有理数的加法优秀课件

合集下载

2.1.1 第1课时 有理数加法的运算法则 人教版(2024)数学七年级上册教学课件

2.1.1 第1课时 有理数加法的运算法则 人教版(2024)数学七年级上册教学课件

A.都是负数
B.都是正数
C.至少有一个数是负数
D.恰好一正一负
【题型二】有理数加法的实际应用
例3:某直升机在空中进行升降练习,第一次上升210 m,第二次 下降232 m,此时直升机是否又回到了原来的位置?如果没有, 那么与原来的位置相比,升高或降低了多少米?
解:没有.设上升为正方向,210-232=-22(m),所以降低了22 m.
典例精讲
【题型一】有理数的加法法则
例1:(1)(+3)+(+4)=+(__ _3_+__4__)=7; (-3)+(-4)=_-___(3+4)=___-__7___;
(2)5+(-2)=_+___(5-2)=__3__;
(-5)+(+2)=-(___5_-__2__)=_-__3_.
例2:若两个数的和为负数,则这两个数( C )
数与0相加,仍得这个数 2.请同学们阅读课本27页“有理数加法法则”.
小组讨论
1.请同学们完成课本27页例1,试着归纳出进行有理数加法运 算时的步骤. ①先判断类型;②确定和的符号;③进行绝对值的和差运算
2.请同学们完成课本28页思考.
任何一个数加上一个正数,和比原来的数大.任何
一个数加上一个负数,和比原来的数小
活动2:异向情况. (1)请同学们阅读课本26页探究. (2)从刚才的算式中,归纳出绝对值不相等的异号两数相加的法
则. 绝对值不相等的异号两数相加,取绝对值较大的加数的符号, 且和的绝对值等于加数的绝对值中较大者与较小者的差
活动3:特殊情况. (1)如果物体先向右运动5 m,再向左运动5 m,那么两次运动
后的最终结果是什么?可以用怎样的算式表示? 物体仍在起点处.算式:5+(-5)=0(m) (2)如果物体第1 s向右(或左)运动5 m,第2 s原地不动,那么2 s 后物体位置在哪?如何列式? 物体在起点右(或左)侧5 m处.算式:5+0=5(m)或(-5)+0=-5(m) (3)根据(1)(2),归纳相应的法则. 互为相反数的两个数相加得0.一个

《有理数的加减法》课件

《有理数的加减法》课件
详细描述
有理数的减法在现实生活中有着广泛的应用,如温度的测量 和表示、海拔和潜水深度、速度和加速度等。通过这些实例 ,我们可以更好地理解有理数减法的意义和作用,并学会在 实际问题中运用所学知识。
04
有理数的加减混合运算
顺序关系
遵循从左到右的顺序
在有理数的加减混合运算中,应先进 行加法运算,再进行减法运算,且在 处理括号内的表达式时,应先进行括 号内的运算。
01
线性方程
在解决线性方程问题时,我们需要进行有理数的加减运算。例如,在解
一元一次方程时,我们需要对方程两边的项进行加减运算。
02 03
概率统计
在概率统计中,我们经常需要计算概率和统计量,这涉及到有理数的加 减法。例如,在计算期望值和方差时,我们需要进行大量的有理数加减 运算。
几何学
在几何学中,我们经常需要计算长度、面积和体积等,这涉及到有理数 的加减法。例如,在计算矩形的周长时,我们需要将矩形的长和宽相加 。
03
有理数的减法
减法转换为加法
总结词
有理数的减法可以通过加法来计算,这是有理数加减法的一个重要原则。
详细描述
在进行有理数的减法运算时,可以将减法转换为加法,即用被减数加上减数的 相反数来代替原来的减法运算。例如,计算“5 - 3”时,可以将其转换为“5 + (-3)”,这样就可以利用加法的规则来得出结果。
生物统计
在进行生物统计时,我们经常需要计算各种生物学指标并进行比较,这涉及到有理数的加 减法。例如,在比较不同种群的数量时,我们需要将各个种群的数量进行加减运算。
THANKS
感谢观看
VS
异类项的加法需要注意分母不能为零 ,即不能出现 $frac{a}{0}$ 的形式。

