铁路通信系统

合集下载

铁道通信知识点总结

铁道通信知识点总结

铁道通信知识点总结铁道通信系统主要包括车载通信设备、地面通信设备、信号设备、控制中心等组成部分。

其中,车载通信设备主要用于实现车辆之间和车辆与控制中心之间的通信;地面通信设备主要用于车辆与信号设备之间的通信;信号设备主要用于实现铁路安全与控制;控制中心主要用于监控和管理整个铁路运输系统。

铁道通信的知识点包括但不限于以下内容:1. 车载通信设备车载通信设备是指安装在列车上用于车辆之间和车辆与控制中心之间通信的设备。

车载通信设备主要包括无线电台、列车位置检测系统、列车自动控制系统等。

其中,无线电台用于实现车辆之间和车辆与控制中心之间的语音和数据通信;列车位置检测系统用于实时监测列车位置和运行状态;列车自动控制系统用于实现列车的自动驾驶和运行控制。

2. 地面通信设备地面通信设备是指安装在地面设施上用于车辆与信号设备之间通信的设备。

地面通信设备主要包括信号机、轨道电路、闭塞系统等。

其中,信号机用于向列车发出运行指令和信息;轨道电路用于实时监测轨道上的列车位置和运行状态;闭塞系统用于确保列车之间的安全距离和运行顺序。

3. 控制中心控制中心是指用于监控和管理整个铁路运输系统的中央指挥部。

控制中心主要包括列车调度系统、信号控制系统、通信调度系统等。

其中,列车调度系统用于对列车的运行进行计划和调度;信号控制系统用于实现铁路信号的控制和管理;通信调度系统用于实现列车与控制中心之间的语音和数据通信。

4. 无线通信技术铁道通信系统采用的主要通信技术包括但不限于TETRA、GSM-R、LTE等。

其中,TETRA 是一种专门用于公共安全和紧急服务的无线通信标准,具有高可靠性、抗干扰能力强等特点;GSM-R是一种专门用于铁路通信的无线通信标准,具有覆盖范围广、通信质量高等特点;LTE是一种4G移动通信标准,具有数据传输速度快、网络性能优越等特点。

5. 信息安全技术铁道通信系统的信息安全技术包括但不限于加密技术、认证技术、防火墙技术等。

铁路通信传输系统方案研究(可编辑)

铁路通信传输系统方案研究(可编辑)

