高中数学必修五求数列通项公式方法总结和典型例题附详细答案

合集下载

数列求通项公式 所有方法类型全归纳 含解析答案 精品文档可编辑

数列求通项公式    所有方法类型全归纳  含解析答案  精品文档可编辑

一. 观察法例1:根据数列的前4项,写出它的一个通项公式:(1)9,99,999,9999, (2),17164,1093,542,211(3) ,52,21,32,1(4) ,54,43,32,21--二、公式法三.累加法求形如1n a +=n a +f(n)的递推数列的通项公式的基本方法。

(其中f(n)能求前n 项和即可)利用1211()()n n n a a a a a a -=+-+⋅⋅⋅-求通项公式的方法称为累加法。

累加法是求型如1()n n a a f n +=+的递推数列通项公式的基本方法(()f n 可求前n 项和).例1.已知数列{}n a 中,1129,21,(2,*)n n a a a n n n N -==+-≥∈,求这个数列的通项公式。

练习:已知数列{}n a 中,113,2,(*)n n n a a a n N ==+∈+,求n a例3. 若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。

累乘法:求形如1n a +=g(n)n a 的递推数列通项公式的基本方法。

(其中g(n)可求前n 项 积即可)。

利用恒等式321121(0,2)n n n n a a a a a a n a a a -=⋅⋅⋅≠≥求通项公式的方法称为累乘法,累乘法是求型如: 1()n n a g n a +=的递推数列通项公式的基本方法(数列()g n 可求前n 项积).例1.若满足111,(*),1n n a na n N a n +==∈+求这个数列的通项公式。

变式练习:设{}n a 是首项为1的正数组成的数列,且2211(1)0(12)n n n n n a na a a n +++-+==,,…,则它的通项公式为n a = .(倒数法)例题6:已知数列{}n a 中满足11a =,131nn n a a a +=+,求数列的通项n a .变式练习:知数列{}n a 中满足11a =,1231nn n a a a +=+,求数列的通项.待定系数法:例10:设数列}{n c 的各项是一个等差数列与一个等比数列对应项的和,若c 1=2,c 2=4,c 3=7,c 4=12,求通项公式c n例11. 已知数列{}n c 中,b b c +=11,bbc b c n n ++⋅=-11,其中b 是与n 无关的常数,且1±≠b 。

求数列通项公式的十种方法(例题+详解)

求数列通项公式的十种方法(例题+详解)

求数列通项公式的十种方法一.公式法 例1已知数列{勺}满足d”|=2勺+3x2", q=2,求数列{勺}的通项公式。

扌,故数列{影}是 以沪知为首项,以扌为公差的等差数列,由等差数列的通项公式,畤“+心)|,3 1 所以数列{©}的通项公式为a n =(-n —)2\2 2评注:本题解题的关键是把递推关系式。

心=2©+3><2”转化为增一牛=3,说明数列 2 2 2 {*}是等差数列,再直接利用等差数列的通项公式求出*=1+5—1)_,进而求出数列 2 2 2{q r }的通项公式。

例2.若S”和7;分别表示数列{©}和0}的前"项和,对任意正整数a n =-2(n + l), T n -3S n =4n.求数列{b K }的通项公式;解:•/ a fj = -2(n + I)/. “] = -4 cl = -2 = 一昇 一 3n.・.坊=3»+4"=-3舁2_5加 2 分 当 ”=1 时,7j 訥=—3—5=—8 当 n>2^\,b f J =T f J —7^2—1 =-6/2—2 ........... . ^=—6/2—2. 4 分I练习:1.已知正项数列{an },其前n 项和Sn 满足10Sn=an 2+5a n +6且a 】,a3,a 】5成等 比数列,求数列{%}的通项%. 解:T 105>訂+5/+6,① ・:108产日「+5/+6,解之得创=2或力产3,又 10$-产②-:+5②T +6(〃$2),②由①—②得 10a = (a^—a…-i 2) +6(a…—a…-x ),即(8”+$Q (%—/一】—5) =0T 色+/_1>0 , 二 a :—乔产5 (77^2) •当 ai =3 时,a.\— 13* ^i5=73. EL \* 越,去不成等比数列Si^3; 当 ai —2 时» 3.\— 12 9 ai5=72,有 &3 二日15 、二2, • • @7二5/7 —3,三、累加法 例3已知数列{©}满足如=©+2几+ 1, q=l,求数列{©}的通项公式。

