4.17一元一次方程应用方案设计题-1
一元一次方程应用题及答案过程

一元一次方程应用题及答案过程一、引言一元一次方程是数学中基础的代数方程之一,很多实际问题都可以转化为一元一次方程进行求解。
本文将从实际应用题的角度出发,讨论一元一次方程在解决实际问题中的运用以及解答过程。
二、问题描述问题1:某商场在一次促销活动中,一种商品在优惠后的价格是原价的5折,顾客购买了这种商品100件,共花费了600元,原价是多少?三、解答过程设该商品原价为x元,根据题意可列出方程:$$x \\times \\frac{1}{2} \\times 100 = 600$$化简得:$$\\frac{x}{2} \\times 100 = 600$$$$x \\times 50 = 600 \\times 2$$50x=1200$$x = \\frac{1200}{50}$$得到原价x为24元。
四、问题扩展若购买的商品数量不同,如何计算原价呢?问题2:某商店进行打折促销,某种商品原价为25元/件,商店以8折优惠出售,某顾客购买了7件,共花费126元,请计算该商品的原价。
五、解答过程设该商品原价为y元,根据题意可列出方程:$$y \\times \\frac{8}{10} \\times 7 = 126$$化简得:$$\\frac{4y}{5} \\times 7 = 126$$$$4y \\times \\frac{7}{5} = 126$$$$\\frac{28y}{5} = 126$$$$28y = 126 \\times 5$$$$y = \\frac{126 \\times 5}{28}$$得到原价y为22.5元。
六、总结通过以上两个实际问题的讨论,我们发现一元一次方程在解决实际问题中的应用非常广泛。
在实陃问题中,通过建立代数方程,利用一元一次方程的解法,能够快速、准确地求解问题,为实际生活带来便利。
希望通过本文的讨论,读者能更好地掌握一元一次方程的应用技巧,能够灵活运用代数知识解决实际问题。
初中数学方程与不等式之一元一次方程专项训练解析含答案(1)

初中数学方程与不等式之一元一次方程专项训练解析含答案(1)一、选择题1.下面是一个被墨水污染过的方程: 11222x x -=-,答案显示此方程的解是x=-1,被墨水遮盖的是一个常数,则这个常数是( ) A .2B .﹣2C .﹣12D .12【答案】A【解析】【分析】 设被墨水覆盖的数是y ,将x=-1代入,解含有y 的方程即可得到答案.【详解】设被墨水覆盖的数是y ,则原方程为:11222x x y -=-, ∵此方程的解是x=-1,∴将x=-1代入得:11222y --=-- , ∴y=2,故选:A.【点睛】此题考查解一元一次方程,一元一次方程的解.2.一家商店将某款衬衫的进价提高40%作为标价,又以八折卖出,结果每件衬衫仍可获利15元,则这款衬衫每件的进价是( )A .120元B .135元C .125元D .140元【答案】C【解析】【分析】设这款衬衫每件的进价是x 元,则标价为(1+40%)x 元,根据售价-进价=15元,列出方程解方程即可.【详解】设这款衬衫每件的进价是x 元,则标价为(1+40%)x 元,根据题意得: ()140%0.815x x +?=解得:x=125故选:C【点睛】 本题考查的是一元一次方程的应用-利润问题,把握进价、标价、售价及利润的关系是关键.3.某种商品的进价为每件180元,按标价的九折销售时,利润率为20%,这种商品每件的标价为()元.A.200 B.240 C.245 D.255【答案】B【解析】【分析】设这种商品的标价是x元,根据某种商品每件的进价为180元,按标价的九折销售时,利润率为20%可列方程求解.【详解】设这种商品的标价是x元,90%x﹣180=180×20%x=240这种商品的标价是240元.故选:B.【点睛】本题考查一元一次方程的应用,关键知道利润=售价﹣进价,根据此可列方程求解.4.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.100【答案】B【解析】【分析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得5.某商品打七折后价格为a元,则原价为()A.a元B.107a元C.30%a元D.710a元【答案】B【解析】【分析】直接利用打折的意义表示出价格即可得出答案.【详解】设该商品原价为x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=107a (元), 故选B .【点睛】 本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.6.关于x 的方程1514()2323mx x -=-有负整数解,则所有符合条件的整数m 的和为( )A .5B .4C .1D .-1 【答案】D【解析】【分析】先解方程,再利用关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭有负整数解,求整数m 即可. 【详解】 解方程15142323mx x ⎛⎫-=- ⎪⎝⎭去括号得,15122323mx x -=- 移项得,11522233mx x -=-, 合并同类项得11122m x ⎛⎫-=⎪⎝⎭, 系数化为1,2 (1)1x m m =≠-,∵关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭有负整数解, ∴整数m 为0,-1.∴它们的和为:0+(-1)=-1.故选:D .【点睛】本题主要考查了一元一次方程的解,解题的关键是用m 表示出x 的值.7.关于x 的方程32x x a =+的解与3242x x -=的解相同,则a 的值为( ) A .2-B .2C .1-D .1【答案】B【解析】【分析】先求出第一个方程的解,再根据解的定义,把第一个方程的解代入第二个方程,得到关于a 的方程,即可求解.【详解】由32x x a =+,解得:x=a ,∵关于x 的方程32x x a =+的解与3242x x -=的解相同, ∴把x=a 代入3242x x -=得:3242a a -=, ∴a-2=0,解得:a=2.故选B .【点睛】本题主要考查解一元一次方程以及解的定义,掌握移项,去分母以及解的定义,是解题的关键.8.一个书包的标价为a 元,按八折出售仍可获利20%,该书包的进价为( ) A .23a B .34a C .45a D .56a 【答案】A【解析】【分析】设进价为x 元,根据题意可得820%10=-x a x ,解得23x a =,即为所求. 【详解】设进价为x 元 根据题意得:820%10=-x a x ∴41.25=x a ∴23x a = 故选:A【点睛】本题考查了一元一次方程的应用,理解题意,分清已知量和未知量,根据题目中的等量关系列出需要的代数式,进而列出方程,解所列的方程,求出未知数的值,检验所得的解是否符合实际问题的意义.9.