2019年最新-31空间解析几何61-精选文档
空间解析几何28965-PPT文档资料25页

一、平面的点法式方程
法线向量、 平面的点法式方程
二、平面的一般方程
平面的一般方程、特殊的平面、截距式方程
三、两平面的夹角
两平面的夹角、两平面夹角的余弦 两平面平行与垂直的条件 点到平面的距离公式
一、平面的点法式方程
法线向量: 如果一非零向量垂直于一平面,
这向量就叫做该平面的法线向量.
或
C3B.
将其代入所设方程并除以B(B 0),便得所求的平面方程为 y3z0.
例4 设一平面与x、y、z轴的交点依次为P(a, 0, 0)、Q(0, b, 0)、 R(0, 0, c)三点, 求这平面的方程(其中a 0,b 0,c 0).
z R (0, 0, c)
n
Q (0, b, 0)
| n 1 | { A x 0 B y 0 C z 0 ( A x 1 B y 1 C z 1 ) } ,
又因Ax1By1Cz1D0,| n | A 2 B 2 C 2 , 所以 P r j n P 1 P 0 A 0 A 2 B 0 B 2 C x C 0 2 D y . z
O
y
P (a, 0, 0) x
例4 设一平面与x、y、z轴的交点依次为P(a, 0, 0)、Q(0, b, 0)、 R(0, 0, c)三点, 求这平面的方程(其中a 0,b 0,c 0).
解 设所求平面的方程为
A x B yC zD0.
因P(a, 0, 0)、Q(0, b, 0)、R(0, 0, c)三点都在这平面上,所以点P、
解 先求出这平面的法线向量 n .
M 1M 2{3, 4, 6}, n
M 1M3{2, 31}, 可取
精选最新版2019年高中数学单元测试试题《解析几何及综合问题》专题测试题库(含标准答案)

2019年高中数学单元测试试题 解析几何及综合问题专题(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.(2006四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于(A )9π (B )8π (C )4π (D )π第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题2.已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称.直线4x -3y -2=0与圆C 相交于A 、B 两点,且|AB |=6,则圆C 的方程为________.解析:抛物线y 2=4x ,焦点为F (1,0).∴圆心C (0,1),C 到直线4x -3y -2=0的距离d =55=1,且圆的半径r 满足r 2=12+32=10.∴圆的方程为x 2+(y -1)2=10.3. 已知直线l 的方程为2x =-,圆22:1O x y +=,则以l 为准线,中心在原点,且与圆O 恰好有两个公共点的椭圆方程为 . 4.椭圆21)0,0(12222=>>=+e b a by ax 的离心率,右焦点F (c,0),方程02=-+c bx ax 的两个根分别为x 1,x 2,则点P (x 1,x 2)在与圆222=+y x 的位置关系是▲ .5.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =_____.(1996全国理,16)三、解答题6.已知,A B分别是直线3y x =和3y x =-上的两个动点,线段AB的长为是AB 的中点,点P 的轨迹为.C(1)求轨迹C 的方程;(2)过点(1,0)Q 任意作直线l (与x 轴不垂直),设l 与轨迹C 交于,M N 两点,与y 轴交于R 点。
若,,RM MQ RN NQ λμ==证明:λμ+为定值。
空间解析几何

空间解析几何1. 引言空间解析几何是解析几何学中的一个分支,主要研究空间中的点、直线、平面之间的关系和性质。
它通过使用代数方法来解决几何问题,是几何和代数相结合的重要工具。
本文将介绍空间解析几何的相关概念和基本原理,并提供一些例题来帮助读者更好地理解和应用这些知识。
2. 空间直角坐标系空间解析几何的基础是空间直角坐标系。
一个空间直角坐标系可以由三条两两相交且相互垂直的坐标轴来确定,通常分别称为x轴、y轴和z轴。
