铸造浇注系统设计参考文档

合集下载

铸造工艺学第3章 浇注系统设计

铸造工艺学第3章 浇注系统设计
3. 图表法 (1)索伯列夫图表
(2)确定小型灰口铸铁件 A内 表格
表3-7 灰铸铁小件(<100 kg)内浇道总断面积(cm2)
3.3.2 浇注系统的计算
续上表
3.3.2 浇注系统的计算
(三)计算举例 如图3-18所示的灰铸铁端盖件。浇注总重(包括浇冒 口)为114 kg,壁厚为20 mm,浇注温度1330℃,湿型 ,直浇道高度为350 mm,两个内浇道开在分型面上, 切向引入,型内没有出气冒口,计算其内浇道截面积 及尺寸。已知:G=114 kg,δ=20 mm,H0=35 cm, C=28 cm,P=12.5 cm。
A直>A阻<A内<A横 过滤器的使用,使这种浇注系统应用更为
广泛。

3.2.2 按金属液导入铸件型腔的位置分类
表3-2 按内浇道在铸件上的位置浇注系统的分类
3.2.2 按金属液导入铸件型腔的位置分类
续上表
3.2.2 按金属液导入铸件型腔的位置分类
续上表
3.2.2 按金属液导入铸件型腔的位置分类
金属液进入横浇道后,起初以较大的速度沿着它 的长度方向往前流动,直到横浇道的末端处,并 冲击该处的型壁,使液流的动能变为位能,在横 浇道末端处附近的金属液面就升高,形成金属浪 并开始返回移动,直到退回的金属浪与从直浇道 流出的液流相遇后,横浇道中的液面将同时上升 到充满为止。
3.1.4 液态金属在横浇道中的流动情况
4)设置集渣包的浇注系统
图3-9 设置集渣包的浇注系统 a)齿形集渣包 b)离心集渣包 1- 直浇道 2- 集渣包 3- 横浇道 4- 内浇道
3.1.5 液态金属在内浇道中的流动
内浇道是把金属液直接导入型腔的通道,由于比较短, 也就不再有挡渣的能力,因此,应尽力避免杂质进入内 浇道。下图为内浇道在横横道上合理的位置及力向。

铸造浇注系统设计

铸造浇注系统设计

4.1 概述•漏斗形浇口杯:结构简单,制作方便,容积小,消耗金属液少;只能用来接纳和缓冲浇注的金属流股,挡渣能力小;主要用在小型铸铁件及铸钢件,广泛用于机器造型。

漏斗口的直径应该比直浇道大一倍以上。

可用带滤网的漏斗形浇口杯。

a)熔化铁隔片浇口杯b)扒塞浇口杯直浇道的结构设计•入口处的连接采用圆角,其半径为直浇道上端直径的0.25倍。

这样可以减少气体的卷入和冲砂的危险。

直浇道的结构设计直浇道的结构设计•直浇道的形状上大下小的锥形。

特例:机器造型机上使用直浇道多是上小下大的倒锥形,这时要靠增加直浇道的出口阻力,如在直浇道中增加滤网,阻流片使充满;撇渣原理•吸动区范围大小与内浇道中的液流速度成正比例,还随内浇道断面的增大及内浇道、横浇道高度比值得增大而增大。

生产中常将横浇道做成高梯形,内浇道制成扁平梯形,内浇道置于横浇道之下,使横浇道高度为内浇道高度的5~6倍。

•为了使从直浇道急转弯进入横浇道的金属液的流动比较平稳,以及使渣来得及浮到横浇道顶部,直浇道中心到第一个内浇道的距离为L≥5h横,浇道末端要加长一段距离,以减少最后一个内浇道的吸动作用,甚至加上冒渣口,及使聚集在加长段中的夹杂物不再随液流返回到横浇道的工作段中去。

内浇道与横浇道的连接方式二、按断面比例关系分类•3.3 浇注系统最小断面尺寸的计算设单位时间内流经内浇道金属液的体积为Qm3/s,则Q=F内v 内F内-内浇道断面积m2;v 内-内浇道口的平均流速m/s,可由伯努里方程等到;•①阿暂(Osann)公式③平均静压头H P 及最小剩余压头H M•按照能量守恒的法则进行计算的CP H H p 220−=。