一船由甲地开往乙地,顺水航行要4小时,逆水航行比顺水航行多用40分钟,已知船在静水中的速度为16千米/时,求水流速度. 解题时,若设水流速度为x 千米/时,那么下列方程中正确的是( )A .()()24164163x x ⎛⎫+=+- ⎪⎝⎭ B .()24164163x ⎛⎫⨯=+- ⎪⎝⎭C .()()()41640.416x x +=+-D .()24164163x ⎛⎫+=+⨯ ⎪⎝⎭ 【答案】A【解析】【分析】 由已知条件得到顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时,根据时间关系列方程即可.【详解】由题意得到:顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时, ∴()()24164163x x ⎛⎫+=+- ⎪⎝⎭, 故选:A.【点睛】此题考查一元一次方程的实际应用,正确理解顺水航行和逆水航行的速度是解题的关键.10.下列方程的变形中正确的是( )A .由567x x +=-得675x x -=-B .由2(1)3x --=得223x --=C .由310.7x -=得1030107x -= D .由139322x x +=--得212x =- 【答案】D【解析】【分析】根据解一元一次方程的一般步骤对各选项进行逐一分析即可.【详解】A .由567x x +=-得675x x -=--,故错误;B .由2(1)3x --=得223x -+=,故错误;C .由310.7x -=得103017x -=,故错误; D .正确.故选:D .【点睛】 本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.11.某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( )A .20001200(22)x x =-B .212002000(22)x x ⨯=-C .220001200(22)x x ⨯=-D .12002000(22)x x =- 【答案】B【解析】【分析】首先根据题目中已经设出每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,由1个螺钉需要配2个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程【详解】设每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,利用一个螺钉配两个螺母. 由题意得:2×1200x=2000(22-x ),故选:B .【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于根据题意列出方程.12.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是A .m ≥2B .m >2C .m <2D .m ≤2【答案】C【解析】试题分析:∵程x ﹣m+2=0的解是负数,∴x=m ﹣2<0,解得:m <2,故选C . 考点:解一元一次不等式;一元一次方程的解.13.足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了A .3场B .4场C .5场D .6场【答案】C【解析】【分析】设共胜了x 场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.【详解】设共胜了x 场,则平了(14-5-x )场,由题意得:3x+(14-5-x )=19,解得:x=5,即这个队胜了5场.故选C .此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.14.下列是等式133223xx--=的变形,其中根据等式的性质2变形的是()A.133232xx--=+B.3(13)322xx--= C.3(13)64x x--=D.3(13)46x x--=【答案】C【解析】【分析】根据等式的性质2将原方程两边同时乘以2加以变形化简即可.【详解】原方程133223xx--=两边同时乘以2可得:3(13)64x x--=,故选:C.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.15.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了()元.A.300 B.260 C.240 D.220【答案】B【解析】【分析】根据题意,分情况讨论:若花费较少的一家的购票方案为5人团购,则另一家花费340元,据此组合验证是否能凑成整数张成人票和儿童票;若花费较少的一家的购票方案是成人票和儿童票分开购买,则可根据题意设未知数,列方程求解并验证.若花费较少的一家是60×5=300(元),则花费较多的一家为340元,经检验可知,成人和儿童共5张票无法组合成340元.设花费较少的一家花了x 元,则另一家花了40x +元,根据题意得:40=605x +⨯解得:260x =检验可知,该家庭有1个成人,4个儿童,共花费100+40×4=260(元);故选:B .【点睛】本题考查一元一次方程应用,理清题意,找准等量关系,正确列出方程是解题关键.16.下列等式的变形中,正确的有( )①由53x =得53x =;②由a=b 得,-a=-b ;③由a b c c =得a b =;④由m n =得m 1n = A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】本题需先根据等式的性质对每一选项灵活分析,即可得出正确答案.【详解】①若53x =,则35x =故本选项错误 ②若由a=b 得,-a=-b ,则-a=-b 故本选项正确③由a b c c=,说明c ≠0,得a b =故本选项正确 ④若m n =≠0时,则m 1n=故本选项错误 故选:B【点睛】 本题考查了等式的基本性质,在已知等式等号两边同时加减或乘除等式是否仍然成立.17.一件商品以进价120%的价格标价,后又打八折出售,最后这件商品是( ) A .赚了 B .亏了 C .不赚不亏 D .不确定盈亏【答案】B【解析】【分析】设这件商品进价为a 元,根据题意求得标价为120%a 元,打八折后的售价为0.96a ,比较即可解答.【详解】设这件商品进价为a元,则标价为120%a元,打八折后的售价为120%a×80%=0.96a.∵a>0.96a,∴这件商品亏了,亏了0.04a元.故选B.【点睛】本题考查了一元一次方程的应用,熟知售价、进价、利润之间的关系是解决问题的关键.18.