在这个坐标系中,空间中的任意一点P可以通过三个有序实数(x, y, z)来表示,其中x、y和z分别表示P在x轴、y轴和z轴上的坐标。
3. 点、直线和平面在空间解析几何中,点、直线和平面是最基本的几何元素。
3.1 点点是空间中的一个位置,用有序实数(x, y, z)表示。
例如,点P(1, 2, 3)表示坐标为(1, 2, 3)的点P。
3.2 直线直线是由无数个点组成的,其中任意两点可以确定一条直线。
在空间解析几何中,一条直线可以用参数方程或者一般方程来表示。
例如,参数方程为:x = x0 + aty = y0 + btz = z0 + ct其中(a, b, c)是一条方向向量,表示直线的方向,(x0, y0, z0)是直线上的一个点,t为参数。
3.3 平面平面是由无限多个点组成的一个二维空间,其中任意三点不共线可以确定一个平面。
在空间解析几何中,一个平面可以用一般方程来表示。
例如,一般方程为:Ax + By + Cz + D = 0其中A、B、C和D是实数且不同时为零,(x, y, z)是平面上的一个点。
4. 空间解析几何的基本原理在空间解析几何中,有一些基本原理可以帮助我们求解空间几何问题。
4.1 距离公式空间中两点之间的距离可以通过距离公式来计算。
设A(x1, y1, z1)和B(x2, y2, z2)是空间中两点,其距离为:d = √((x2-x1)² + (y2-y1)² + (z2-z1)²)4.2 点到直线的距离设点P(x0, y0, z0)和直线L的参数方程为:x = x1 + aty = y1 + btz = z1 + ct点P到直线L的距离为:d = |(x0-x1)a + (y0-y1)b + (z0-z1)c| / √(a² + b² + c²)其中(a, b, c)是直线L的方向向量。
空间解析几何

z
R2 R1 P O
R M1 M2 N Q1 Q2 y Q
x
上一张 下一张
z
R2 R1 P
由勾股定理
R M1 M2 N Q1 Q2 y Q
ρ 2 =|| M 1 M 2 ||2
=|| M 1 N || + || M 1 R ||
2
2
P1 P2
O
=|| M1 P ||2 + || M1Q ||2 + || M1 R ||2
主要名称与记号: 主要名称与记号 坐标平面: 坐标平面 三个坐标轴中任意两条坐标轴 所确定的平面. 所确定的平面 xoy 平面 yoz 平面 zox 平面 平面, 平面, 平面.
上一张
下一张
空间点在空间直角坐标系中的表示法. 空间点在空间直角坐标系中的表示法
z z R M O x x 点M (x, y, z) P y Q
相应的空间直角坐标系, 即过空间中一定点 相应的空间直角坐标系 即过空间中一定点O, 空间中一定点 作三条互相垂直的数轴, 它们以O为公共原点 作三条互相垂直的数轴 它们以 为公共原点 且具有相同的单位长度, 且具有相同的单位长度 这三条数轴分别称为 x 轴, y 轴, z 轴, 都统称为数轴 都统称为数轴.
上一张
下一张
由上可知,对应于数轴上一点 的实数 也叫做P点的坐 的实数x也叫做 由上可知,对应于数轴上一点P的实数 也叫做 点的坐 这个事实我们用P(x)表示这样,数轴也可以称为坐 表示这样, 标,这个事实我们用 表示这样 数轴也可以称为坐 标轴,用O x表示。换句话说,在直线上,一个原点, 标轴, 表示。换句话说,在直线上,一个原点, 表示 一个正向,一个单位长就确定了它上面的一个坐标系 一个正向,一个单位长就确定了它上面的一个坐标系
空间解析几何21578共19页文档

设有向量a,b,定义c如下: c的模|c|=|a|·|b|sin; (其中为a,b的夹角) c的方向由a,b按右手法则确定,
则称c为a,b的向量积,记为c=a×b, 又称为叉积或矢量积. 注: a×b是一个向量;而且其特征为方向与a与b都垂 直,模等于以a,b为邻边的平行四边形的面积。
即
c a ba b ab si a ^ n b )(
b
a
向量积的性质:
① a×a=0;
② b×a=- a×b
向量的叉乘积不满足交换律
③(a+b) ×c=a ×c+b ×c
④(a×b)=a ×(b)= (a) ×b ⑤两个非零向量a与b互相平行的充要条件是a×b=0
2.向量积的坐标表示法
设有向量a=axi+ayj+azk,b=bxi+byj+bzk,则有 a×b =(aybz-azby)i+(azbx-axbz)j+(axby-aybx)k