有理数的加法ppt课件

有理数的加法ppt课件

解:原式 (14) 26 (27) (33) ( 加法的交换律

[(14) 26] [(27) (33)] ( 加法的结合律

40 (60) (同号两数相加运算法则) ___-2__0___(异号两数相加运算法则).
练习 7 出租车司机小张某天下午的营运全是在东西方向的大街 上进行的,如果规定向东行驶为正,向西行驶为负,他这天下 午行车全程记录如下:(单位:千米) -3,+16,-11,+12,+18,-16 (1)将最后一名乘客送到目的地时,小张在下午出车的出发 点什么方向,距离多远? (2)若每千米耗油 0.3 升,这天下午小张开车共耗油多少升?
在运算过程中,“先定和 的符号,再算和的绝对 值”,是一种有效的方法.
(5)
1 2
1 2
0
有理数加法的运算步骤: 一、要辨别加数的类型(同号、异号); 二、要确定和的符号; 三、要计算绝对值的和(或差).
【思考】任何一个数加上一个正数,和与原来的数有怎 样的大小关系?加上一个负数呢?请你先借助数轴直 观地得出结论,再利用有理数的加法法则进行说明.
任何一个数加上一个负数,和小于原来的数.
我们以前学过加法交换律、结合律,对于有理数的加法它们还 成立吗?
【探究7】 计算:30 + (-20) ,(-20) + 30; 30 + (-20) = 10,(-20) + 30 = 10;
【发现】两个算式的结果相同. 两个算式的第二个算式是由第一个算式交换两个加数的位置 得到的.
2.1.1有理数的加法
第二章 有理数的运算
学习目标
理解有理数加法的意义,掌握有理数的加法运 算法则,能熟练地进行有理数的加法运算. 掌握有理数的加法运算律,并学会运用运算律对 算式进行简化运算.

有理数的加法ppt课件

有理数的加法ppt课件

解:(-11)+(-13) = -(11+13) =-24
解:原式 = -
探究新知:
(1)一个物体先向左运动3 m,再向右运动5 m, 两次运动的结果是从起点向哪边运动了几米?用算式怎么表示?
(-3 )+ 5 = 2
+5 -3
终点
+2
起点
探究新知:
(1)一个物体先向右运动3 m,再向左运动5 m, 两次运动的结果是从起点向哪边运动了几米?用算式怎么表示?
探究新知:
由以上的探究方法你能否推理出下面式子的算法吗?
( + 5)+ 0 = ?
(-5) + 0 = ?
解:原式= 5
解:原式= -5
能得出什么结论?
归纳法则:
有 理 数 加 法 法 则:
1、 同号两数
相加 , 和取
相同的 符号 , 且和的绝对值等于
2、 绝对值不相等的异号两数 相加 , 和取
(5)(-4)+14;
(2) 4+(-6); 解:原式=-(6-4)
=-2 (4)(-4)+4;
解:原式=0 (6)(-14)+4;
解:原式= +(14-4) (7) =6+10(-6);
解:原式= - (14-4) (8) =0+-(-106).
解:原式= 0
解:原式= -6
解 决 问 题:
2.用算式表示下面的结果: (1)温度由-4 ºC上升7ºC现在的温度是多少?
(+5)+(-3)= + 2
我国古代
用红色算筹表示正数,黑色算筹表示负数。
(-5)+(+3)= - 2
(-5)+(+3)

第1课时有理数的加法法则(39张PPT)数学

第1课时有理数的加法法则(39张PPT)数学

B
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解析
答案
解析 -(-1)+|-1|=-(-1)+1=1+1=2,故选B.
3.下列运算正确的是( )A.(-2)+(-2)=0 B.(-6)+(+4)=-10C.0+(-3)=3 D.0.56+(-0.26)=0.3
1
2
3
4
5
6
7
8
9
10
11
答案
同号两数相加,取与 相同的符号,并把 相加;异号两数相加,取 的符号,并用 减去_____________;互为 的两个数相加得0;一个数同0相加,仍得这个数.
类型2
利用有理数的加法法则运算

例2 (教材例1针对训练)计算:
(2)(-39)+(-11).
解 (-39)+(-11)=-(39+11)=-50.

(4)(-10)+0.
解 (-10)+0=-10.
归纳总结 两个有理数相加的运算方法:(1)同号→确定符号(与加数同号)→把绝对值相加;(2)异号→确定符号(取绝对值较大的加数符号)→较大绝对值减较小绝对值;(3)数+0=原数.
0
-8
典例精析
类型1
利用数轴表示两个有理数相加
例1 (教材补充例题)在数轴上表示以下两数相加,并写出结果.(1)(-5)+(+3).

解 (-5)+(+3)=-2.

(2)(-2)+(-4).
解 (-2)+(-4)=-6.
归纳总结 利用数轴表示两个有理数相加的步骤:(1)画数轴;(2)从0开始进行移动;(3)根据终点确定和.