已知∠1:∠2:∠3=2:3:6,且∠3比∠1大60°,则∠2=()A.10°B.60°C.45°D.80°【答案】C【解析】【分析】根据∠1:∠2:∠3=2:3:6,则设∠1=2x,∠2=3x,∠3=6x,再根据∠3比∠1大60°,列出方程解出x即可.【详解】解:∵∠1:∠2:∠3=2:3:6,设∠1=2x,∠2=3x,∠3=6x,∵∠3比∠1大60°,∴6x-2x=60,解得:x=15,∴∠2=45°,故选C.【点睛】本题是对一元一次方程的考查,准确根据题意列出方程是解决本题的关键.19.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵5133x y a x y a -=+⎧⎨+=-⎩①② ②-①×3得,38a y +=-①+②×5得,378a x -= ∴方程组的解为:37838a x a y -⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y a x y a -=+⎧⎨+=-⎩的解x 与y 的差为3,即3x y -= ∴373388a a -+⎛⎫--= ⎪⎝⎭∴7a =.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a 的方程是解决问题的关键.20.下列等式变形正确的是( )A .如果0.58x =,那么x=4B .如果x y =,那么-2-2x y =C .如果a b =,那么a b c c = D .如果x y =,那么x y = 【答案】B【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时除以一个不为0的数,等式依然成立;两个数的绝对值相等,其本身不一定相等,据此逐一判断即可.【详解】A :如果0.58x =,那么16x =,故选项错误;B :如果x y =,那么22x y -=-,故选项正确;C :如果a b =,当0c ≠时,那么a b c c=,故选项错误; D :如果x y =,那么x y =±,故选项错误;故选:B.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.。
一元一次方程应用题一元一次方程应用题以及答案

1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇设慢车开出a小时后与快车相遇50a+75(a-1)=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地距离。
设原定时间为a小时45分钟=3/4小时根据题意40a=40某3+(40-10)某(a-3+3/4)40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙距离40某21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2某(a+16)-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14某2=28人现在乙队有14+16=30人,甲队有28-16=12人4、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。
解:设四月份的利润为某则(1+10%)=13.2所以某=12设3月份的增长率为y则10某(1+y)=某y=0.2=20%所以3月份的增长率为20%5、某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人无法安排。
如果每间宿舍住8人,那么有一间只住了4人,且还空着5见宿舍。
求有多少人解:设有a间,总人数7a+6人7a+6=8(a-5-1)+47a+6=8a-44a=50有人=7某50+6=356人6、一千克的花生可以炸0.56千克花生油,那么280千克可以炸几多花生油按比例解决设可以炸a千克花生油1:0.56=280:aa=280某0.56=156.8千克完整算式:280÷1某0.56=156.8千克7、一批书本分给一班每人10本,分给二班每人15本,现均分给两个班,每人几本解:设总的书有a本一班人数=a/10二班人数=a/15那么均分给2班,每人a/(a/10+a/15)=10某15/(10+15)=150/25=6本8、六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗。
一元一次方程(四)(通用版)(含答案)

一元一次方程(四)(通用版)试卷简介:方案设计问题一、单选题(共6道,每道16分)1.某市为鼓励市民节约用水,对自来水用户按如下标准收费:若每月用户用水不超过15立方米,则每立方米按a元收费;若超过15立方米,则超过部分每立方米按2a元收费.如果某居民在一个月内用水35立方米,那么他该月应缴纳的水费是( )A.35a元B.55a元C.52.5a元D.70a元答案:B解题思路:根据题意,用水超过15立方米时,居民所交水费应分为两部分:15立方米的水费和超过15立方米部分的水费.该居民在一个月内用水35立方米,应交水费为15×a+(35-15)×2a=55a,答案选B.试题难度:三颗星知识点:一元一次方程应用——方案类应用题2.为了节约用水,某市规定:每户居民每月用水不超过15立方米,按每立方米1.6元收费;超过15立方米,则超过部分按每立方米2.4元收费.小明家六月份交水费33.6元,则小明家六月份实际用水( )A.14立方米B.19立方米C.20立方米D.21立方米答案:B解题思路:小明家六月份交水费33.6元,其中包括15立方米的水费和超过15立方米的水费,设小明家六月份实际用水x立方米,根据题意得:15×1.6+(x-15)×2.4=33.6,解得x=19,答案为B.试题难度:三颗星知识点:一元一次方程应用——方案类应用题3.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;超过60立方米,则超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么这位用户4月份应交煤气费( )A.60元B.66元C.75元D.78元答案:B解题思路:4月份的煤气费平均每立方米0.88元,那么煤气一定超过60立方米,等量关系为:60立方米的煤气费+超过60立方米的煤气费=所交煤气费,设4月份用了煤气x立方米,根据题意得60×0.8+(x-60)×1.2=0.88x,解得x=75,4月份应交煤气费为75×0.88=66元,故选B.试题难度:三颗星知识点:一元一次方程应用——方案类应用题4.某单位要购置一批某型号的电脑,该型号的电脑市场价为每台5800元.