3.向量的模与方向余弦的坐标表示法
定理: 设向量aX i+Y j +Z k ,则
|a|= a2 X2Y2Z2
非零向量与三坐轴之间的夹角叫做该向量的方向角,方向角 的余弦叫做向量的方向余弦,向量的方向余弦也可用向量的 坐标表示
定理: 设非零向量aX i+Y j +Z k与x轴,y轴,
z轴的夹角分别为 , ,
——(坐标表达式)
cx cy cz
注:向量混合积的几何意义:
|[abc]|表示以a、b、c为
abc
棱a 的、 平b 行、 六c 共 面面 体的 体积 [a .b c ]0. a
b
例 6 已知空间内不在一平面上的四点 A( x1, y1, z1 )、 B( x2 , y2 , z2 )、C( x3 , y3 , z3 )、 D( x4 , y4 , z4 ), 求四面体
第一节空间解析几何简介.doc

多元函数微分学§1空间解析几何简介【目的要求】1、会建立曲面和旋转曲面的方程;2、会求空间曲线在坐标面上投影方程;3、熟练识别空间柱面方程;了解常见二次曲面方程.【重点难点】旋转曲面的方程的建立;空间柱面概念的理解.【教学内容】在平面解析几何中, 通过坐标法把平面上的点与一对有次序的数对应起来, 把平面上的图形和方程对应起来, 从而可以用代数方法来研究几何问题. 空间解析几何也是按照类似的方法建立起来的.正像平面解析几何的知识对学习一元函数微积分是不可缺少的一样, 空间解析几何的知识对学习多元函数也是必要的.本章先简要介绍空间解析几何的有关内容.一、空间直角坐标系在空间任意选取一定点O点, 过定点O作三条互相垂直的以O为原点的数轴:Ox轴(横轴)、Oy轴(纵轴), Oz轴(竖轴),统称为坐标轴.它们的顺序按下角度转述右手规则确定:以右手握住z轴,让右手的四个手指从x轴正向以/2向y轴正向时,大姆指的指向就是z轴的正向(如图4-1).这样就构成了一个空间直角坐标系,如图4-2所示.点O称为坐标原点(或原点),每两条坐标轴确定一个平面,称为坐标平面.由x轴与y轴确定的平面称为xOy平面,类似地有yOzx横轴y纵轴z竖轴∙定点o图 4-2平面和zOx 平面.显然, 三个坐标平面把空间分为八个部分, 称为八个卦限(图6-3). 含有三个坐标轴正半轴的那个卦限叫做第Ⅰ卦限,其它第Ⅱ、第Ⅲ、第Ⅳ卦限,在xOy 平面的上方,按逆时针方向确定.第Ⅰ、Ⅱx 、Ⅲ、Ⅳ卦限下面的空间部分分别称为第Ⅴ、Ⅵ、Ⅶ、Ⅷ卦限(图4-3).设M 为空间任意一点, 过点分别作垂直于三坐标轴的平面,与坐标轴分别交于P 、Q 、R 三点(图4-4).设这三点在x 轴、y 轴和z 轴上的坐标分别为、y 和z .则点M 唯一确定了一个三元有序数组(,,)x y z ;反之,设给定一组三元有序数组(,,)x y z ,在x 轴、y 轴和z 轴上分别取点P 、Q 、R ,使得OP x =, OQ y =,OR z =, 然后过P 、Q 、R 三点分别作垂直于x 轴、y 轴和z 轴的平面,这三个平面相交于点M ,即由一个三元有序数组(,,)x y z 唯一地确定了空间的一个点M .于是,空间的点M 和三元有序数组(,,)x y z 之间建立了一一对应的关系,我们称这个三元有序数组为点M 的坐标,记为(,,)M x y z ,并依次称x 、y 和z 为点M 的横坐标、纵坐标和竖坐标.显然,原点O 的坐标为(0,0,0);x 轴、y 轴和z 轴上点的坐标分别为(,0,0)x 、(0,,0)y 、(0,0,)z ;xOy 平面、yOz 平面和zOx 平面上点的坐标分别为(,,0)x y 、(0,,)y z 和(,0,)x z .x Oyz图 4-1二、空间两点间的距离设1111(,,)M x y z 、2222(,,)M x y z 为空间任意两点,过这两点可作一条空间直线, 称空间直线段12M M 的长度为空间两点12,M M 之间的距离, 由此得空间任意两点间的距离公式:12d M M ==特别地, 点(,,)M x y z 与坐标原点(0,0,0)O 的距离为d OM ==xy)例1 求点(2,1,1)M -到y 轴的距离.解 过点M 作y 轴的垂线,其垂足点P 的坐标为(0,1,0),所以MP ==.例2 设动点M 与两定点1(1,2,1)P -, 2(2,1,2)P-等距离,求此动点M 的轨迹. 