有理数的加法ppt课件

有理数的加法ppt课件

03
CATALOGUE
有理数加法的运算律
交换律
总结词
有理数加法的交换律是指加法满足交换律,即加法运算不改变数的顺序。
详细描写
交换律是数学中的基本运算律之一,适用于有理数加法。交换律意味着无论数的顺序如何,加法的结 果都是相同的。例如,在有理数中,3 + 4 = 4 + 3,即加数的顺序可以交换,不影响加法的结果。
在0的左边。
绝对值表示一个数到数轴上原点 的距离,正数的绝对值等于其本 身,负数的绝对值等于其相反数

有理数的加法、减法、乘法和除 法等运算在数轴上可以通过相应
的位置移动来实现可视化。
02
CATALOGUE
有理数的加法规则
同号有理数相加
总结词
同号有理数相加,取相同的符号,并将绝对值相加。
详细描写
结合律
总结词
有理数加法的结合律是指加法满足结合 律,即加法运算不改变数之间的组合方 式。
VS
详细描写
结合律也是数学中的基本运算律之一,适 用于有理数加法。结合律意味着无论数如 何分组,加法的结果都是相同的。例如, 在有理数中,(3 + 4) + 5 = 3 + (4 + 5),即加数的组合方式可以改变,不 影响加法的结果。
整数与有理数相加
总结词
整数与有理数相加时,先将整数视为特殊的有理数,然后依 照有理数的加法规则进行运算。
详细描写
整数可以视为正有理数或负有理数,因此与任何有理数相加 时,都可以先将其视为特殊的有理数,然后依照有理数的加 法规则进行运算。例如,3(视为+3)和-5相加得到-2。
分数与有理数相加
总结词
04

1.有理数的加法PPT课件

1.有理数的加法PPT课件

(1)(-32)+7+(-8)
先将同号相
解 (-32)+7+((--8) 加
=(-32)+(-8)+7
= [-32+(-8)]+7
= (-40)+7 = -33
(2)4.37+(-8)+(-4.37)
解 4.37+(-8)+(-4.37)
= 4.37 +(-8)+(-4.37)
0与(-8)相加,结
解 记存入为证,则由题意可得:
(+200)+(-800)+(-1000)+(+2500)+(-500)+(-300) =(200+2500)+[(-800)+(-1000)+(-500)+(-300)]
=2700+(-2600) =100 答:该自动存取款机在这一时段内现款增加了100元.
2. 小欢的父亲在某储蓄所原有存款5000元. 某月他父 亲到该储蓄所办理了以下4项现款储蓄业务: 存入500元,支出300元,存入1200元,支出600元. 则他父亲在该储蓄所还有多少钱?
1.4.1 有理数的加法(2)
(-8)和(-12)都是负数
(1)(-8)+(-12) 取负号
解 (--88)+(-1122) =(+ ) = -20
两个负数相加,结果是负数,并且把它们的绝对值相加.
(-5)和9为异号
(2)(-5)+ 9
|9|>|5|,取9的符号
解 (5-5)9+ 9
=+( - )
即,两个有理数相加,交换加数的位置,和不变.

有理数的加法ppt课件

有理数的加法ppt课件
在财务管理中,有理数的加法用于计算总收入、总支出和净利润。 例如,一家公司的日收入为200元,支出为150元,净利润是多少呢?
200 + (-150) = 50(元)
Байду номын сангаас
日常生活中的应用
在日常生活中,有理数的加法用于计算购物的总花费、 旅行的总距离等。
例如, 一个人带了100元在超市购物,在超市购买了价值10元、20元 和30元的商品,还有多少钱呢?
0+ (-11) =
加法的结合律
加法的结合律表明,加数的分组方式可以改变,但和不变。 加法结合律: a + (b + c ) = (a + b ) + c
8 + (-10) + (- 8) =[8 + (- 8)] + (- 10) =0 +(- 10) =- 10
有理数加法的实际应用
财务计算中的应用
11 + 0= 11 0+0= 0
有理数加法的运算律
加法的交换律
加法的交换律表明,加数的顺序可以改变,但和不变。 加法交换律: a + b = b + a
5 + 10= 15
10 + 5=
(-11) +(-1) = -12
(-1) + (-11) =
(-5) + 1= -4
1 + (-5)=
(-11) + 0 = -11
加法的基本概念
(1)如果物体沿着一条直线先向左运动3m,再向右运动5m,那 么两次运动的最后结果是什么?如何用算式表示?
(2)如果物体沿着一条直线先向右运动3m,再向左运动5m,那 么两次运动的最后结果是什么?如何用算式表示?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档