铁路通信传输系统方案研究(可编辑)一、系统概述铁路通信传输系统主要由传输设备、传输线路、传输网络和接入设备组成。

其主要任务是为铁路运输指挥、业务运营、旅客服务、安全监控等提供稳定、高效、安全的通信服务。

1.传输设备:主要包括光端机、数字交叉连接设备、传输节点等,负责信号的传输和调度。

2.传输线路:主要包括光纤、微波、卫星等传输介质,负责信号的传输。

3.传输网络:包括骨干网、接入网、局域网等,负责将传输设备、传输线路和接入设备连接起来,形成完整的通信网络。

4.接入设备:主要包括车站、区间、列车等接入点,负责将各种业务信号接入传输网络。

二、方案设计1.传输设备选型(1)高可靠性:传输设备应具备高度的可靠性,保证信号的稳定传输。

(2)高容量:传输设备应具备较大的传输容量,满足铁路通信业务的需求。

(3)易维护:传输设备应具备易维护性,便于日常运维。

2.传输线路设计(1)传输介质:根据铁路通信传输距离和地理环境,选择合适的传输介质。

(2)传输速率:根据业务需求,选择合适的传输速率。

(3)传输容量:根据业务发展需求,预留足够的传输容量。

(4)安全防护:加强传输线路的安全防护,防止信号泄露和干扰。

3.传输网络架构(1)可靠性:保证传输网络的稳定性和可靠性。

(3)经济性:传输网络设计应注重经济性,降低运营成本。

(4)灵活性:传输网络应具备灵活的调度能力,满足不同业务需求。

(1)骨干网:采用环形拓扑结构,实现多节点冗余,提高网络的可靠性。

(2)接入网:根据业务需求,采用星型、树型等拓扑结构,实现接入设备的灵活配置。

(3)局域网:采用以太网技术,实现车站、区间、列车等接入点的内部通信。

4.接入设备配置(1)业务需求:根据业务需求,选择合适的接入设备。

(2)接入速率:根据业务需求,选择合适的接入速率。

(3)接入方式:根据业务需求,选择合适的接入方式。

(4)安全防护:加强接入设备的安全防护,防止信号泄露和干扰。

(1)车站:配置高可靠性、高容量的接入设备,满足车站业务需求。

2024年GSMR铁路移动通信

2024年GSMR铁路移动通信

GSMR铁路移动通信GSM-R铁路移动通信:技术特点与发展前景引言一、GSM-R技术特点1.1专用频段GSM-R使用专用频段,避免与其他通信系统干扰,确保铁路通信的稳定性和可靠性。

在全球范围内,GSM-R主要使用900MHz频段,部分国家和地区使用1800MHz频段。

1.2安全性GSM-R采用了加密和认证机制,确保通信内容的安全。

同时,GSM-R还支持列车无线紧急呼叫功能,提高了列车运行的安全性。

1.3系统容量GSM-R系统具有较大的系统容量,可以满足铁路运营中的大量用户需求。

同时,GSM-R支持多用户同时通话,提高了通信效率。

1.4网络覆盖GSM-R系统实现了铁路线路的全覆盖,确保列车在任何位置都能进行通信。