解 设动点(,,)M x y z ,因为12||||PM P M =,所以=由此得点M 的轨迹为26630x y z +--=.以后我们会知道, 这是一个空间平面方程.三、空间曲面及其方程与在平面解析几何中建立平面曲线与二元方程(,)0F x y =的对应关系一样,在空间直角坐标系中可以建立空间曲面与三元方程(,,)0F x y z =之间的对应关系.在空间解析几何中,任何曲面都可看作是空间点的几何轨迹.因此,曲面上的所有点都具有共同的性质,这些点的坐标必须满足一定的条件.在这样的意义下,先建立空间曲面S 与三元方程(,,)F x y z = (1)之间的对应关系:定义 1.1 如果三元方程(,,)0F x y z =与空间曲面S 有下列关系: (1) 曲面S 上任一点的坐标都满足方程(1); (2) 不在曲面S 上的点的坐标都不满足方程(1),那么,方程(1)就称为曲面S 的方程,而曲面S 就称为方程(1)的图形(见图4-5). 这样, 可利用方程来研究曲面. 关于曲面的讨论, 有下列两个基本问题: (1) 已知一曲面作为点的几何轨迹时, 如何建立该曲面的方程;(2) 已知方程(,,)0F x y z =, 研究此方程所表示的曲面形状.例3 求球心在点0000(,,)M x y z ,半径为R 的球面方程.解 设(,,)M x y z 是球面上任一点(见图4-6),则有0M M R =,由两点间距离公式得R =.两边平方,得222000()()()x x y y z z R -+-+-=.(2) 这就是球面上的点的坐标所满足的方程,而不在球面上的点的坐标都不满足这个方程.所以,方程(2)就是以点0000(,,)M x y z 为球心、R 为半径的球面方程. 特别地,以原点(0,0,0)O 为球心, R 为半径的球面方程为2222x y z R ++=. 一般的, 设有三元二次方程2220Ax Ay Az Dx Ey Fz G ++++++=,这个方程的特点是缺xy , yz , zx 各项, 而且平方项系数相同, 只要将方程经过配方就可以化为方程(2)的形式, 那么它的图形就是一个球面. 例4 考察方程222x y R +=表示怎样的曲面.解 方程222x y R +=在xOy 面上表示圆心在原点O 、半径为R 的圆. 在空间直角坐标系中, 此方程不含竖坐标z , 即不论空间点的竖坐标z 怎样, 只要它的横坐标x 和纵坐标y 能满足方程, 那么这些点就在该曲面上. 这就是说, 凡是通过xOy 面内圆222x y R +=上一点(,,0)M x y , 且平行于z 轴的直线l 都在此曲面图4-5图4-6上, 因此, 该曲面可以看做是由平行于z 轴的直线l 沿xOy 面上的圆222x y R +=移动而形成的. 这种曲面叫做圆柱面(见图4-7), xOy 面上的圆222x y R +=叫做它的准线, 平行于z 轴的直线l叫做它的母线.一般的, 直线L 沿定曲线C 平行移动形成的轨迹叫做柱面, 定曲线C 叫做柱面的准线, 动直线L 叫做柱面的母线.上面我们看到, 不含z 的方程222x y R +=在空间直角坐标系中表示圆柱面, 它的母线平行于z 轴, 它的准线是xOy 面上的圆222x y R +=.类似地, 方程23y x =表示母线平行于z 轴的柱面,它的准线是xOy 面上的抛物线23y x =,该柱面叫做抛物柱面(见图 4-8).一般的, 只含x 、y 而缺z 的方程(,)0F x y =在空间直角坐标系中表示母线平行于z 轴的柱面, 其准线是x Oy 面上的曲线:(,)0C F x y =. 类似可知, 只含x 、z 而缺y 的方程(,)0G x z =和只含y 、z 而缺y的方程(,)0H y z =在空间直角坐标系中表示母线平行于y 轴和x 轴的柱面.接下来, 我们讨论空间平面方程. 平面是曲面的一种特殊形式, 将方程(1)化为三元一次方程0Ax By Cz D +++=, (,,A B C 不全为零) (3)所对应的图形就是一个平面; 反之, 任何一个平面都可以用一个三元一次方程表示. 我们称方程(3)为平面的一般方程.例5 设一平面与,,x y z 轴的交点依次为(,0,0)P a 、(0,,0)Q b 、(0,0,)R c , 见图4-9, 求这平面的方程(其中0,b 0,c 0a ≠≠≠).