现有甲、乙两电脑商进行竞标,甲电脑商提出的优惠条件是购买10台以上,则从第11台开始每台按七折计价;乙电脑商提出的优惠条件是每台均按八五折计价.假设这两家电脑商在品牌、质量、售后服务等方面都相同,若要使到甲、乙两电脑商处购买电脑花钱一样多,则应该买电脑( )A.18台B.19台C.20台D.21台答案:C解题思路:若购买的电脑不多于10台,则在甲电脑商处购买没有优惠,因此到甲、乙两电脑商购买电脑花钱不一样,因此要使花钱一样,必然购买多于10台.设购买电脑x台,在甲处购买需要花钱数目为元,在乙处购买需要花钱数目为元,根据题意可列方程为,解得x=20,即应该买电脑20台.试题难度:三颗星知识点:一元一次方程应用——方案类应用题5.九年级某班师生30人准备在中考后到某地旅游,班主任李老师了解到当地甲、乙两旅行社的服务项目和服务质量相同,且甲旅行社平时收费为每人300元,暑期对教师实行八折优惠,对学生实行五折优惠;乙旅行社平时收费为每人280元,暑期对教师和学生均实行六折优惠.若在甲、乙两家旅行社所需费用相同,则这个班师生中教师为( )A.4人B.5人C.6人D.7人答案:C解题思路:设这个班师生中教师有x人,学生有(30-x)人,由题可知甲旅行社收费为元,乙旅行社收费为元,若两家旅行社所需费用相同,可得,解得x=6,故选C试题难度:三颗星知识点:一元一次方程应用——方案类应用题6.某种海产品,若直接销售,每吨可获利1 200元;若粗加工后销售,每吨可获利5 000元;若精加工后销售,每吨可获利7 500元.某公司现有这种海产品100吨,该公司的生产能力是:如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨,但两种加工方式不能同时进行.受各种条件限制,公司必须在10天内(含10天)将这批海产品全部销售或加工完毕,为此该公司设计了三种方案:方案一:全部进行粗加工;方案二:尽可能多地进行精加工,没来得及进行精加工的直接销售;方案三:将一部分进行精加工,其余的进行粗加工,并恰好10天完成.你认为获利最多的方案和对应的利润是( )A.方案三,600 000元B.方案二,435 000元C.方案三,562 500元D.方案一,500 000元答案:C解题思路:方案一:全部粗加工所需时间为天,因此10内100吨可全部加工完毕,对应的利润为:5 000×100=500 000元;方案二:10天内(含10天)可以精加工10×5=50吨,剩余100-50=50吨直接销售,因此对应的利润:7 500×5×10+1 200×(100-5×10)=435 000元;方案三,设精加工的有x天,则粗加工的有(10-x)天,根据题意可列方程为,解得x=5,即5天精加工,5天粗加工,也即精加工5×5=25吨,粗加工15×5=75吨,因此方案三对应的利润为:562 500元.综上可知,方案三的利润最高,为562 500元.答案为C.试题难度:三颗星知识点:一元一次方程应用——方案类应用题。
一元一次方程的应用高频考题训练(3)---方案选择及配套问题(含解析)

5.4《一元一次方程的应用》高频考题训练(3)---方案选择及配套问题配套问题1.某车间有28名工人生产螺丝和螺母,每人每天生产1200个螺丝或1800个螺母,现有x个工人生产螺丝,恰好每天生产的螺母和螺丝按2:1配套.为求x,可列方程()A.1200x=1800(28﹣x)B.2×1200x=1800(28﹣x)C.2×1800=1200(28﹣x)D.1800x=1200(28﹣x)2.某口罩厂有26名工人,每人每天可以生产800个口罩面或1000个口罩耳绳.一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x名工人生产口罩面,根据题意可列方程为()A.800x=2×1000(26﹣x)B.2×800x=1000(26﹣x)C.2×800(26﹣x)=1000x D.800(26﹣x)=2×1000x3.现用90立方米木料制作桌子和椅子,已知一张桌子配4张椅子,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套.设用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90﹣x)B.5x=4(90﹣x)C.x=4(90﹣x)×5D.4x×5=90﹣x4.某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套.设安排x名工人生产镜片,则可列方程()A.60(28﹣x)=90x B.60x=90(28﹣x)C.2×60(28﹣x)=90x D.60(28﹣x)=2×90x5.20名学生在进行一次科学实践活动时,需要组装一种实验仪器,仪器是由三个A部件和两个B部件组成.在规定时间内,每人可以组装好10个A部件或20个B部件.那么,在规定时间内,最多可以组装出实验仪器的套数为()A.50B.60C.100D.1506.某工厂有技术工20人,平均每天每人可加工甲种零件12个或乙种零件10个,已知2个甲种零件和5个乙种零件可以配成一套,若每天生产的甲乙零件刚好配套,则安排生产甲种零件的技术人员人数是()A.4B.5C.6D.37.用白铁皮制作罐头盒,每张铁皮可制盒身16个,或盒底48个,一个盒身与两个盒底配成一个罐头盒,现有100张铁皮,用张铁皮制作盒身,正好使得这100张铁皮制作出来的盒身和盒底全部配套.8.有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.设原有x只鸽子,则可列方程.9.为保障一线医护人员的健康安全,某防护服厂加班生产防护服和防护面罩.已知工厂共54人,每人每天可加工防护服80件或防护面罩100个,已知一套防护服配一个防护面罩,为了使每天生产的防护服与防护面罩正好配套,需要安排人生产防护服.10.某厂生产一批纸盒,2米硬纸板可以做3个盒盖或者4个盒身,现有硬纸板140米,为了使盒盖和盒身正好配套,制作盒盖需要米硬纸板.11.某车间有技术工85人,平均每天每人可加工甲种部件16个或乙种部件10个,4个甲种部件和6个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?12.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?13.某车间共有36名工人生产桌子和椅子,每人每天平均可生产桌子20张或椅子50把,一张桌子要配两把椅子.已知车间每天安排x名工人生产桌子.(1)车间每天生产桌子张,生产椅子把.(用含x的代数式表示)(2)问如何安排可使每天生产的桌子和椅子刚好配套?14.有蓝色和黑色两种布料,其中蓝布料每米30元,黑布料每米50元.(1)若花了5400元买两种布料共136米,两种布料各买了多少米?(2)用蓝布料做上衣,每件上衣需要布料1.5米,用黑布料做裤子,每条裤子需要布料1.2米,一件上衣和一条裤子配成一套.