GSM-R支持跨区切换,保证了列车在不同区域之间的通信连续性。

1.5兼容性GSM-R与其他通信系统具有较好的兼容性,可以与其他铁路通信系统(如TETRA、VHF等)进行互联互通,为铁路运营提供更多选择。

二、GSM-R发展历程与应用现状2.1发展历程GSM-R的发展始于20世纪90年代,欧洲铁路通信标准化组织(ERATO)开始研究铁路通信的标准化问题。

1993年,欧洲电信标准协会(ETSI)正式立项研究铁路通信标准。

1997年,ETSI发布了GSM-R标准。

此后,GSM-R在全球范围内得到了广泛的应用和推广。

2.2应用现状目前,GSM-R已经在全球范围内得到了广泛应用,成为铁路通信领域的事实标准。

在欧洲,GSM-R已经成为所有新建设的高速铁路线路的通信系统。

在中国,GSM-R也得到了广泛应用,成为高速铁路、普速铁路和城市轨道交通的主要通信系统。

三、GSM-R未来发展趋势3.1向LTE-R过渡随着4G移动通信技术的发展,GSM-R将逐渐向LTE-R (LongTermEvolution–Rlway)过渡。

LTE-R基于先进的4G技术,具有更高的数据传输速率、更大的系统容量和更好的性能。

目前,欧洲、中国等国家和地区已经开始进行LTE-R的研究和试验。

铁路通信概述PPT课件

铁路通信概述PPT课件
铁路通信网络安全与保障 措施
网络安全防护策略
01
防火墙技术
通过部署防火墙,限制非法访问和恶意攻击,保护铁路通信网络免受外
部威胁。
02
入侵检测系统
实时监测网络流量和异常行为,及时发现并应对潜在的网络攻击。
03
安全漏洞扫描
定期对铁路通信系统进行安全漏洞扫描,及时修补漏洞,降低安全风险。
数据加密传输技术
数据中心业务
提供数据存储、处理和分析服务,支持铁路运营和管理的智能化决策。
视频监控业务
视频监控系统
在铁路沿线各关键部位和场所部署摄像头,实现实时监控和录像 存储,保障铁路安全。
视频会议系统
提供视频会议服务,支持铁路各部门之间的远程协作和交流。
视频分析应用
通过视频分析技术,提取有用信息,为铁路运营和管理提供决策支 持。
移动电话业务
通过无线网络覆盖,为铁路工作人员提供移动通话服务,满足现 场通信需求。
紧急电话业务
在紧急情况下,提供快速、可靠的紧急通话服务,确保铁路安全。
数据传输业务
铁路数据传输网
构建高速、稳定的数据传输网络,实现铁路各业务系统之间的数据 交换和共享。
宽带接入业务
为铁路沿线各站点、段所提供宽带接入服务,满足铁路信息化建设 的需要。
车地通信
02
03
智能化应用
5G技术提供超高带宽和低时延, 满足铁路通信对实时性和大数据 传输的需求。
5G技术可实现高速移动下的车地 通信,提升列车运行安全和效率。
5G结合AI、云计算等技术,推动 铁路通信向智能化发展,提升运 营效率和服务质量。
物联网技术在铁路领域创新实践
设备监控与管理
物联网技术实现对铁路设备的实时监控和远程管理, 提高设备维护效率。