图4-7222x y R +=L M∙3x图4-8解 设所求的平面的方程为0Ax By Cz D +++=.因(,0,0)P a 、(0,,0)Q b 、(0,0,)R c 三点都在该平面上,所以点P 、Q 、R 的坐标都满足平面方程;即有⎪⎩⎪⎨⎧=+=+=+,0,0,0D cC D bB D aA 得,,D D D A B C a b c=-=-=-. 得所求的平面方程为1=++czb y a x (4) 方程(4)叫做平面的截距式方程,而a 、b 、c 依次叫做平面在x 、y 、z 轴上的截距.四、二次曲面简介对于一般的曲面方程(,,)0F x y z =所确定的曲面, 常用平行于坐标面的平面相截, 考察其交线的形状, 然后加以综合, 从而了解曲面的全貌. 这种方法叫做截痕法.下面我们研究三元二次方程(,,)0F x y z =所表示的曲面, 即:二次曲面. 本小节将简介几种常见的二次曲面. 1. 椭球面 方程2222221,(0,0,0)x y z a b c a b c++=>>> 所表示的曲面叫做椭球面(见图4-10).椭球面与三个坐标面的交线:222210x y a b z ⎧+=⎪⎨⎪=⎩, 222210x z a c y ⎧+=⎪⎨⎪=⎩, 222210y z b cx ⎧+=⎪⎨⎪=⎩均为图4-9平面上的椭圆.椭球面与平行于xoy 的平面1z z =的交线也为椭圆⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(z z z c c b y z c c a x 同理, 与平面 1x x = 和 1y y =的交线也是椭圆.椭圆截面的大小随平面位置的变化而变化. 椭球面的几种特殊情况:(1) 当a b =时, 1222222=++cz a y a x 叫做旋转椭球面, 由椭圆12222=+cz a x 绕z 轴旋转而成. 旋转椭球面与椭球面的区别:与平面 1z z =)||(1c z <的交线为圆. 截面上的圆方程为: .)(12122222⎪⎩⎪⎨⎧=-=+zz z c ca y x (2) 当abc ==时, 1222222=++az a y a x 为球面.2.双曲面 由方程1222222=-+cz b y a x (0, 0, 0a b c >>>) 所确定的曲面称为单叶双曲面.由方程1222222-=-+cz b y a x (0, 0, 0a b c >>>) 所确定的曲面称为双叶双曲面.下面讨论单叶双曲面的图形.图 4-10显然,单叶双曲面关于各坐标轴、坐标平面及原点对称.用一组平行于xOy 平面的平面h z =去截它,截痕为椭圆,其方程为2222221,. x y h ab c z h ⎧+=+⎪⎨⎪=⎩并且h 越大,椭圆越大.用yOz 平面截曲面,得到一条实轴为y 轴的双曲线. 用zOx 平面截曲面,得到一条实轴为x 轴的双曲线. 因此,单叶双曲面的图形如图4-11所示. 注 方程1222222=+-cz b y a x 和1222222=++-c z b y a x 也都是单叶双曲面.用同样的方法也可以得到双叶双曲面的图形. 用h z =去截双叶双曲面,截痕方程为2222221,. x y h ab c z h ⎧+=-⎪⎨⎪=⎩当h c <时,无截痕;h c =时,截痕为两点(0, 0, )c ±;当h c >时,截痕为椭圆,且h 越大,椭圆越大.用yOz 平面去截它,截痕是一条实轴为z 轴的双曲线. 用zOx 平面去截它,截痕是一条实轴为z 轴的双曲线. 因此,双叶双曲面的图形如图4-12所示. 注 方程1222222-=+-c z b y a x 和1222222-=++-cz b y a x 也是双叶双曲面.3.抛物面常见的抛物面有椭圆抛物面和双曲抛物面. 由方程2222by a x z += (0, 0, 0a b c >>>)所确定的曲面称为椭圆抛物面.由方程2222by a x z -= (0, 0, 0a b c >>>)所确定的曲面称为双曲抛物面.用截痕法可得到它们的图形分别如图4-13与图4-14所示. 注 双曲抛物面的图形形状很象马鞍,因此也称马鞍面.4.柱面例4中定义的柱面也是一种特殊的二次曲面. 常见的柱面还有:图 4-13图 4-14椭圆柱面:12222=+b y a x (图4-15).双曲柱面:12222=-ax b y (图4-16).