高中数学必修5:求数列的通项公式 知识点及经典例题(含答案)

高中数学必修5:求数列的通项公式 知识点及经典例题(含答案)

求数列的通项公式【知识概述】1. 数列是高考数列命题的重要考点,考查目标则是考查学生的观察能力、抽象概括能力、计算能力、分析问题与解决问题的能力、转化与化归能力和推理运算能力等,在数列中蕴含着大量的思想方法,同时也是考查同学们数学能力的一个重要载体.命题的形式则比较灵活,在选择填空题和解答题中都有出现,一般为中高难度题,对考生的能力要求较高.2.在数列的大家庭中有形形色色的数列,等差数列和等比数列是两种非常重要的,也是非常基础的数列,当我们遇到的数列不是等差等比数列时,我们要通过一定方法转化成等差、等比数列,再运用等差、等比数列的知识进行研究3.数列中既可以出现比较简单的问题也可以出现比较复杂的、综合的问题,我们要学会把不熟悉的问题转化为熟悉的问题,把综合的、复杂的问题转化为基本的、简单的问题来解决,把综合的数列问题转化为通项、或者前n 项和的问题4.如何根据一个数列的递推公式来找到数列的通项公式【学前诊断】1.[难度] 易求下列数列的通项公式: (1)8,5,2,-1, (2)12,16,118,154,…(3)1,3,6,10,15,…2.[难度] 易已知数列的前项的和为223n S n n =-+,则n a ={}n a n3.[难度] 中在数列{}n a 中,若*111,32(2,),n n a a a n n -==+≥∈N 求该数列的通项公式n a .【经典例题】例1.在数列{}n a 中,若*111,32(2,),n n a a a n n -==+≥∈N 求该数列的通项公式n a .例2.在数列{}n a 中,已知112,13n n na a a a +==+,则2010a =____________.例3.设数列{}n a 的前n 项和为n S ,已知111,42n n a S a +==+.(1)设12n n n b a a +=-,证明数列{}n b 是等比数列; (2)求数列{}n a 的通项公式.例4.已知数列{}n a 满足11,a =11,()22,()n n na n n a a n n +⎧+⎪=⎨⎪-⎩当为奇数时,当为偶数时. (1)求2a ,3a ;(2)当2n ≥时,求22n a -与2n a 的关系式,并求{}n a 中偶数项的通项公式; (3)求数列{}n a 前100项中所有奇数项的和.【本课总结】由数列的递推公式求数列的通项公式主要有以下四种方法: 1.归纳法:就是写出数列的前几项,然后归纳猜想出数列的通项公式,不完全归纳法是合情推理,结论不可靠,如果是选填题,直接得出结果就可以了,若为解答题,则要用数学归纳法给出严格的证明.2. 累加(乘)法:若数列递推公式具有1()n n a a f n +-=的形式,可以用累加法,即21(1)a a f -=,32(2)a a f -=,…,1(1)n n a a f n --=-, 把这些等式的两端分别相加,得()()()21321(1)(2)(1)n n a a a a a a f f f n --+-++-=+++-,所以1(1)(2)(1)n a a f f f n =++++-.(当()f n 为常数时就是等差数列).