浇注系统设计

浇注系统设计

浇注系统设计
一、浇注系统构成 浇注系统由浇口杯(外浇口)、直浇道、横浇道和内浇道等构成。其构造见下图
1—浇口杯;2—直浇道;3—横浇道;4—内浇道
注意点:内浇道形状(提议使用Ⅰ型) ❖ Ⅰ型扁平内浇道易于清理,能提升横浇道旳挡渣效果。当使用宽度受限制时,可
用Ⅱ型。 ❖ Ⅲ型内浇道用于铸件垂直壁处或不宜冲刷处。 ❖ Ⅳ型和Ⅴ型内浇道用于需内浇道凝固较慢旳场合,其清理较困难。 ❖ Ⅵ型内浇道冷却较快、轻易清理。
老式浇系极难胜任三大功能旳两项:挡渣和降低紊流
浇注系统旳主要功能:1. 提供金属液进入型腔旳通道;2. 金属液尽量平稳;3.阻止渣/砂和其他反应产物进入型腔;
过滤器应用
带过滤器旳浇系
The controlling crosssection阻流截面
Downsprue : Runner Bar
:
Runner Bar : Ingate
带有过滤器旳浇注系统
❖ 内浇道和横浇道高度比
1. 内浇道形状扁平梯型;
2. H横=(5-6)H内—预防吸动作用产生杂质进型腔(针对放置在横浇道底部) ❖ 内浇道与横浇道连接方式
1. 放置在横浇道底部(在同一平面)---合用于封闭式浇注系统 2. 放置在横浇道顶部(不在同一平面)—封闭-开放式浇注系统
又称“缓流封闭式”。故充型旳平稳性及对型腔旳冲刷力都好于封闭式; ❖ 用于各类灰铸铁件及球铁件
浇注系统设计
(4) 封闭- 开放式---(推荐使用) ❖ F杯>F直<F横<F内 ❖ F杯>F直>F集渣包出口<F横后<F内 ❖ F直>F阻<F横后<F内 ❖ F直>F阻<F内<F横 ❖ 阻流截面设在直浇道下端,或在横浇道中,或在集渣包出口处,或在内浇道之

自动浇铸线浇铸系统设计方案

自动浇铸线浇铸系统设计方案

图4
图5
浇注系统设计 --- 闸口
定义:浇注系统中用以决定铁水充满型腔时间的断面积。
闸口一般设计在两个位置,也就是有两种基本浇注系统型式。
一、进汤口—横浇道(加压系统) (或封闭式浇注系统)
二、竖浇道—横浇道(减压系统) (开放式浇注系统)
neck
neck
浇注系统设计 --- 闸口速度
铸水静压高度(H) (cm):竖浇道铁水静压高度。 h (cm) :分模线至砂模顶面高度(上模箱高度) a (cm) :分模线至模穴顶面高度(上模铸件高度) c (cm) :整个模穴的高度 (铸件总高度)
FC冒口
FC制品补缩冒口直径:以制品厚度T+(10~20)mm为标准 冒口形状如下图:
补缩冒口各部分尺寸
a T+(10~20)
b *(0.5~0.7)
c
*(1.2~1.4)
d (10~20)mm
e *(0.4~0.6)
f
(3~8)mm
FCD冒口
FCD制品补缩冒口直径:以制品厚度T+(25~35)mm为标准 冒口形状如下图:
浇注系统设计
浇 注 系 统 设 计 ---条 件
1.快速浇注: 充满模穴时减少温度损失,降低冶金“衰退”,降低氧化现象。
2.干净浇注: 浇注时避免熔渣(夹杂物)的产生,铁水进入模穴前要过滤干净。
3.经济型设计: 求得最高的铸件成品率。
直浇道窝
内浇口 进汤口
通气棒 砂芯头
浇注系统设计 --- 必要组件
浇注系统设计 ---浇注系统分类
4、阶梯式浇注系统
是具有多层内浇道的浇注系统。铁水应是先按底注式由最下层内浇道引入型腔。 待铁水液面接近第二层内浇道时,才由此处引入。如此类推,最热的铁水由最 高层的内浇道进入到型腔顶部或顶冒口中。优点:冲击少,液面上升平稳,利 于排渣气。改善补缩条件和均匀铸型温度。缺点:结构复杂。(如图5)