抛物面:py x 22= (图4-17).5.旋转曲面一条平面曲线C 绕同一平面内的一条定直线L 旋转所形成的曲面称为旋转曲面.曲线C 称为旋转曲面的母线,定直线L 称为旋转曲面的旋转轴,简称轴.前面讲过的球面,圆柱面等都是旋转曲面.例6 设母线C 在yOz 平面上,它的平面直角坐标方程为(, )0F y z =试证: 曲线C 绕z 轴旋转所成的旋转曲面∑的方程为( )0F z =.证 设(, , )M x y z 为旋转曲面上的任一点,并假定M 点是由曲线C 上的点000(0, , )M y z 绕z 轴旋转到一定角度而得到的(图4-18).因而0z z =,且点M 到z图 4-16轴的距离与0M 到z 轴的距离相等.而M 到z 轴的距离为22y x +,0M 到z 轴的距离为020y y =,即0y =又因为0M 在C 上,因而00(, )0F y z =,将上式代入得( )0F z =,即旋转曲面上任一点(, , )M x y z 的坐标满足方程( )0F z =.其次,若点(, , )M x y z的坐标满足方程( )0F z =,则不难证明M ∈∑.于是,该旋转曲面的方程为( )0F z =.注 此例说明,若旋转曲面的母线C 在yOz 平面上,它在平面直角坐标系中的方程为(, )0F y z =,则要写出曲线C 绕z 轴旋转的旋转曲面的方程,只需将方程(, )0F y z =中的y 换成±22y x +即可.同理,曲线C 绕y 轴旋转的旋转曲面的方程为(, 0F y =,即将(, )0F y z =中的z 换成±22z x +.反之,一个方程是否表示旋转曲面,只需看方程中是否含有两个变量的平方和M 图 4-18如在yOz 平面内的椭圆12222=+cz b y 绕z 轴旋转所得到的旋转曲面的方程为122222=++cz b y x . 该曲面称为旋转椭球面.例7 求xOy 平面上的双曲线14922=-y x 绕x 轴旋转形成的旋转曲面的方程.解 由于绕x 轴旋转,只需将方程14922=-y x 中的y 换成±22z y +即可,所以,所求的旋转曲面的方程为149222=+-z y x . 该曲面为旋转双叶双曲面.五、空间曲线及其方程一般地, 空间曲线可以看作两个曲面的交线. 设(,,)0F x y z =和(,,)0G x y z =是两个曲面方程, 它们的交线为C , 如图4-19. 因为曲线C 上的任何点的坐标应同时满足这两个方程, 所以应满足方程组(,,)0(,,)0F x y zG x y z =⎧⎨=⎩. 反过来, 如果点M 不在曲线C 上, 那么它不可能同时在两个曲面上, 所以它的坐标不满足方程组.因此, 曲线C 可以用上述方程组来表示. 上述方程组叫做空间曲线C 的一般方程.(,,)0F x y z =例8 方程组221236x y x z ⎧+=⎨+=⎩表示怎样的曲线解方程组中第一个方程表示母线平行于z轴的圆柱面, 其准线是xOy 面上的圆, 圆心在原点O , 半径为1. 方程组中第二个方程表示平行于y 轴的空间平面, 该平面在坐标平面zOx 面的截痕为2360x z y +=⎧⎨=⎩. 方程组就表示上述平面与圆柱面的交线, 大致图像见图4-20.以曲线C 为准线、母线平行于z 轴的柱面叫做曲线C 关于xOy 面的投影柱面, 投影柱面与xOy 面的交线叫做空间曲线C 在xOy 面上的投影曲线, 或简称投影(类似地可以定义曲线C 在其它坐标面上的投影).设空间曲线C 的一般方程为(,,)0(,,)0F x y z G x y z =⎧⎨=⎩.设方程组消去变量z 后所得的方程(x,y)0H =这就是曲线C 关于xOy 面的投影柱面. 曲线C 在xOy面上的投影曲线的方程为(,)00H x y z =⎧⎨=⎩. 请自行讨论: 曲线C 关于yOz 面和zOx 面的投影柱面的方程是什么? 曲线C 在yOz 面和zOx 面上的投影曲线的方程是什么?例9 已知两球面的方程为2221x y z ++=和222(1)(1)1x y z +-+-=, 求它们的交线C 在xOy 面上的投影方程. 解两球面的交线C 的方程:图4-202222221(1)(1)1x y z x y z ⎧++=⎨+-+-=⎩求解, 得1y z +=.上式代入2221x y z ++=得22220x y y +-=.这就是交线C 关于xOy 面的投影柱面方程. 两球面的交线C 在xOy 面上的投影方程为222200x y y z ⎧+-=⎨=⎩.例10 求由上半球面z z xOy 面上的投影.解由方程z 和z 消去z 得到221x y +=. 这是一个母线平行于z 轴的圆柱面, 容易看出, 这恰好是半球面与锥面的交线C 关于xOy 面的投影柱面, 因此交线C 在xOy 面上的投影曲线为2210x y z ⎧+=⎨=⎩. 这是xOy 面上的一个圆, 于是所求立体在xOy 面上的投影, 就是该圆在xOy 面上所围的部分:221x y +≤.。