若数列递推公式具有1()n na f n a +=的形式,可以用累乘法,即21(1)a f a =,32(2)a f a =,…,1(1)n n a f n a -=-,把这些等式的两端分别相乘,得32121(1)(2)(1)n n a a a f f f n a a a -⋅⋅⋅=⋅⋅⋅-所以1(1)(2)(1)n a a f f f n =⋅⋅⋅⋅-(当()f n 为常数时就是等比数列).()()()121321n n n a a a a a a a a -=+-+-++-,和23121n n n a a a a a a a -=⋅⋅⋅叫迭代法,跟累加法是同质的方法,但在使用时却比累加法还要方便,并有更广泛的使用价值.3. 构造辅助数列法:在已知数列的基础上,构造一个辅助的新数列,该新数列为等差(比)数列,然后先求出新数列的通项公式,再利用两数列的关系求出原数列的通项公式,这体现了转化思想的运用,也是解决数列问题的基本思想,构造辅助数列的常用途径有:{}{}21;;;;nnn a ak a ⎧⎫+⎨⎬⎩⎭{}1;n n a a --{}1n n a a λ--等.一般地:对于如下一些递推公式,可以构造辅助数列(等差、等比)加以解决:(1)1(0,1,)n n a c a d c c n *+=+≠≠∈N1n n a c a d +=+{}1()n n n a x c a x a x +⇔+=+⇔+是公比为c 的等比数列(其中x 为待定常数)或{}1111()n n n n n n n n a ca d a a c a a a a ++-+=+⇔-=-⇔-是公比为c 的等比数列,并用累加法求n a在1n n a c a d +=+中,当1c =时是等差数列,当0d =时是等比数列. (2)()10,n n n a ca d d n *+=+≠∈N1111nn n n n n na a c a c a ddd dd+++=+⇔=+,令n n na c d=,11n n c c c dd+⇔=+,转化为类型(1).(3)1(0,)n n n k a a k n a b*+=≠∈+N1n n n k a a a b+=+1111n nb a ka k+⇔=⋅+,令1nn c a =,11n n b c c kk+⇔=+,转化为类型(1)4.利用关系11 (1) (>1)n n n S n a S S n -=⎧=⎨-⎩法:在既有通项n a 又含有前n 项和n S 的问题中,解题策略则是利用公式11(2)(1)n n n S S n a S n --≥⎧=⎨=⎩进行消元,转化为只含一种量n a (或n S )的关系式.体现了转化思想的应用,数列中的一个重要问题就是n a 和n S 之间的相互转换.【活学活用】1.[难度] 中已知数列}{n a 满足)2(3,1111≥+==--n a a a n n n ,计算32,a a ,并求出数列的通项公式. 2. [难度] 难已知数列{}n a 的前n 项和为n S ,11=a ,且3231=++n n S a (n为正整数).(1)求数列{}n a 的通项公式;(2)若对任意正整数n ,n S k ≤恒成立,求实数k 的最大值.3. [难度] 难已知数列}{n a 满足11=a ,12525(21)()3636nn n a a n +=++⋅,(1)求}{n a 的通项公式; (2)求}{n a 中的最大项. (3)若n n a c =,求n n c c c c S ++++= 321.。