第八章 浇注系统设计

第八章   浇注系统设计

Fmin
G 0.0443 H P
用上式计算浇注系统最小截面积时需仔细确定式中各因素的数值。
在计算的铸件确定以后,即已确定。铸件图上一般已标出了铸 件的重量(未标时根据铸件图可估算出铸件重量),再加上浇注系 统和冒口的重量即为G值。
影响µ值的因素很多,难于用数学计算方法确定,一般都按生产 经验和参考实验结果选定。对于航空铝、镁合金铸件所用的扩张式浇 注系统,其µ值可在0.3~0.7之间选取。实际铸造时可根据铸件合金种 类、浇注温度和铸件结构选择。
(1) 应在一定的浇注时间内,保证充满铸型 (2) 应能控制液体金属流入型腔的速度和方向 (3) 应能把混入金属液中的熔渣和气体挡在浇注系统里 (4) 应能控制铸件凝固时的温度分布
(5) 浇注系统结构应力求简单,简化造型,减少清理工作量和 液体金属的消耗。
(1)承接来自浇包的金属液,防止金属液飞溅和溢出,便于浇注;
H
p
P2 H 2C
用上式计算平均静压头有下列三种情况 (1) 采用底注式浇注系统时,因为P=C(图中(a)),所以有: HP=H-C/2 (2) 采用顶注式浇注系统时(图中(b)),因为P=0,所以有: HP=H (3) 采用中注式浇注系统时(图中(c)),HP可用上面的HM的计 算公式来计算。 HP=H-C/8
内浇道流量不均匀现象对铸件质量有显著影响: ① 对大型复杂铸件和薄壁铸件易出现浇不足和冷隔缺陷
② 在流量大的内浇道附近会引起局部过热、破坏原来所 预计的铸件凝固次序,使铸件产生氧化、缩松、缩孔
和裂纹等缺陷。பைடு நூலகம்
为了克服内浇道流量不均匀带来的弊病,通常采用如下方法
(1)尽可能将内浇道设置在横浇道的对称位置; (2)将横浇道断面设计成顺着液流方向逐渐缩小形式; (3)采用不同断面内浇道,缩小远离直浇道的内浇道断两积; (4)设置浇口窝等。

铜合金铸件浇注系统设计

铜合金铸件浇注系统设计

八、铜合金铸件浇注系统(一)铜合金铸件浇注系统的形式铜合金按铸造性能分两大类:一类是锡青铜和磷青铜;另一类是无锡青铜和黄铜。

其性能特点、浇注系统形式和适用范围见表!"!"#$%。

表!"!"#$%铜合金浇注系统的形式和适用范围合金种类性能特点浇注系统形式适用范围锡青铜和磷青铜结晶温度范围宽,易产生缩松;氧化倾向较小雨淋式压边式滤渣网式大型长套类铸件短小圆套、圆盘及轴瓦类铸件大、中型复杂件无锡青铜和黄铜结晶温度范围窄,易产生缩孔,易氧化多采用底注法,呈开放式,并常设有滤渣网或集渣包,内浇口做成喇叭状各类铸件(二)铜合金铸件浇注系统的设计铜合金铸件浇注系统的截面比见表!"!"#$&。

铜合金铸件重量和直浇道直径的关系见图!"!"#!#。

表!"!"#$&铜合金浇注系统断面比例及适用范围合金种类各部分截面积比例适用范围锡青铜!直’!横’!内(#’(#)!*!)’(#)!*$)!直’!网’!横’!内(#’+),’(#)!*!)’(#)!*$)复杂的大、中型铸件。

采用底部注入式,且内浇道处不设暗冒口!直’!横’!内(#)!’(#)-*!)’#阀体类铸件。

采用雨淋式浇口,且内浇道处设暗冒口补缩!直’!网’!横’!内(#)!’#’#)-’(!*$)阀体类铸件。

采用带滤渣网的浇注系统无锡青铜及黄铜!直’!网’!横’!内(#’+),’#)!’($*#+)复杂的大型铸件!直’!网’!横’!内(#’+),’#)!’(#)-*!)中、小型铸件特殊黄铜!直’!直出’!横’!网’!内(#’+)&’(!*!)-)’#’(#+*$+)螺旋桨注:!直出一直浇道出口处的总断面积;!网—滤渣网眼的总断面积。

