 炉形结构: (2)1.2.2 装取料口距离计算: (3)1.3装取料机的简单介绍 (4)1.4国内外的发展情况 (5)2 装取料机的设计说明及工作原理 (8)2.1装取料机的设计说明及工作原理 (9)3 装取料机的机械结构及设计计算........................................................... 错误!未定义书签。

3.1整体的设计......................................................................................... 错误!未定义书签。

3.2钳杆的结构设计及计算 (16)3.2.1 钳杆的整体机构设计: (15)3.2.2 钳杆的长度: (15)3.2.3 钳杆的直径: (15)3.2.4 两气缸型号的确定: (15)3.2.5 钳杆校核 (16)3.2.6 齿轮校核: (18)3.3小车的结构设计及计算 (22)3.3.1 小车的整体设计: (22)3.3.2 车体的设计计算 (22)3.3.3 前轮的设计计算: (24)3.3.4 轮轴的设计及校核: (24)3.3.5 后轮的设计计算: (26)3.3.6 后下轮的设计计算: (26)3.4整体机架结构的设计及计算 (27)3.4.1 横梁的设计计算: (27)3.4.2 立柱的设计: (29)3.4.3 连接梁的设计: (30)4 合理性分析 (32)4.1钳杆的有限元分析............................................................................. 错误!未定义书签。

4.2横梁工字钢的有限元分析 (35)结论与展望 (36)致谢 (37)参考文献 (38)1 绪论1.1课题来源及意义随着科学技术和经济的快速发展以及全球一体化进程的不断加快,人们对钢铁制品的质量和需求量又上升到了一个更高的台阶。

在各行各业中,人们没有间断过对钢管的使用,不管是建筑业中用于搭建外架的钢管,还是各种汽车的框架结构,或者是在机械厂中用于支撑的支撑架和体育器材里的安装部件,都出现了钢管的身影。

然而,要使钢管成型就必须先对钢管坯进行加热,然后才能通过成型机械使钢管成型。

由于钢管坯的加热不同于其它钢坯的加热,对加热的精度要求很高,要求钢管坯的各部分受热均匀,这样才可以防止在打孔和拉直过程中出现断裂、变形、钢管粗细分布不均匀等情况,所以不能使用传统的推钢式加热炉对其进行加热,因为传统的推钢式加热炉的加热不是很均匀,如果是两头喷火式的话那就是两头受热多,如果中间喷火式的话那就是中间受热多,所以只能使用环形加热炉来对其坯料来进行加热,因为环形加热炉可以对钢管坯的两头和中间都进行均匀的加热,但是又因为环形加热炉是一个圆的封闭结构,不能用推钢机将坯料从另一头推出去,所以传统的推钢式进出料机就不适合在环形加热炉中使用,为了适应环形加热炉的进出料特点,这里就设计了专门为环形加热炉准备的进出料机——环形加热炉装取料机[11]。

(如图1.1示:)课题来源于企业需求,装取料设备是加热炉的一个重要组成部分。

目前大量的从事各种工业炉窑的节能环保、专用设备、计算机控制等技术的研究的企业都对装取料设备进行设计,希望设计出高效、稳定、安全的装取料设备,在这里通过该设计可以培养我们独立进行科学研究和综合分析思考的能力。

图1.1装取料设备1.2环形加热炉的简单介绍进入新世纪,随着科学技术的持续发展,企业也得到了快速发展,钢管的生产能力不断提升。

所以以致加热炉的不断更新换代,取而代之的是新型的环形加热炉(如图1.2),环形加热炉不仅能使加热钢料均匀受热而且节省能源,实现可持续发展[2]。

图1.2环形加热炉图1.3示意图1.2.1 炉形结构根据工艺要求,加热炉自装料端到出料端依次为预热段、一加热段、二加热段、三加热段、四加热段、均热段,加热炉炉顶采用平直结构,在装出料位置设置三道水冷隔墙。

其中五个区段有供热,各段的供热可以单独调节,实现自动控制,烧嘴安装在内外环侧墙和炉顶上,加热炉采用平焰烧嘴和侧向可调焰烧嘴[1]。

采用自然排烟的方式。

考虑到经济,节能又能最大程度的提高炉子的有效利用率,各段角度分配见图1.3。

1.2.2 装取料口距离计算由于环形加热炉的大小视加热钢坯料件的大小而定,所以我们计算装取料口的距离就得根据现场的情况来定。

在这里我取最常见的一种加热炉的规格,也是应用最广的一种型号的加热炉。

待加热钢坯规格:直径Ф180mm~Ф350mm,长度1.7m~5.4m。

环形加热炉基本尺寸:炉中径36000mm,炉腔宽度6450mm,预热段炉膛高度1250mm,第一、二、三加热段炉膛高度2000mm,第四加热段、均热段炉膛高度1600mm,装取料夹角14.4°。

°图1.4示意图由上述我们可以画出示意图1.4。

根据图4可计算:装取料口距离L=2*18000sin7.2°=4512.0mm由计算结果可以得出,装料口和取料口的距离偏大,要是单独设计一台装取料机来同时完成装料和取料的话,这样设计的整体机架就很大,而且占地大又费料,并且设计的小车要进行偏转,进退等一系列动作,小车结构也相对比较复杂。

最重要的是极大地影响了工作效率,在取料的同时不能进行其他装料等工作,与先进高效的环形加热炉工作效率不相匹配。

在这里我们准备设计一款装取料机,它同时安装在装料口和取料口,两台机的机械构造完全一样,这样在取料口取料的同时另一台机就可以在装料口装料,工作效率大大的提高了。

相关文档
最新文档