数列求通项的七种方法及例题

数列求通项的七种方法及例题

数列求通项的七种方法及例题数列求通项的7种方法及例题:1. 已知首项和公比法:设数列{an}中,a1为首项,q为公比,则an = a1 × q^(n-1)。

例如:已知数列{an}中,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1622. 已知前n项和法:设数列{an}中,Sn为前n项和,则an = S0 + S1 + S2 +···+ Sn-1 - (S1 + S2 +···+ Sn-1) = S0。

例如:已知数列{an}中,S2=6,S4=20,求a3。

答案:a3 = S2 - (S2 - S1) = 6 - (6 - 2) = 83. 等差数列的通项公式:设数列{an}为等差数列,d为公差,则an = a1 + (n-1)d。

例如:已知数列{an}为等差数列,a1=2,d=4,求a5。

答案:a5 = 2 + (5-1)4 = 184. 等比数列的通项公式:设数列{an}为等比数列,q为公比,则an = a1 ×q^(n-1)。

例如:已知数列{an}为等比数列,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1625. 三项和平均数法:设数列{an}中,Sn = a1 + a2 + a3 +···+ an,则an = Sn/n。

例如:已知数列{an}中,S4=20,求a3。

答案:a3 = S4/4 = 20/4 = 56. 泰勒公式法:对于一般的数列,可以使用泰勒公式进行求通项。

例如:已知数列{an}中,a1=2,且当n→∞ 时,an → 0,求a4。

答案:使用泰勒公式,a4 = a1 + (n-1)(a2 - a1)/1! + (n-1)(n-2)(a3 -2a2 + a1)/2! + (n-1)(n-2)(n-3)(a4 - 3a3 + 3a2 - a1)/3! = 2 + 3(2 - 2)/1! + 3(3 - 2)(3 - 4)/2! + 3(3 - 2)(3 - 4)(3 - 5)/3! = 2 + 3(0)/1! + 3(1)(-1)/2! + 3(1)(-1)(-2)/3! = 2 - 3/2 - 3/4 + 3/6 = 2 - 1/87. 斐波那契数列法:斐波那契数列是一种特殊的数列,它的通项公式可以写作 an = an-1 + an-2。

高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐

高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐

数学数列部分知识点梳理一数列的概念1)数列的前n 项和与通项的公式①n n a a a S +++= 21; ⎩⎨⎧≥-==-)2()1(11n S S n S a n n n2)数列的分类:①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 一、等差数列 1)通项公式d n a a n )1(1-+=,1a 为首项,d 为公差。

前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 2)等差中项:b a A +=2。

3)等差数列的判定方法:⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.4)等差数列的性质:⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. (7)设是等差数列,则(是常数)是公差为的等差数列;(8)设,,,则有;(9)是等差数列的前项和,则;(10)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.二、等比数列 1)通项公式:11-=n n q a a ,1a 为首项,q 为公比 。

高中数学必修五求数列通项公式方法总结和典型例题附详细答案[精品文档]

高中数学必修五求数列通项公式方法总结和典型例题附详细答案[精品文档]

数列专项-2 类型Ⅰ 观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项。

例1.写出下列数列的一个通项公式a n(1)-1,4,-9,16,-25,36,......;(2)2,3,5,9,17,33,......。

类型Ⅱ 公式法:若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩构造两式作差求解。

用此公式时要注意结论有两种可能,一种是“一分为二”,即分段式;另一种是“合二为一”,即1a 和n a 合为一个表达,(要先分1n =和2≥n 两种情况分别进行运算,然后验证能否统一)。

例2.设数列{}a n 的前n 项和为()()*∈-=N n a S n n 131 (1)求21a a 、;(2)求数列n a 的通项公式。

例3.设数列{}a n 的前n 项和为()*∈+=N n a S nn 12,求证n a 为等比数列并求其通项公式。

类型Ⅲ 累加法:形如)(1n f a a n n +=+型的递推数列(其中)(n f 是关于n 的函数)可构造: 11221(1)(2)..(1.)n n n n a a f n a a f n a a f ----=⎧⎪⎪⎨--=--=⎪⎪⎩ 将上述1-n 个式子两边分别相加,可得:1(1)(2)...(2)(1),(2)n a f n f n f f a n =-+-+++≥适用于)(n f 是可求和的情况。