·#.-·w ww .b zf xw .c o m·!"#·w ww .b zf x w .c o m图!"!"#!$铜铸件重量与直浇道直径的关系(三)铜合金浇注系统的尺寸锡青铜铸件用浇注系统尺寸见表!"!"#%&。

第三章锌合金压铸浇注系统设计

第三章锌合金压铸浇注系统设计

第三章锌合金压铸浇注系统设计* 浇注系统包括鹅颈、射咀、分流锥、浇道、浇口和排气系统;*常用有扇形浇道和锥形浇道兩種;*设计原则:浇注系统内的金属液能有效的、平稳的流动,并避免气体混入。

3.1澆注系统对填充条件的影响金属液在压铸过程中的充型状态是由压力、速度、时间、温度、排气等因素综合作用形成的,因而水口系统与压力传递、合金流速、填充时间、凝固时间、模具温度、排气条件有着密切的关系。

a.压力传递一方面要保证水口处金属液以高压、高速充填型腔,另一方面又要保证在流道和水口截面内的金属液先不凝固,以保证传递最终压力。

这样就需要最佳的流道和水口设计,最小的压力损失。

b.水口面积过大或过小都会影响填充过程,过大的水口充填速度低,金属过早凝固,甚至充填不足,过小的水口又会使喷射加剧,增加热量损失,产生涡流并卷入过多气体,减短模具寿命。

c.气体的排出主要取决于金属液的流动速度与流动方向,以及排溢系统的开设能否使气体顺畅排出,排气面积是否足够。

排气是否良好,将直接影响铸件的外形和强度。

d.模具温度的控制对铸件的质量产生很大的影响,同时影响生产的速度和效率,水口的合理设计可以对模具的温度分布起调节作用。

e.模具寿命除了取决于良好的钢材外,又与模具的工作状态有关,良好的水口系统设计也是为了使模具各部分热平衡处于最佳状态,而不是恶劣的状态下,这样才能得到压铸生产的最大经济效益。