购买这两种布料共162米做上衣和裤子,布料全部用完,且做的上衣和裤子刚好完全配套,购买这162米布料花了多少元?方案选择问题15.某书城开展学生优惠购书活动,凡一次性购书不超200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元,则该学生第二次购书实际付款为()A.204 元B.230元C.256元D.264元16.某校七年级三个班级联合开展户外研学活动,此次活动由一班班长负责购买车票,票价每张20元.有如图两种优惠方案:班长思考一会儿说,无论选择哪种方案所要付的车费是一样的,则七年级三个班级共有()A.60人B.61人C.62人D.63人17.七年级某班准备组织同学们观看电影,由班长负责买票,已知电影票价每张50元,对观影人数超过40人的团体票有两个优惠方案可选择:方案一:全体人员可打8折;方案二:若有5人免票,则其他人可以打9折.班长思考一会儿说我们班无论选择哪种方案要付的钱是一样的.若这个班级观影人数超过40人,则该班共有___________人观看电影.18.某新华书店暑假期间推出售书优惠方案:①一次性购书不超过200元,不享受优惠;②一次性购书超过200元但不超过400元一律打九折;③一次性购书400元以上一律打八折.如果小聪同学一次性购书共付款324元,那么小聪所购书的原价是.19.在操场上,小华遇到小冯,交谈中顺便问道:“你们班有多少学生?”小冯说:“如果我们班上的学生像孙悟空那样一个能变两个,然后再来这么多学生的,再加上班上学生的,最后连你也算过去,就该有100个了.”那么小冯班上有多少学生?20.某公园门票规定如下:若办金卡,需200元,则全年进入公园无需再付钱;若办银卡,需100元,进入公园每次还需付5元;若不办卡,则每次进入公园需购票12元.(1)若小东每年去公园15次,那么应选择哪一种购票方式较为优惠?请说明理由;(2)若小明进入公园的全年预算门票费用为150元,按公园门票规定,求小明全年进入公园次数n的最大值.21.2021年“双十一”期间,很多国货品牌受到人们的青睐,销量大幅增长.某平台的体育用品旗舰店实行优惠销售,规定如下:对原价160元/件的某款运动速干衣和20元/双的某款运动棉袜开展促销活动,活动期间向客户提供两种优惠方案.方案A:买一件运动速干衣送一双运动棉袜;方案B:运动速干衣和运动棉袜均按9折付款.某户外俱乐部准备购买运动速干衣30件,运动棉袜x双(x≥30).(1)若该户外俱乐部按方案A购买,需付款元(用含x的式子表示);若该户外俱乐部按方案B购买,需付款元(用含x的式子表示);(2)若x=40,通过计算说明此时按哪种方案购买较为合算;(3)当购买运动棉袜多少双时两种方案付款相同.22.某市两超市在元旦期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过300元,不给与优惠;超过300元而不超过600元一律打九折;超过600元时,其中的600元优惠10%,超过的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是500元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客购物总额相同,其在乙超市实付款584元,问其在甲超市需实付款多少元?23.随着互联网的普及和城市交通的多样化,人们出行的时间与方式有了更多的选择.某市有出租车、滴滴快车和神州专车三种网约年,收费标准见图(该市规定网约车行驶的平均速度为40公里/时).TAXI起步价:14元超公里费:超过3公里2.4元/公里滴滴快车起步价:12元里程费:2.5元/公里时长费:0.4元/分钟神州专车起步价:10元里程安:2.8元/公里时长要:0.5元/分钟不足1公里按1公里计(1)如果里程为10公里,出租车的费用为元;(2)已知甲,乙两地的路程超过3公里,从甲地到乙地,乘坐出租车比滴滴快车节省17.8元,求甲、乙两地间的里程数;(3)神州专车和滴滴快车对第一次下单的乘客有如下优惠活动:神州专车收费打八折,另外加5.3元的空车费;滴滴快车超过10公里总费用立减9.1元.如果两位顾容,都是第一次下单且乘车里程数相同,他们分别乘坐神州专车、滴滴快车且收费相同,求这两位顾客乘车的里程数.参考答案配套问题1.【解答】解:∵该车间有28名工人生产螺丝和螺母,且有x个工人生产螺丝,∴有(28﹣x)个工人生产螺母,又∵每人每天生产1200个螺丝或1800个螺母,且恰好每天生产的螺母和螺丝按2:1配套,∴2×1200x=1800(28﹣x).故选:B.2.【解答】解:设安排x名工人生产口罩面,则(26﹣x)人生产耳绳,由题意得2×800x=1000(26﹣x).故选:B.3.【解答】解:设用x立方米的木料做桌子,则用(90﹣x)立方米的木料做椅子,依题意,得:4x=5(90﹣x).故选:A.4.【解答】解:设安排x名工人生产镜片,由题意得,90x=2×60(28﹣x).故选:C.5.【解答】解:设x名学生组装A部件,则(20﹣x)名学生组装B部件,则=.解得x=15.在规定的时间内,最多可以组装出实验仪器的套数为=50(套).故选:A.6.【解答】解:设安排x名技术人员生产甲种零件,则安排(20﹣x)名技术人员生产乙种零件,依题意得:=,解得:x=5,即安排生产甲种零件的技术人员人数是5.故选:B.7.【解答】解:设用x张铁皮制作盒身,则用(100﹣x)铁皮制作盒底,依题意得:2×16x=48(100﹣x),解得:x=60,∴用60张铁皮制作盒身,正好使得这100张铁皮制作出来的盒身和盒底全部配套.故答案为:60.8.【解答】解:设原有x只鸽子,则可列方程:=.故答案为:=.9.【解答】解:设需要安排x人生产防护服,则安排(54﹣x)人生产防护面罩,依题意得:80x=100(54﹣x),解得:x=30.故答案为:30.10.【解答】解:设制作盒盖需要x米硬纸板,则制作盒身需要(140﹣x)米硬纸板,根据题意得:×3=×4,解得:x=80,故答案为:80.11.【解答】解:设安排x人加工甲种部件,则安排(85﹣x)人加工乙种部件,依题意得:=,解得:x=25,∴85﹣x=85﹣25=60.答:安排25人加工甲种部件,60人加工乙种部件,才能使每天加工的甲、乙两种部件刚好配套.12.【解答】解:设分配x个工人生产塑料棒,则分配(34﹣x)个工人生产金属球,依题意得:=,解得:x=18,∴34﹣x=34﹣18=16.答:应分配18个工人生产塑料棒,16个工人生产金属球.13.【解答】解:(1)∵该车间共有36名工人生产桌子和椅子,且车间每天安排x名工人生产桌子,∴车间每天安排(36﹣x)名工人生产椅子.又∵每人每天平均可生产桌子20张或椅子50把,∴车间每天生产桌子20x张,椅子50(36﹣x)把.故答案为:20x;50(36﹣x).