(整理)第七章空间解析几何(可编辑修改word版)

aa a第七章空间解析几何与向量代数名 主要内容(7-1,7-2,7-3)称向 向量的加减法 三角形法则平行四边形法则量及线 向量与数的乘法 a :当> 0 时,a 表示和 a 同向, a= a 的向量; 当< 0 ,a 表示和 a 反向, a性 运 a = a 的向量;算主要性质:(1) a 单位化向量为 ,(2) a//b ⇔ a =b向 M (x , y , z ), M (x , y , z) 的距离: 量 1 1 1 1 2 2 2 2 的 向量的代数运算坐 a = a x i + a y j + a z k b = b x i + b y j + b z k标a ±b = (a x ± b x )i + (a y ± b y ) j + (a z ± b z )k a = a x i + a y j + a z k向量 a 的模、方向余弦: a =,cos = a x, cos =b x , cos = a z∧向量 a 在 μ 轴上的投影: Pr j μa = a cos(a , μ) =a ⋅ μ数 数量积量 积∧定义及运算: a ⋅ b = a b cos(a , b ) = a x b x + a y b y + a z b z2主 要 性 质 : ( 1)向 a ⋅ a = a; ( 2)a ⊥b ⇔ a ⋅ b = 0 , ( 3)量积混 合 向量积积∧cos(a , b ) =a ⋅ b定义∧a ⨯b 的模为 a ⨯ b = a b sin(a , b ) ,方向为 a 指向 b 大拇指方向性质:(1) a ⨯ b 表示以 a 、 b 为邻边的平行四边形面积;(2) a ⨯ b ⊥ a , a ⨯ b ⊥ b混合积a x a y a z定义及运算: (a ⨯ b ) ⋅ c = b x b y b zc x c y c z性质:(1) (a ⨯ b ) ⋅ c = (b ⨯ c ) ⋅ a = (c ⨯ a ) ⋅ ba b a(x - x )2 + ( y - y )2 + (z - z )22 1 2 1 2 1a 2 + a 2 + a 2 x y z μ运算ij ka ⨯b = a xa y a zb xb y b zm =- m★★1.填空:(1)要使a +b =a -b 成立,向量a , b 应满足a⊥b(2)要使a +b =a +b 成立,向量a , b 应满足a// b ,且同向★2.设 u =a -b + 2c , v =-a + 3b -c ,试用 a , b , c 表示向量 2u - 3v知识点:向量的线性运算解:2u - 3v = 2a - 2b + 4c + 3a - 9b + 3c = 5a -11b + 7c★3.设P , Q 两点的向径分别为r1 , r2 ,点R 在线段PQ 上,且=,证明点R 的向径为nr =n r1+m r2m +n知识点:向量的线性运算m m证明:在∆OPQ 中,根据三角形法则OQ -OP =PQ ,又PR =m +n PQ =m +n(r2-r1) ,∴O R =OP +PR =r1 +m +n (r2 -r1 ) = n r1+m r2 m +n★★4.已知菱形ABCD 的对角线AC =a , BD =b ,试用向量a , b 表示AB , BC , CD , DA 。
《空间解析几何基础》PPT课件

24
(5)二次锥面
x2 a2
y2 b2
z2 c2
0
(6)椭圆抛物面
x2 a2
y2 b2
2z
0
(a,b,c 0) (a,b 0)
(7.10) (7.11)
25
(7)双曲抛物面(马鞍面) x2 y2 2z 0 (a,b 0) a2 b2
(7.12)
26
思考题
指出下列方程在平面解析几何中和空 间解析几何中分别表示什么图形?