3.2浇注系统位置的选择1.使金属液充型路径减少曲折,避免过多迂回,避免卷气,散失热量,压力损耗。

2.尽量使金属液流至各部位距离相等,如开中心水口。

3.使温度分布符合工艺要求(模温、铸件温度)、尽量选择最短流程。

4.尽量采用单个水口,避免各水口的射流产生对撞,当需多处水口时,考虑射流相互促进,避免卷气,能量损耗。

5.尽量避免正面冲击型芯或型壁,减少动能损耗、卷气、流向混乱、粘模。

6.减少铸件收缩变形的倾向,使易收缩部位得到补缩、增压。

7.有利于排气。

铸造中浇注系统设计

铸造中浇注系统设计
不到、冷隔等缺陷。 金属消耗大;
应用:
主要用于构造复杂旳多种黑色金属 铸件和易氧化旳有色金属铸件。
3、中间注入式浇注系统
对内浇道下列旳型腔部分为顶注 式;对内浇道以上旳型腔部分相 当于底注式。故它兼有顶注式和 底注式浇注系统旳优缺陷。因为 内浇道在分型面上开设,故极为 以便,广为应用。合用于高度不 大旳中档壁厚旳铸件。
轻易充斥,可降低薄壁 件浇不到、冷隔方面旳 缺陷
充型后上部温度高于底 部,有利于铸件自下而 上 旳顺序凝固和冒口旳 补缩
冒口尺寸小,节省金属
内浇道附近受热较轻
构造简朴,易于清除
缺陷:
易造成冲砂缺陷金属, 液下落过程中接触空气, 出现飞溅、氧化、 卷入 空气等现象,使充型不 平稳
易产生砂孔、铁豆、气 孔和氧化夹杂物缺陷, 大部分浇注时间,内浇 道工作在非淹没状态,
第四章 浇注系统
浇注系统旳作用:将液态金属引入铸型。
经典浇注系统旳构造 a)封闭式 b)开放式 1-浇口杯,2-直浇道,3-直浇道窝,4-横浇道,5-末端延长段,6-内浇道
对浇注系统旳基本要求
1.所拟定旳内浇道旳位置、方向和个数应符合铸件旳凝固原则或补缩 措施。
2.在要求旳浇注时间内充斥型腔。 3.提供必要旳充型压力头,确保铸件轮廓、棱角清楚。 4.使金属液流动平稳,防止严重紊流。预防卷入、吸收气体和使金属
过分氧化。 5.具有良好旳阻渣能力。 6.金属液进人型腔时线速度不可过高,防止飞溅、冲刷型壁或砂芯。 7.确保型内金属液面有足够旳上升速度,以免形成夹砂结疤、皱皮、
冷隔等缺陷。
第一节、浇注系统各单元旳作用:
1、浇口杯旳作用:①承接来自浇包旳金属液,预防金属液 飞溅和溢出,便于浇注;②减轻液流对型腔旳冲击、分离 渣滓和气泡,阻止其进入型腔;③增长充型压力头。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Mvr=常量
式中:M 距离直浇道中心为r处的质点的质量 v M点的切线速度 r M点距离直浇道中心的距离。
漏斗形等压自由液面的形成:一旦出现水平旋涡, 越靠近中心,M质点的离心加速度越高,重力加速 度和离心加速度的合成加速度越接近于水平,根据 流体力学原理,等压面垂直于总加速度方向。等压 面逐步由水平过度到垂直,形成中空的大气压力表 面。 对铸件质量的影响:卷气、渣沿等压面进入型腔。
影响水平旋涡的因素
浇口杯中金属流股的水平分速度越大,越容易形成水 平旋涡。而水平分速度的大小又与以下因素有关:
a 浇口杯内液面的深度:液面深度超过直浇道上端直
径的5倍时可基本消除水平旋涡。
b 浇注高度:浇包嘴离浇口杯越高,越容易产生水平
旋涡。
• c 浇注方向:逆向浇注较顺向浇注为佳。纵向逆浇不 易形成水平涡流,而纵向顺浇易将夹渣带入型腔;带 底坎时,侧向浇注时金属液可能绕过底坎从另一侧进 入直浇道形成水平涡流。
2.横浇道的挡渣作用
1)夹渣的上浮速度
式中:r-渣粒半径,cm;η-金属液粘度,0.024dyne.s/cm2; ρ液,ρ渣-金属液和夹渣的密度,g/cm3。
临界悬浮速度:当流体的运动速度达到一定值时,可使比流体 密度轻的物质悬浮在流体中而不能上浮;
主要作用是捕集、保留由浇道流入的夹杂物,所以又称“捕渣 器”,是浇注系统最后一道挡渣关口。
要求横浇道平稳、缓慢地输送金属液,而低速流动又可减少充 填时对型腔时的冲击,利于渣粒在横浇道中上浮并滞留在其顶 部而不进入型腔。