(2)依题意得:2×20x=50(36﹣x),解得:x=20,∴36﹣x=36﹣20=16.答:车间每天安排20名工人生产桌子、16名工人生产椅子刚好配套.14.【解答】解:(1)设蓝布料买了x米,则黑布料买了(136﹣x)米.根据题意,得30x+50(136﹣x)=5400.解这个方程,得x=70.∴136﹣x=66.答:蓝布料买了70米,黑布料买了66米;(2)设蓝布料买了y米,则黑布料买了(162﹣y)米.根据题意,得=.解这个方程,得y=90.∴30×90+50(162﹣90)=6300.答:购买这162米布料花了6300元.方案选择问题15.【解答】解:∵第一次购书付款72元,享受了九折优惠,∴实际定价为72÷0.9=80元,省去了8元钱.依题意,第二次节省了26元.设第二次所购书的定价为x元.由题意得(x﹣200)×0.8+200×0.9=x﹣26,解得x=230.故第二次购书实际付款为:230﹣26=204(元).故选:A.16.【解答】解:设七年级三个班级共有x人,根据题意得:20×0.8x=20×0.9(x﹣7),解得:x=63,∴七年级三个班级共有63人.故选:D.17.【解答】解:设该班共有x人观看电影,根据题意,得x×50×0.8=(x﹣5)×0.9×50,解得x=45,即该班共有45人观看电影.故答案是:45.18.【解答】解:设黄聪购书的原价是x元,当200<x≤400元时,0.9x=324,解得x=360,当x>400时,0.8x=324,解得,x=405,由上可得,小聪所购书的原价是360元或405元,故答案是:360元或405元.19.【解答】解:设小冯班人数为x人,根据题意列方程得:2x+2x×+x+1=100,2x+x=99,x=99,x=36,答:小冯班上有学生36人.20.【解答】解:(1)若办金卡则需200元;若办银卡则需100+15×5=175(元);若不办卡则需12×15=180(元);故办银卡较为优惠;(2)若办银卡:100+5n=150,解得n=10,若不办卡:12n=150,解得n=12.5,∵n为正整数,∴n取最大值为12.21.【解答】解:(1)按方案A购买,需付款:30×1600+20(x﹣30)=20x+4200,即需要付款(20x+4200)元;按方案B购买,需付款:30×160×0.9+20×0.9x=18x+4320,即需要付款(18x+4320)元.故答案是:(20x+4200),(18x+4320);(2)当x=40时,方案A:20×40+4200=5000(元).方案B:18×40+4320=5040(元).因为5000<5040,所以按方案A购买较为合算;(3)根据题意,得20x+4200=18x+4320.解得x=60.答:当购买运动棉袜60双时,两种方案付款相同.22.【解答】解:(1)在甲超市实付款为:500×0.88=440(元);在乙超市实付款为:500×0.9=450(元).∴在甲超市购买实付款为440元,在乙超市购买实付款为450元;(2)设当购物总额为x元时,两家超市实付款相同,根据题意得:0.88x=600×0.9+0.8(x﹣600),解之得,x=750.∴当购物总额为750元时,两家超市实付款相同.(3)设该顾客购物总额为y元,根据题意得:600×0.9+0.8(y﹣600)=584,解之得,y=655;∴0.88y=0.88×655=576.4(元),∴其在甲超市需实付款576.4元.23.【解答】解:(1)14+2.4×(10﹣3)=30.8(元),答:出租车的费用为30.8元.故答案为:30.8;(2)设甲、乙两地间的里程数是x公里,由题意得,14+2.4(x﹣3)+17.8=12+2.5x+×60×0.4,解得x=18.答:甲、乙两地间的里程数是18公里;(3)设这两位顾客乘车的里程数是y公里,当0<y≤10时,12+2.5y+×60×0.4=0.8(10+2.8y+×60×0.5)+5.3,解得y=5,当>10时,12+2.5y+×60×0.4﹣9.1=0.8(10+2.8y+×60×0.5)+5.3,解得y=40,答:这两位顾客乘车的里程数是5公里或40公里.。
一元一次方程应用题精选ppt课件

“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
3、三个连续的奇数的和为57,求这三个数。若设中间一 个奇数为X,则另外两个为__X_-_2___、_X_+__2___,并可得方 程为_(__X_-_2_)__+_X__+_(__X+2)=57
4、在某个月的日历表中任意圈出一个横列上相邻的三个 数,和为57,若设中间一个数为X,则另外两个为 __X_-_1___、__X_+__1__,并可得方程为(_X__-_1_)__+_X_+_(__X__+1)=57
调配问题
一、本课重点
初步学会列方程解调配问题各类型的应用题 分析总量等于总量一类应用题的基本方法和 关键所在.
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
综合题
1. 在课外活动中,张老师发现同学们的年龄大多是13岁. 就问同学:“我今年45岁,几年以后你们的年龄是我年龄 的三分之一?”
设X年后学生是老师年龄的三分之一,则老师那时年龄为 ( 45+X)岁,学生为(13+X)岁,两者之间的关系为
一元一次方程应用专题分段计费与方案问题
某乘客携带了30千克的行李乘飞机,按民 航规定:乘飞机的乘客,每人最多买行李票,现在乘客购买120元的 行李票,求该乘客的飞机票价。
• 小江一家三口准备国庆节外出旅游.现有两家 旅行社,它们的收费标准分别为: • 甲旅行社:大人全价,小孩半价; • 乙旅行社:不管大人小孩,一律八折. • 这两家旅行社的基本价一样.你认为应该选择 哪家旅行社较为合算? • 由学生完成选择旅行社的方案。
• 通讯问题 • 某移动通讯公司升级了两种通讯业务,“全球 通”使用者先缴50元月租费,然后每通话1分 钟,再付话费0.4元,“快捷通”不缴月租费, 每通话1分钟,付话费0.6元.根据上述资料, • (1)你认为一个月通话多少分钟,两种移动通讯 费用相同? • (2)某人估计一个月内通话300分钟,应选择哪 种移动通讯或用长途电话合算些?
一家游泳馆,每年6—8月出售会员证,每张 “会员证”80元,只限本人使用,凭证进游泳 馆,每次1元;无证进游泳馆,每次5元。通过 计算回答: (1)什么情况下,购“会员证”与不购“会 员证”付一样的钱? (2)什么情况下,购“会员证”比不购“会 员证”合算?
§问题:某校打算购买多媒体教学系统 若干套,现从两家商场了解到同一型号 的器材报价均为40000元。 §甲商场:第一套按原价收费,其余每 套优惠25%。 §乙商场:每套优惠20%。 §问:(1)买多少套时两家收费一样多? (2)若买四套到哪家优惠的多?六套 呢?