高速铁路数字移动通信系统

高速铁路数字移动通信系统

高速铁路数字移动通信系统在当今高速发展的时代,高速铁路成为了人们出行的重要选择。

而在保障高速铁路安全、高效运行的众多技术中,高速铁路数字移动通信系统扮演着至关重要的角色。

高速铁路数字移动通信系统,简单来说,就是为高速铁路量身定制的一套通信解决方案。

它就像是一条无形的信息高速公路,确保列车上的工作人员、控制系统以及乘客之间能够顺畅、快速、准确地进行信息传递。

首先,我们来了解一下为什么高速铁路需要专门的数字移动通信系统。

高速铁路的运行速度极快,这就对通信的实时性和稳定性提出了极高的要求。

传统的移动通信系统在面对高速移动的场景时,往往会出现信号中断、延迟、数据丢失等问题。

想象一下,如果列车驾驶员与调度中心之间的通信出现了故障,无法及时获取前方路况信息或者接收指令,那将会给列车的运行带来极大的安全隐患。

再者,高速铁路上还有大量的设备需要实时监控和控制,比如列车的动力系统、制动系统、车门系统等,这些设备的数据传输也必须稳定可靠。

此外,随着人们对出行体验的要求不断提高,乘客在列车上也希望能够享受到高质量的通信服务,如流畅的上网、视频通话等。

那么,高速铁路数字移动通信系统是如何实现这些功能的呢?它主要由以下几个部分组成:基站系统是其中的重要一环。

在铁路沿线,会设置一系列的基站,这些基站就像一个个接力站,确保列车在高速行驶过程中始终能够接收到稳定的信号。

基站的覆盖范围和信号强度经过精心设计和优化,以适应高速铁路的特殊需求。

核心网则负责对通信数据进行处理和传输。

它就像是一个中央大脑,管理着整个通信网络的资源分配、数据路由等工作,确保信息能够快速、准确地到达目的地。

终端设备包括列车上的车载通信设备以及工作人员和乘客使用的移动终端。

车载通信设备与列车的控制系统紧密相连,能够实时传输列车的运行状态数据,并接收来自外部的指令。

而乘客使用的移动终端则可以通过无线网络接入系统,满足他们的通信和娱乐需求。

为了保证通信的可靠性和安全性,高速铁路数字移动通信系统还采用了一系列先进的技术。

GSM-R铁路综合数字移动通信系统

GSM-R铁路综合数字移动通信系统

隧道和地下车站覆盖
GSM-R系统采用特殊的信号传输技术,实现了隧道 和地下车站的有效覆盖,保证了在这些区域的通信 质量。
山区和荒漠覆盖
GSM-R系统具备在山区和荒漠等复杂地形 下的覆盖能力,能够满足在这些区域的通信 需求。
兼容性好
与现有通信系统兼容
GSM-R系统与现有的公众移动通信网络兼容,如GSM、GPRS等,方便用户在铁路沿线及列车上使用 手机、上网等通信服务。
GSM-R铁路综合数字移动通信系 统
目录
• 引言 • GSM-R系统的组成 • GSM-R系统的功能 • GSM-R系统的优势 • GSM-R系统的应用场景 • GSM-R系统的未来发展
01 引言ห้องสมุดไป่ตู้
目的和背景
铁路运输是全球范围内重要的交通方 式之一,保障铁路运输的安全和效率 至关重要。
GSM-R系统是为了满足铁路运输在移 动通信方面的特殊需求而设计的,旨 在提供高效、可靠的通信服务,支持 列车控制、调度、旅客信息等多种应 用。
VS
远程监控
GSM-R系统可以用于远程监控货运列车 的运行状态和货物安全,提高运输安全性 和可靠性。
06 GSM-R系统的未来发展
5G技术在GSM-R系统中的应用
5G技术将为GSM-R系统带来更高的数据传输速率、更低的延迟和更高的可靠性,提 升铁路运输的安全性和效率。
5G技术将促进铁路移动通信系统的升级,支持更高清的视频监控、更准确的定位和 更智能的调度控制。
列车控制和调度通信
列车控制指令的传输
GSM-R系统能够传输列车控制指令,如启动、停止、加速、减速等,实现对列车的远程控制。
调度指令的传输
调度员可以通过GSM-R系统向列车发送调度指令,如调整列车运行计划、优先级调整等,确保列车的有序运行。

铁路通信系统的维护与优化

铁路通信系统的维护与优化铁路通信系统在现代化的铁路运输中扮演着至关重要的角色。

为了确保铁路的安全性和运行效率,铁路通信系统需要进行持续的维护和优化。

本文将讨论铁路通信系统的维护与优化的重要性,并提出一些有效的方法和策略。

一、维护铁路通信系统的重要性铁路通信系统作为铁路运输中的核心部分,必须保持良好的状态以确保铁路运输的顺利进行。

以下是维护铁路通信系统的重要性的几个方面:1. 保证通信畅通:铁路通信系统承担着铁路线路间的音频和数据通信任务。

只有当通信系统保持畅通无阻时,车站之间和列车乘务员之间的有效通信才能实现。

这对于调度和运营安全具有重要意义。

2. 提升安全性:铁路通信系统在应对突发事件和紧急情况时起着关键作用。

例如,火灾、事故或其他紧急情况下,及时的通信可以帮助工作人员采取适当的措施,并协助救援工作。

优化和维护通信系统能够提高运输的安全性。

3. 提高效率:良好的通信系统可以促进调度和列车运行的协调。

高效的通信可以提高铁路系统的响应速度,使调度员能够更好地控制列车的运行和减少延误。

维护和优化通信系统是提高铁路运输效率的重要因素。

二、维护铁路通信系统的方法和策略为了确保铁路通信系统的稳定和高效,以下是几个维护和优化通信系统的方法和策略:1. 定期检查和保养:定期检查通信设备的工作状态,确保设备正常运行。