1、横浇道中的液流分配
• 金属液从直浇道进入横浇道初期,以较大速度沿 长度方向向前运动,等到达横浇道末端冲击该处 型壁后,金属液的动能转变为势能,横浇道末端 附近液面升高,形成金属浪,并开始返回移动, 使横浇道内液面向直浇道方面逐渐升高,直到全 部充满。
第七章 浇注系统设计
本章主要讲授浇注系统类型的选择,浇注最小截 面尺寸的计算,其它铸造合金浇注系统的特点。要 求掌握浇注系统的选择原则。
重点为浇注系统的选择原则和确定浇注位置,难 点为浇注系统选择原则的灵活应用。
概述
浇注系统:铸型中液态金属流入型腔的通道之总称
组成:浇口杯、直浇道、直浇道窝、横浇道、内浇道
S内 S直
1 zi
(hi hz
2H
)
26
2)真空吸气理论
假设条件: ① 浇注系统是由不透气材料制成; ② 流体呈稳定流动,且为不可压缩流体; ③ 直浇道为等断面结构。 如图所示,选择直浇道的 出口2-2为分析的基准面,则 伯努利方程可写为:
其中,Z2=0,P2=Pa,整理得:
由于是稳定流动,根据连续流动定律,有: F1V1=F2V2, F1=F2,V1=V2
正确设计浇注系统使液态合金平稳合理的充满型 腔,对铸件品质影响很大,铸件废品中的30%是因浇注 系统不当引起。
浇注系统的组成
浇注系统设计原则
使液态合金平稳充满铸型,不冲击型壁和型芯, 不产生涡流和喷溅,不卷入气体,并利于型腔内 的空气和其他气体排出型外,防止金属液过度氧 化及产生砂眼、冷豆、气孔。
图 底坎和浇注方向对液流流向的影响 a) 纵向逆浇 b)纵向顺浇 c)侧向浇注
图 底坎和浇注方向对液流流向的影响 a) 纵向逆浇 b)纵向顺浇 c)侧向浇注
• 纵向顺浇方便浇注工作,不易产生垂直涡流,轻 质点夹杂物进入直浇道的可能性大;
• 纵向逆浇易形成垂直涡流,有助于夹杂物上浮。
• 侧向浇注形成垂直涡流的可能介于上述两者之间 ,液流从一侧流向直浇道,易形成水平涡流。
液态金属在平底的浇口杯中 流动 时易出现水平涡流。 流量分布不均匀造成流速方 向偏 斜。水平分速度对直浇 道中心线 偏斜,形成水平涡 流运动。在涡 流中心区形成 一个漏斗形充满空 气的等压 自由液面的空穴。容易 将空 气和渣子带入直浇道。
原因:水平各向流量不均 衡造成流速方向的偏斜。
若忽略金属粘度的影响,视液态金属为理想流体, 浇口杯内液态金属应满足动量矩守衡:
在规定时间内充满型腔。
直浇道形状: 常做成上大下小的锥形、
等断面的柱形和上小下大的 倒锥形。
(1)液态金属在直浇道中的流动特点
直浇道一般不能挡渣,而且金属液通过时容易带 入气体。当气体被卷入型腔时而又不能顺利逸出时 就会在铸件中形成气孔。
1)水模拟实验—真空吸气理论 实验条件:采用有机玻璃模型,制作浇口杯和直浇道两组元浇 注系统,采用水模拟的方法,采用尖角、圆角连接形式,采用 等断面和变截面的直浇道结构。
阻挡夹杂物进入型腔,以免在铸件上形成渣孔。
调节铸型及铸件各部分温差,控制铸件的凝固顺序, 不阻碍铸件的收缩,减少铸件的变形和开裂倾向。
合金液流不应冲刷冷铁和芯撑。防止冷铁的激冷效 果降低及表面熔化,避免芯撑过早软化和熔化,造 成铸件壁厚变化
浇注系统设计原则
浇注系统尽可能结构简单紧凑,占砂箱面积小,体 积小,有利于减少冒口体积,节约合金和型砂,提 高砂箱利用率,方便造型、清理和浇注系统模样的 制造
二、浇口杯中的流动
浇口杯作用:
用来承受来自浇包的金属液流并引入直浇道, 防止过浇而溢出;
避免流股直冲直浇道,减少液流对铸型的冲击
有一定的挡渣作用;
当砂箱高度低、压头不够时,又可用以增加金 属液的静压头。
二、浇口杯中的流动
浇口杯分类:漏斗形浇口杯、池盆形浇口杯
漏斗形浇口杯
特点:结构简单,制作方便,容积小,消耗金属液少; 只能用来接纳和缓冲浇注的金属流股,挡渣能力小;
应用:主要用在小型铸铁件及铸钢件,广泛用于机器造 型。
结构:漏斗口的直径应该比直浇道大一倍以上。可用带 滤网的漏斗形浇口杯。
池盆形浇口杯