①若()f n 是关于n 的一次函数,累加后可转化为等差数列求和;例4.设数列{}a n 满足11=a ,121+=-+n a a n n ,求数列的通项公式。

② 若()f n 是关于n 的指数函数,累加后可转化为等比数列求和;例5.设数列{}a n 满足21=a ,n n n a a 21=-+,求数列的通项公式。

人教A版高中数学必修五数列复习——通项公式


数列的通项公式的求法
题型二: 已知递推公式,求特殊数列的通项公式.
例2. 写出下面各数列的一个通项公式.
(4)
a1 1,
an1
n n
1
an (n
1)
数列的通项公式的求法
题型二: 已知递推公式,求特殊数列的通项公式.
例2. 写出下面各数列的一个通项公式.
(4)
a1 1,
an1
n n
1
an (n
c
1 1 b an1 an c
即转化为 { 1 } 是等差数列求解.
an
数列的通项公式的求法
题型二: 已知递推公式,求特殊数列的通项公式.
例2. 写出下面各数列的一个通项公式.
(3) a1 1, an an1 2n (n 2)
数列的通项公式的求法
题型二: 已知递推公式,求特殊数列的通项公式. 例2. 写出下面各数列的一个通项公式. (3) a1 1, an an1 2n (n 2)
数列复习 ——通项公式
基本概念
数列的通项公式:
如果数列{an}的第n项an与n之间的 关系可以用一个公式来表示,这个公式 就叫做这个数列的通项公式.
数列的通项公式的求法
题型一: 已知数列的前几项,求数列的通项公式.
例1. 根据数列的前几项,写出下列数列 的一个通项公式:
(1) 4 , 1 , 4 , 2 , ;
2. 已知递推公式,求特殊数列的通项公式 的方法:转化为等差、等比数列求通项; 累加法;迭乘法.
课后作业
《习案》作业二十.
湖南省长沙市一中卫星远程学校
►Suffering is the most powerful teacher of life. 苦难是人生最伟大的老师。 ►For man is man and master of his fate. 人就是人,是自己命运的主人。 ►A man can't ride your back unless it is bent. 你的腰不弯,别人就不能骑在你的背上。

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)1、定义法:直接求首项和公差或公比。

2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+,求n a .解:由212323(1)n a a a na n n ++++=-+,得2123123(1)(2)1n a a a n a n n -++++-=-+-,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求n a .解:由123123(1)(2)n n a a a a n a n -=++++-≥,得1123123(1)n n n a a a a n a na +-=++++-+,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=, 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=,求n a .解:∵2123n a a a a n ••••=,∴21232(1)n a a a a n -••••=-,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。

高中数学人教A版必修5第二章 求数列通项公式的方法总结

求数列通项公式的方法总结一、公式法(定义法)根据等差数列、等比数列的定义求通项 二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。

例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解法一:由1231n n n a a +=+⨯+得1231nn n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.nn a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯- 2、累乘法 适用于: 1()n n a f n a +=若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏例3 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式。