对于发现的故障或问题,及时进行修复或更换。

同时,定期进行设备保养,包括清洁设备、检查电源和电缆连接等,以保持设备的正常工作状态。

2. 引入新技术:随着科技的不断发展,铁路通信系统也需要适时引入新的技术来提升系统的可靠性和效能。

例如,采用数字通信技术和网络化管理系统,以提高通信质量和管理效率。

3. 加强人员培训:铁路通信系统的运维人员需要接受专业的培训,了解最新的通信技术和操作方法。

他们应具备识别和解决通信故障的能力,并且能够在紧急情况下快速反应。

通过加强人员培训,可以提高通信系统的维护和管理水平。

4. 定期演练和测试:定期进行演练和测试是评估通信系统性能和准备应对突发情况的重要手段。

高速铁路信号通信系统设计与优化

高速铁路信号通信系统设计与优化随着科技的不断进步,高速铁路交通成为现代化城市快速发展的重要组成部分。

高速铁路信号通信系统是确保高铁运行安全和提供高效服务的关键设备之一。

本文将探讨高速铁路信号通信系统的设计原理和优化方法。

一、高速铁路信号通信系统的设计原理1. 整体框架设计高速铁路信号通信系统设计需要考虑网络架构、通信设备以及信号传输等方面。

首先,要确定监控中心和各个车站之间的通信连线,选择适当的通信设备,以确保数据传输的稳定和可靠。

2. 通信传输技术在高速铁路信号通信系统设计中,常见的传输技术包括SDH(同步数字体系)、PDH(分时复用数字体系)、Ethernet以及LTE等。

根据具体需求和技术要求,选择合适的传输技术,以提供高质量的通信服务。

3. 信号系统设计高速铁路信号系统设计需满足列车运行安全和高效。

采用轨道电路和无线通信相结合的方式,确保列车之间的安全距离和运行速度的监测。

同时,还需要设计信号机、轨道检测设备以及信号解码等装置,以确保信号的准确传递和解析。

4. 系统安全设计高速铁路信号通信系统的安全性至关重要。

设计者需要考虑网络安全、数据保护和防止干扰等方面的问题。

采用加密技术、防火墙和安全策略等手段,有效保护系统免受黑客攻击和恶意软件的威胁。

二、高速铁路信号通信系统的优化方法1. 数据传输优化为了提高高速铁路信号通信系统的效率,设计者可以采用数据压缩技术、数据分包等方法。

将数据进行压缩,减少传输负荷,同时采用分包策略,确保数据的完整性和实时性。

2. 信号仿真与测试通过对信号系统进行仿真和测试,可以发现系统中的潜在问题和瓶颈。

设计者可以使用专业的仿真软件模拟高速铁路运行情景,并确定系统中可能出现的信号传输中断、延迟和误差等问题,从而进行优化调整。

3. 设备匹配和更新随着科技的不断进步,高速铁路信号通信设备也不断更新换代。

设计者需要对系统中的设备进行匹配和更新,以适应快速变化的通信技术需求。

铁路系统通信培训计划

铁路系统通信培训计划一、培训概述铁路通信系统是铁路运输中至关重要的一部分,它负责保障列车间的通信、信号等信息的传递。

通信系统的规范和运行对于列车的安全和正常运行至关重要。

因此,为了提高铁路通信系统维护人员的技术水平和工作效率,我们制定了铁路系统通信培训计划。

本培训计划将覆盖铁路通信系统基础知识、设备维护、故障排查和日常管理等内容,旨在提高维护人员的技术水平,保障铁路通信系统的安全、可靠运行。

二、培训目标1. 熟悉铁路通信系统的基本原理和工作流程。

2. 掌握铁路通信设备的维护和保养方法,能够独立进行设备维护工作。

3. 能够准确快速地排查通信设备故障,保障通信系统的正常运行。

4. 熟悉铁路通信系统的日常管理方法,能够有效地进行系统管理和维护工作。

三、培训内容1. 铁路通信系统基础知识a. 通信系统的基本原理和工作流程b. 主要设备和器件的功能及运行原理c. 通信系统的网络拓扑结构2. 通信设备维护a. 通信设备保养方法和周期b. 设备故障排查与处理c. 设备维护记录和档案管理3. 通信系统安全a. 通信设备运行安全规范b. 通信系统安全演练和应急处理c. 通信设备应急维护和保障措施4. 通信系统日常管理a. 通信系统巡检与维护b. 设备运行数据记录与分析c. 通信系统故障纪实与处理四、培训方法1. 理论讲授:由资深通信系统专家进行通信系统基础知识和操作维护方法的讲解。