(1).设定购买x套时收费一样多 40000+40000× (1-25%) (x-1)(甲) =(1-20%) × 40000x(乙) 解得x=5(套) 故买5套时两家商场收费一样多 (2)当x=4时,左边=130000,右边=128000 , 左边>右边,乙家优惠 当x=6时,左边=190000,右边=192000 ,右边>左边,甲家优惠
一元一次方程应用题题型归纳,方案决策问题100题,方老师免费视频讲解
一元一次方程应用题题型归纳,方案决策问题100题,方老师
免费视频讲解
例题5:在“清洁乡村”活动中,某村长提出了两种购买垃圾桶方案.方案一:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案二:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元.设交费时间为x个月,方案一的购买费和垃圾处理费共为M元,方案二的购买费和垃圾处理费共为N元.(1)分别用x表示M,N;(2)若交费时间为12个月,哪种方案更合适,并说明理由.一元一次方程总共有哪些常考题型?这是很多同学在提的问题。
我们不管有多五花八门,我们把常见的几种理解透彻就好,也就一通百通了。
行程问题,工程问题,数字问题,和倍差问题,年龄问题,储蓄利息问题,商品利润问题,盈亏问题,人员调配问题,配套问题,比赛积分问题,分段计费问题(阶梯收费问题),浓度问题,方案决策问题,等等。
一元一次方程应用题方案选择问题训练题(含解析)
一元一次方程应用题方案选择问题(含解析)一、单选题(共5题;共10分)1.(2020·丰南模拟)下图为歌神KTV的两种计费方案说明.若晓莉和朋友们打算在此KTV的一间包厢里连续欢唱6小时,经服务生计算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们在同一间包厢里欢唱的至少()A. 6人B. 7人C. 8人D. 9人2.(2020·黑龙江)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A. 3种B. 4种C. 5种D. 6种3.(2019七上·合肥月考)“欢乐购”元旦促销活动即将到来,小芳的妈妈计划花费1000元,全部用来购买价格分别为80元和120元的两种商品若干件,则可供小芳妈妈选择的购买方案有()A. 4种B. 5种C. 6种D. 7种4.(2019七上·崇川月考)小明和爸爸妈妈三人暑假准备参加旅游团去北京旅游,甲旅行社说:“如果父母买全票,小孩可半价优惠”:乙旅行社说:“全部按全票价的8 折优惠”,若全票价为1200元,则小明应选择哪家旅行社()A. 选择甲B. 选择乙C. 选择甲、乙都一样D. 无法确定5.(2016·赤峰)8月份是新学期开学准备季,东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后,超出部分按50%收费;在百惠书店购买学习用品或工具书累计花费50元后,超出部分按60%收费,郝爱同学准备买价值300元的学习用品和工具书,她在哪家书店消费更优惠()A. 东风B. 百惠C. 两家一样D. 不能确定二、综合题(共16题;共173分)6.(2020七上·武威月考)某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1分钟需付话费0.4元(这里均指市内电话),若一个月内通话分钟,两种通话方式的费用分别为元和元.(1)写出,与之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?7.(2020八上·宁波月考)某体育用品商店对甲、乙两种品牌的足球开展促销活动,已知甲、乙两种品牌的足球的标价分别是160元/个,60元/个,现有如下两种优惠方案;方案一:未购买会员卡时,甲品牌足球享受八五折优惠,乙品牌足球买5个(含5个)以上时所有足球享受八五折,5个以下必须按标价购买方案二:办理一张会员卡100元,会员卡只限本人使用,全部商品享受七五折优惠(1)若购买甲品牌足球3个,乙品牌足球4个,哪一种方案更优惠?优惠了多少元?(2)如果购买甲品牌足球若干个,乙品牌足球6个,方案一与方案二所付钱数一样多,求购买甲品牌的足球的个数8.(2020七上·合肥期中)合肥庐阳区实验学校七(6)班为迎接学校秋季运动会计划购买30支签字笔,若干本笔记本(笔记本数量超过签字笔数量),用来奖励运动会中表现出色的运动员和志愿者,甲、乙两家文具店的标价都是签字笔8元/支、笔记本2元/本,甲店的优惠方式是签字笔打九折,笔记本打八折;乙店的优惠方式是每买5支签字笔送1本笔记本,签字笔不打折,购买的笔记本打七五折.(1)如果购买笔记本数量为60本,并且只在一家店购买的话,请通过计算说明,到哪家店购买更合算?(2)若都在同一家店购买签字笔和笔记本,试问购买笔记本数量是多少时,两家店的费用一样?9.(2020七上·庐阳期中)某校组织学生外出研学,旅行社报价每人收费300元,当研学人数超过50人时,旅行社给出两种优惠方案:方案一:研学团队先交1500元后,每人收费240元;方案二:5人免费,其余每人收费打九折(九折即原价的90%)(1)用代数式表示,当参加研学的总人数是x()人时,用方案一共收费________元;用方案二共收费________元;(2)当参加旅游的总人数是80人时,采用哪种方案省钱?说说你的理由10.(2020七上·沂南期中)甲、乙两家商场以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲商场规定:凡超过元的电器,超出的金额按收取;乙商场规定:凡超过元的电器,超出的金额按收取,某顾客购买的电器价格是元.(1)当时,分别用代数式表示在两家商场购买电器所需付的费用(2)当时,该顾客应选择哪一家商场购买比较合算?说明理由.11.(2020七上·吉安期中)初一年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元,现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?12.(2020七上·新津期中)某市电话拨号入网有两种收费方式,用户可以任选其一:(A)计时制:3元/时;(B)包月制:60元/月(限一部个人住宅电话上网);此外,每一种上网方式都得加收通信费1.2元/时.(1)某用户某月上网的时间为x小时,请分别写出两种收费方式下该用户应该支付的费用;(2)当某用户某月上网的时间为90小时,你认为采用哪种方式较为合算?(3)根据上网时间的不同,你认为采用哪种方式较为合算?13.(2020七上·舒城月考)某学校班主任暑假带领该班三好学生去旅游,甲旅行社说:“如果教师买全票一张,其余学生享受半价优惠;”乙旅行社说:“教师在内全部按票价的6折优惠;”若全部票价是240元. (1)如果有10名学生,应参加哪个旅行社,并说出理由;(2)当学生人数是多少时,两家旅行社收费一样多?14.(2020七上·慈溪期中)甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元。
一元一次方程配套问题应用题
一元一次方程配套问题应用题问题一:小玲和小明一起去超市购买书籍,两人总共购买了20本书,其中小玲买了4本数学书和2本英语书,而小明买了3本数学书和5本英语书。
已知数学书的价格为5元一本,英语书的价格为8元一本。
问小玲和小明两人总共花费了多少钱?解答:设小玲购买数学书花费的金额为x元,购买英语书花费的金额为y 元。
根据题意可得以下两个方程:4x + 2y = ?(1)3x + 5y = ?(2)我们需要求解方程组(1)和(2)的解。
首先,对方程(1)进行变形,将x和y的系数化简,得到:2x + y = ?(3)然后,通过方程(2)减去方程(3),消去y的项,得到:3x + 5y - 2x - y = ?x + 4y = ?(4)再将方程(4)代入方程(1),消去x的项,得到:4(x + 4y) + 2y = ?4x + 16y + 2y = ?4x + 18y = ?(5)通过方程(5)可以得到y的值,然后再带入方程(4)求解x的值,就可以得到小玲和小明两人总共花费的金额。
假设通过计算得到y的值为y0,x的值为x0,那么小玲和小明两人总共花费的金额为:4x0 + 2y0 元。
问题二:某公司的年度利润为30万元。
根据公司的规定,如果年度利润超过20万元,则超出的部分按照30%的税率缴纳税款;如果年度利润低于或等于20万元,则不需要缴纳税款。
请问该公司需要缴纳多少万元的税款?解答:设该公司需要缴纳的税款为x万元。
根据题意,我们可以列出以下方程:30% × (30 - 20) = x通过计算,得到:0.30 × 10 = xx = 3所以,该公司需要缴纳3万元的税款。
问题三:某班级共有男生和女生两种人数,总人数为35人。
根据调查统计得知,女生人数是男生人数的2倍。
请问该班级中男生和女生的人数各是多少?解答:设男生人数为x人,女生人数为y人。
根据题意,得到以下两个方程:x + y = 35(1)y = 2x(2)将方程(2)代入方程(1),消去y的项,得到:x + 2x = 353x = 35x = 35 ÷ 3x ≈ 11.67由于班级人数为整数,所以我们可以取x ≈ 12,那么:y = 2xy = 2 × 12y = 24所以,该班级中男生的人数为12人,女生的人数为24人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
4.17一元一次方程应用方案设计题
1.两辆汽车从同一地点同时出发,沿着同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用
别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相
互可借用对方的油.为了使其中一车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里地
方返回?离出发地点最远的那辆车一共行驶了多少公里?