(1) x 2;
(2) x2 y2 4;
(3) y x 1.
27
思考题解答
方程
平面解析几何中 空间解析几何中
x2
平行于y 轴的直线 平行于 yoz 面的平面
圆心在(0,0) ,
x2 y2 4
半径为2 的圆
以z 轴为中心轴的圆柱面
y x 1 斜率为1的直线 平行于z 轴的平面
பைடு நூலகம்
28
三、平面区域的概念及其解析表示 设P0(x0,y0)是xOy平面上的一定点,δ>0为一实
4
空间两点间的距离
设M1 ( x1 , y1 , z1 )、M 2 ( x2 , y2 , z2 )为空间两点
zR
M1•
P o
d M1M2 ?
• M2
Q N
在直角M1 NM 2 及 直 角 M1 PN
中,使用勾股定
y 理知
x
d 2 M1P 2 PN 2 NM 2 2 ,
5
M1P x2 x1 , PN y2 y1 , NM 2 z2 z1 ,
(7.4)
其 中 a,b,c,d 为 常 数 , 且 a,b,c 不 全 为 零 . 例 如 , 当
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
III
IV 0 I
II
VII x VIII
V
VI
y
二、空间点的坐标.
z z R
M < > (x, y, z)
M
y Q
O x x
y
记: 点M为M (x, y, z)
P
特别: (1) 若点M在yoz面上, 则 x = 0; 在zox面上, y = 0; 在xoy面上, z = 0. (2) 若点M 在 x 轴上, 在 y 轴上, 则 则 y=z=0 x=z=0
ห้องสมุดไป่ตู้
由于 AB BC ,故△ABC是等腰三角形.
在 z 轴上,
(3) 各卦限点的坐标 Ⅰ (+, +, +) Ⅲ (, , +) Ⅴ (+, +, ) Ⅶ ( , , )
则
x=y=0
Ⅱ (, +, +) Ⅳ (+, , +) Ⅵ (, +, ) Ⅷ (+, , )
例1 判断点A(1,2,-2)所在的卦限,并求出点A关于xOy面,y 轴,原点的对称点的坐标. 解: 如图,点A (1,2,-2)在第五卦限中,点A 关于xOy面对称 的点是第一卦限中的点B(1,2,2);关于y轴对称的点是第 二卦限中的点C(-1,2,2);关于原点的对称点是第三卦限 中的点D(-1,-2,2) D(-1,-2,2) z
P1 P2 x
z
R2
R1 P
R M1 Q1
M2
N
Q Q2
O
y
空间两点间的距离公式
2 2 2 d | M M | ( x x ) ( y y ) ( z z ) 12 1 2 1 2 1 2
特别: 点M(x, y, z) 到原点O(0,0,0)的距离
2 2 2 d | OM | x y z
例2 证明以A(0,0,0) ,B(4,3,0), C(1,3,4)为顶点的△ABC 是一个等腰三角形. 证 由公式(1-1)得
2 2 2 AB ( 4 0 ) ( 3 0 ) ( 0 0 ) 5
2 2 2 BC ( 1 4 ) ( 3 3 ) ( 4 0 ) 5
第六章 向量代数与解析几何
z III IV 0 VII x VIII V VI I y II
第一节 空间直角坐标系
一、空间直角坐标系的建立
1. 空间直角坐标系 z o y z y o
x
x
x轴(横轴)、 y轴(纵轴)、z轴(竖轴)组成了一个空 间直角坐标系, 点O叫做坐标原点.
2. 坐标面. 由三条坐标轴的任意两条确定的平面, 称为坐标面, 分别叫xoy面. yoz面、zox面, 它们将空间分成八个卦限.
B(1,2,2)
C(-1,2,2)
1
O
2
y
x
A (1,2,-2)
三、空间两点间的距离公式
M1(x1, y1, z1), M2(x2, y2, z2) 为空 间两点 d 2 = | M1 M2 |2 = |M1N |2+ |NM2 |2 = |M1P |2 + |PN |2 +|NM2 |2 = |P1 P2 |2 + |Q1 Q 2 |2 + |R1 R 2 |2 = (x2x1)2 + (y2y1)2 + (z2z1)2