2. 实践操作:对通信设备进行实际操作演练,让学员熟悉设备的操作和维护方法。

3. 案例分析:通过真实的通信系统故障案例进行分析,帮助学员掌握故障排查和处理技巧。

4. 考核评估:培训结束后进行考核评估,确保学员掌握了相关知识和技能。

五、培训形式1. 在岗培训:结合工作中的实际情况进行培训,帮助学员更好地学习和应用所学知识。

2. 等级培训:根据学员的不同岗位和职责,分级进行培训,保证培训效果。

六、培训周期本培训计划将分为初级、中级和高级三个等级,每个等级的培训周期为1个月,总计3个月。

高速铁路通信系统

解决方案
采用先进的信号处理技术和天线技术 ,优化信号覆盖范围和信号质量,同 时加强网络规划和优化,提高信号的 连续性和稳定性。
数据安全问题
数据泄露和攻击
高速铁路通信系统涉及大量的敏感信息,如列车控制指令、乘客信息等,存在 数据泄露和被攻击的风险。
解决方案
采用加密技术和安全防护措施,保障数据传输和存储的安全性。同时加强网络 安全监测和应急响应能力,及时发现和应对安全威胁。
卫星通信技术还可以提供语音、数据、图像等多种通信 服务,满足不同业务需求。
网络安全技术
01
网络安全技术是高速铁路通信系统中的重要保障措施,主要用于保护 通信系统和数据的安全。
02
网络安全技术包括防火墙、入侵检测、数据加密等,其中数据加密是 高速铁路通信系统中常用的网络安全技术。
03
网络安全技术可以防止网络攻击和数据泄露等安全问题,保障高速铁 路通信系统的正常运行。
大数据分析技术还可以对各种设备和系统的性 能进行监测和预测,及时发现潜在的问题和风 险,提高系统的安全性和可靠性。
大数据分析技术还可以优化高速铁路通信系统 的资源配置和服务质量,提高运营效率和服务 水平。
人工智能技术的应用
人工智能技术可以应用于高速铁路通 信系统的故障诊断和预测,通过分析 历史数据和实时监测数据,自动识别 和预测潜在的问题和故障。
高速铁路通信系统
目录
• 高速铁路通信系统概述 • 高速铁路通信系统的关键技术 • 高速铁路通信系统的应用场景 • 高速铁路通信系统的未来发展 • 高速铁路通信系统的挑战与解决方案
01
高速铁路通信系统概述
定义与特点
定义
高速铁路通信系统是指为高速铁 路列车提供信息传输、信号控制 、安全保障等功能的综合性通信 网络。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铁路通信系统
铁路通信系统包括14个子系统分别为传输系统、数据通信系统、电话交换机接入系统、调度通信系统、移动通信系统、会议电视系统、应急通信系统、综合网管系统、综合视频监控系统、电源系统、时钟及时间同步系统、电源及机房环境监控系统、综合布线系统、通信线路系统。

1.传输系统简介
传输系统采用基于SDH的MSTP平台构建,按干线层、接入层组网。

全线一个同步区,采用主从同步方式。

干线层传输系统主要完成各类业务汇聚、调度以及与既有通信系统的互联,为接入层传输系统提供保护通道。

干线层新设基于SDH的MSTP2.5Gb∕s传输系统,利用敷设于铁路两侧不同物理径路的2条24芯光缆中的各两芯光纤,构成链型1+1MSP传输系统。

接入层传输系统提供2Mb∕s.10M/100M通道的接入、汇聚和转接,兼顾区间应急通信的接入条件。

接入层采用基于SDH的多业务传输平台MTSP 组建SDH622Mb/s传输系统,在各车站、线路所、无线基站、信号中继站、电气化所亭、综合维修车间等节点设置ADM。

利用敷设于铁路两侧不同物理径路的2条光缆中的各两芯光纤,构成链型1+1MSP传输系统。

2.数据通信系统简介
数据通信系统属于铁路数据通信网的区域网络,由核心节点、汇聚节点、
接入节点组成。

核心层节点实现区域网络与骨干网络间数据的快速转发;汇聚层节点实现各数据接入点的数据流量高速汇聚与转发;接入节点负责本地数据的接入、交换。

接入节点路由器与汇聚节点路由器之间通过传输系统提供的POS155Mb/s通道、接入节点路由器之间通过MSTP系统柜提供的FE(E)互联构成环形网。

3.电话交换及接入系统
本工程在XX通信站新设100o线程控电话交换机,并配置相应的维护终端。

接入由接入网局端设备、接入网终端设备、网管设备等组成。

4.调度通信系统
调度通信系统由调度所型调度交换机、车站型调度交换机、调度台、值班台、其他各类固定终端(电话分机)、网管终端及录音仪等设备组成。

通过调度所调度交换机与GSM-R系统互联,实现有线和无线调度业务互通(列车及相关作业人员配置移动终端)。

5.专用移动通信系统
采用GSM-R数字移动通信系统,覆盖铁路正线车站和区间,以及动车段所等作业区,解决上述生产作业区域的移动通信业务需求。

GSM-R系统主要由交换子系统(SSS)、智能网平台(IN),通用分组无线业务子系统(GPRS)、基站子系统(BSS)、操作维护子系统(OMC)以及移动终端等组成。