2. 光明中学组织七年级师生春游,如果单租45座客车若干辆,则刚好坐满;如果单租60座的客车,可
少租一辆,且余15个座位.
(1)求参加春游的师生总人数
(2)已知45座客车的租金为每天250元,60座客车的租金为每天300元,单租哪种客车省钱?
(3)如果同时租用这两种客车,那么两种客车分别租多少辆最省钱?写出租车方案.
3.一张圆桌由一个桌面和四条腿组成,如果1m三次方,木料可制作圆桌的桌面50个,或制桌腿300条,
现有5m三次方,木料,请你设计一下,用多少木料做桌腿,恰好配成圆桌多少张.
4.某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,若制成酸奶销售,每
吨可获利润1200元;若制成奶片销售,每吨可获利润2000元.
方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成;
(1)你认为选择哪种方案获利最多,为什么?
(2)本题解出之后,你还能提出哪些问题?若没解出,写出你存在的问题?
5.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电
价的70%收费。(1)某户八月份用电84千瓦时,共交电费30.72元,求a.
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?•应交电费是多少元?
2
6.小刚为书房买灯。现有两种灯可供选购,其中一种是9瓦的节能灯,售价为49元/盏,另一种是40瓦
的白炽灯,售价为18元/盏。假设两种灯的照明效果一样,使用寿命都可以达到2800小时。已知小刚家
所在地的电价是每千瓦时0.5元。
(1).设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯和用一盏白炽灯的费用。
(2).小刚想在这种灯中选购两盏。假定照明时间是3000小时,使用寿命都是2800小时。请你设计一种费
用最低的选灯照明方案,并说明理由。
7. 已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,
每台A型机器比B型机器一天多生产1个产品,求每箱有多少个产品?
8. 甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的
总工作量比此月人均定额的6倍少20件。
(1) 如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件?
(2) 如果甲组工人实际完成的此月人均工作量比乙组的多2件,那么此月人均定额是多少件?
(3) 如果甲组工人实际完成的此月人均工作量比乙组的少2件,那么此月人均定额是多少件?
9.一家游泳馆每年6~8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场卷每张1元,
不凭证购入场卷每张3元。试讨论并回答:
(1) 在这个游泳馆游泳多少次,购会员证比不购会员证付一样的钱?
(2) 在这个游泳馆游泳多少次,购会员证比不购会员证更合算?
(3) 在这个游泳馆游泳多少次,不购会员证比购会员证更合算?
3
10.某移动通讯公司有两种通讯业务,“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费
0.4元,“快捷通”不缴月租费,每通话1分钟,付话费0.6元。
问:(1)你认为一个月通话多少分钟,两种移动通讯费相同?
(2)某人估计一个月内通话300分钟,应该选择哪种移动通讯更合算些?
(3)你认为在什么情况下选用“全球通”较为合算?
11.小红一家三口准备国庆节外出旅游。现有两家旅行社,它们的收费标准分别为:甲旅行社:大人全价,
小孩半价;乙旅行社:不管大人小孩,一律八折。这两家旅行社的基本价一样。你认为应该选择哪家旅行
社较合算?
①请你估计选哪一家较为合算?
②分析:选择收费便宜旅行社较为合算,由于知道两家的收费标准,基本价都一样,但没提到基本价是多
少,因此设 ,则可知道甲旅行社的收费可表示为 元,乙旅行
社的收费可表示为 元。甲旅行社的收费 (填“<”“>”)乙旅行社的收费,因此选用
较为合算。
12.某商场计划拨款9万元从厂家购进50台电视机。已知该厂家生产三种不同型号的电视机,出厂价分
别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。①若商场同时购进其中两种不同型号电
视机共50台,用去9万元,请你研究一下商场的进货方案。②若商场销售一台甲种电视机可获利150元,
销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元。在同时购进两种不同型号电视机
的方案中,为使销售时获利最多,你选择哪种进货方案?
4
13.2014年世界杯足球赛韩国组委会公布的四分之一决赛门票价格是:一等席300美元,二等席200美元,
三等席125美元,某服装公司在促销活动中组织获得特等奖、一等奖的36名顾客到韩国观看2002年世界
杯足球赛的四分之一决赛,除去其他费用后,计划用5025美元买两种门票。你能设计出几种购票方案供
该服装公司选择吗?说明理由。
14.某移动通讯公司有两种通讯业务,“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费
0.4元,“快捷通”不缴月租费,每通话1分钟,付话费0.6元。
问:(1)你认为一个月通话多少分钟,两种移动通讯费相同?
(2)某人估计一个月内通话300分钟,应该选择哪种移动通讯更合算些?
(3)你认为在什么情况下选用“全球通”较为合算?