特点:挡渣作用明显,但是制作程序复杂,消耗 的金属较多
应用:主要用于中大型铸铁件。
结构:浇口盆 的深度应该大 于直浇道上端 直径的5倍。
浇口杯中应避免出现水平涡流
直浇道窝的作用
③ 减小直-横浇道拐弯处的局部阻力系数和水力 压头损失。
④ 缩短直-横浇道拐弯处的湍流区。
直浇道窝的作用
⑤ 浮出金属液中的气泡:最初注入型内的最初金 属液中,常带有一定量的气体,在直浇道窝内 可以浮出去。
直浇道窝结构设计
直浇道窝的直径应为直浇道下端直径的1.4-2倍,高度为横 浇道直径的2倍,直浇道与横浇道的连接也应做成方
向,形成使轻质点杂质上浮的流向。
d 用拔塞等方法,使浇口杯内液面达到一定深度时
再向直浇道注入
• 即使带隔板和底坎(或凹坑)的浇口杯,也不能 完全阻挡浇注开始时液流带入的气体和夹杂物, 故浇注重要铸件时,常在浇注前用各种方法将直 浇道堵住,等浇口杯充满后再打开,并一直保持 浇口杯的液面高度。
生产中减轻水平旋涡的措施
a 用大深度浇口杯 b 浇口杯底部安放筛网等
c 在浇口杯底部设置堤坝,形成垂直旋涡。
垂直旋涡的挡渣作用: 金属液沿斜壁流下, 由于流速的减低和流 向的改变,形成垂直 方向的旋流。
a)合理
b)不合理
• 在池形浇口杯中增设隔板和在浇口杯出口处又有 底坎,就能把浇包落入浇口杯中流股的紊乱搅拌
使液态合金以最短的距离,最合适的时间充满型腔, 有足够的压力头,并保证金属液面在型腔内有必要 的上升速度等,以确保铸件的质量;
起一定的补缩作用,在内浇道凝固前补给部分液 态收缩
浇注系统的设计内容与步骤
• 选择浇注系统的类型和结构;
• 合理地在铸型中布置浇注系统及确定内浇道的引入 位置和个数;
• 计算浇注时间和浇注系统中的最小断面积,确定直 浇道的高度(如有浇口杯则从杯中液面高度算起)
浇口杯的结构设计
1)浇口杯中金属液面的高度:H≥5d直上,而且浇口 杯与直浇道要采用圆角连接, r>0.25d直上;
2)采用纵向逆浇,设置底坎、挡板和闸门等;
3)采用特殊结构的浇口杯:拔塞式、浮塞式、铁隔 片式、闸门式等;
4)浇口杯与直浇道相连的边缘做成凸起状。
三、直浇道中的流动
直浇道的功用: 引导金属液进入横浇道、内绕道或直接导入型腔; 提供足够的压力头,使金属液克服各种流动阻力,
杯连接处)
采用圆角,一般要求入 口处圆角半径r≥d/4(d为 直浇道上口直径)。
这样可以减少气体的卷 入和避免尖角型砂被冲掉引 起冲砂缺陷。
2).直浇道的形状
• 直浇道的形状—上大下小的锥形即设计锥度 上大下小的锥形,
有利于在直浇道中呈正 压流动,能防止吸气或 非充满状态而带气。
则:v2>v1, 可使P2<P1, 流体呈正压流动;
3、蛇形直浇道则使h1-2, 增 大 , 保 证 P2<P1 。 蛇 形 直浇道时利用增加水力 损失改变直浇道压力分 布的一例,多用于有色 金属铸件和直浇道直接 接于型腔时。
4、直浇道尽量设在横、 内浇道的对称中心处, 以使金属液流程最短, 流量分布均匀。
4)、设直浇道窝
金属液对直浇道底部有强烈的冲击作用,并产生涡 流和高度紊流区,常引起冲砂、渣孔和大量氧化夹杂 物等铸造缺陷。设直浇道窝(凹井) 可改善金属液 的流动状况。
直浇道窝常做成半球形、圆锥台等形状。
湿型砂强度低,必要时可在直浇道底放一干芯片(或耐火 砖片)以承受金属液的冲击。
四、横浇道中的流动
横浇道:将金属液从直浇道导入内浇道的水平孔道
1、横浇道的作用 连接直浇道与内浇道 平稳而均匀的向内浇道分配洁净金属 储留最初浇入的含气和渣污的低温金属液并档渣 使金属液流平稳和减少产生氧化夹渣物。
(1)液态金属在直浇道中的流动特点
直浇道入口处的形状影响液流分布:尖角连接时直 浇道内呈不充满流动;圆角连接时则为充满状态。
直浇道形状影响液流的内部压力:尖角连接时不充满, 而且流股呈渐缩形,直浇道上口有真空区存在。
有锥度的直浇道呈 充满状态,且呈正压 流动,从直浇道上的 小孔流水;而等断面 的直浇道虽然也呈充 满状态,但是却呈负 压流动,吸入气体;
相关文档
最新文档