GSM-R系统可提供GSM系统所具备的各类电信业务,此外通过GSM-R系统特殊的组呼、广播呼叫、多优先级强占及强拆业务以及功能寻址、基于位置的寻址、紧急呼叫、呼叫接入矩阵等功能可提供铁路的特殊应用业务。

6.会议电视系统
会议电视系统由会议电视MCU,会议电视终端、图像显示设备、摄像机以及网管设备等组成。

会议电视业务是集语音、图像、数据于一体的多媒体通信业务,对于提高运营管理管理效率具有其它通信手段无法比拟的优势,对本线各部门争取时间、获取信息、及时决策,保证铁路安全可靠运行具有相当重要的意义。

7.应急通信系统
应急通信系统由应急中心设备、应急传输通道和应急通信现场设备组成。

事故现场采集到的的语音、数据、图像等业务信息通过有线或无线方式传送到区间接入点,再通过传输设备传送到应急指挥中心,建立应急指挥中心与事故现场建的应急通信网络。

8.综合网管系统
通信综合网管系统实现对传输及接入、电话交换、数据网、专用移动
通信、调度通信、会议电视、同步及时钟分配、通信电源及通信信号机房
环境监控、综合视频监控等子系统的集中故障告警、资源管理。

9.综合视频监控系统
综合视频监控系统为各类视频监控应用提供统一的业务实现平台,包括客运服务、防灾安全等系统对车站重点部位(咽喉区),区间公跨铁区段,通信、信号、信息、防灾机房、牵引供变电所亭、电力配电所、长大隧道口、局界处等的实时监控。

综合视频监控系统包括视频区域节点、I类视频接入节点、11类视频接入节点、视频采集点、用户终端。

视频区域节点、I类视频接入点、II
类视频接入点间网络由IP数据网承载视频采集点通过通信传输通道接入视频接入节点。

10.时钟及时间同步系统
全线一个同步区,采用主从同步方式。

时钟及时间同步系统为整个通信系统提供时钟同步,并为通信系统及各车站、SCADA、信号、客服等应用及子钟设备提供时间同步信号。

11.通信电源系统.防雷及接地系统
通信设备用电类型有两种:-48V直流用电设备和220V/380V交流
用电设备根据通信设备用电需求,分别设置-48V直流电源及UPS交流电源。

防雷系统包括无线GSM-R铁塔及天馈线系统防雷、线缆防雷、电源系统防雷、综合视频监控系统防雷等。

12.电源及机房环境监控系统
电源及环境监控系统可对机房动力设备、空调设备以及机房运行环境和
安全等各类情况进行实时监控,可监测各站点通信、信号机械室的环境量,包括温/湿度、烟雾、水浸、门禁、非法入侵、空调的控制,同时可对通信机械室的电源设备进行监测。

13.综合布线系统
四电房屋综合布线系统仅包含语音、数据所需网络布线,不涉及各部门独立组网的网络设备及软件。

语音点接入新设综合布线机柜,再通过大对数电缆接入光电数字综合引入柜,数据点接入新设综合布线机柜。

系统采用六类非屏蔽布线标准,拓扑结构为星型,由配线子系统、设备间、管理等部分组成。

14.通信线路系统
干线光缆原则上采用不同物理路径环形方式引入相应的通信站、车站及区间接入点(基站、中继站、电化所亭等)通信机械室内;
区间短段光电缆根据需要从区间GSM-R基站至光纤直放站、电力箱变敷设;
地区及站场通信线路采用市话电缆、短段光缆连接站场内各接入点提供数据信息传输通道。

相关文档
最新文档