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十一种办法(办法全,例子全,归纳细)总述:一.运用递推关系式求数列通项的11种办法:累加法.累乘法.待定系数法.阶差法(逐差法).迭代法.对数变换法.倒数变换法.换元法(目标是去递推关系式中消失的根号).数学归纳法.不动点法(递推式是一个数列通项的分式表达式).特点根法二.四种根本数列:等差数列.等比数列.等和数列.等积数列及其广义情势.等差数列.等比数列的求通项公式的办法是:累加和累乘,这二种办法是求数列通项公式的最根本办法.三.求数列通项的办法的根本思绪是:把所求数列经由过程变形,代换转化为等差数列或等比数列.四.求数列通项的根本办法是:累加法和累乘法.五.数列的本质是一个函数,其界说域是天然数集的一个函数. 一.累加法1.实用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最根本的二个办法之一. 2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=双方分离相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 知足11211n n a a n a +=++=,,求数列{}n a 的通项公式. 解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =.例2 已知数列{}n a 知足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+双方除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 是以11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯-评注:已知a a =1,)(1n f a a n n =-+,个中f(n)可所以关于n 的一次函数.二次函数.指数函数.分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列乞降; ②若f(n)是关于n 的二次函数,累加后可分组乞降;③若f(n)是关于n 的指数函数,累加后可转化为等比数列乞降; ④若f(n)是关于n 的分式函数,累加后可裂项乞降.例3.已知数列}{n a 中,0>n a 且)(21n n n a na S +=,求数列}{n a 的通项公式.解:由已知)(21n n n a n a S +=得)(2111---+-=n n n n n S S n S S S ,化简有n S S n n =--212,由类型(1)有n S S n ++++= 32212,又11a S =得11=a ,所以2)1(2+=n n S n,又0>n a ,2)1(2+=n n s n ,则2)1(2)1(2--+=n n n n a n此题也可以用数学归纳法来求解. 二.累乘法1.实用于: 1()n n a f n a += ----------这是广义的等比数列 累乘法是最根本的二个办法之二. 2.若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 双方分离相乘得,1111()nn k a a f k a +==⋅∏例4 已知数列{}n a 知足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式. 解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯例5.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2,3,…),则它的通项公式是n a =________.解:已知等式可化为:[]0)1()(11=-++++n n n n na a n a a0>n a (*N n ∈)∴(n+1)01=-+n n na a , 即11+=+n n a a n n∴2≥n 时,n n a a n n 11-=- ∴112211a a a a a a a a n n n n n ⋅⋅⋅⋅=--- =121121⋅⋅--⋅- n n n n =n 1.评注:本题是关于n a 和1+n a 的二次齐次式,可以经由过程因式分化(一般情形时用求根公式)得到n a 与1+n a 的更为显著的关系式,从而求出n a .1,111->-+=+a n na a n n ,求数列{an}的通项公式.答案:=n a )1()!1(1+⋅-a n -1.评注:本题解题的症结是把本来的递推关系式,11-+=+n na a n n 转化为),1(11+=++n n a n a 若令1+=n n a b ,则问题进一步转化为n n nb b =+1情势,进而运用累乘法求出数列的通项公式. 三.待定系数法 实用于1()n n a qa f n +=+根本思绪是转化为等差数列或等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.1.形如0(,1≠+=+c d ca a n n ,个中a a =1)型 (1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可经由过程待定系数法结构帮助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c cd λ所以有:)1(11-+=-+-c d a c c d a n n是以数列⎭⎬⎫⎩⎨⎧-+1c d a n 组成认为11-+c d a 首项,以c 为公比的等比数列,所以11)1(1-⋅-+=-+n n c c d a c d a 即:1)1(11--⋅-+=-c d c c d a a n n . 纪律:将递推关系d ca a n n +=+1化为)1(11-+=-++c da c c d a n n ,结构成公比为c 的等比数列}1{-+c da n 从而求得通项公式)1(1111-++-=-+c d a c c d a n n 逐项相减法(阶差法):有时我们从递推关系d ca a n n +=+1中把n 换成n-1有d ca a n n +=-1,两式相减有)(11-+-=-n n n n a a c a a 从而化为公比为c的等比数列}{1n n a a -+,进而求得通项公式.)(121a a c a a nn n -=-+,再运用类型(1)即可求得通项公式.我们看到此办法比较庞杂.例6已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解法一:121(2),n n a a n -=+≥又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21n n a =-解法二:121(2),n n a a n -=+≥两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……演习.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a .答案:1)21(1+=-n n a2.形如:nn n q a p a +⋅=+1 (个中q 是常数,且n ≠0,1)①若p=1时,即:nn n q a a +=+1,累加即可.②若1≠p 时,即:n n n q a p a +⋅=+1,求通项办法有以下三种偏向:i. 双方同除以1+n p .目标是把所求数列结构成等差数列即:nnn n n q p p q a p a )(111⋅+=++,令n n n pa b =,则nn n q p p b b )(11⋅=-+,然后类型1,累加求通项.ii.双方同除以1+n q . 目标是把所求数列结构成等差数列.即:q q a q p q a n n n n 111+⋅=++,令nn n q a b =,则可化为q b q p b n n 11+⋅=+.然后转化为类型5来解,iii.待定系数法:目标是把所求数列结构成等差数列设)(11nn n n p a p q a ⋅+=⋅+++λλ.经由过程比较系数,求出λ,转化为等比数列求通项.留意:运用待定系数法时,请求p ≠q,不然待定系数法会掉效. 例7已知数列{}n a 知足1112431n n n a a a -+=+⋅=,,求数列{}n a 的通项公式. 解法一(待定系数法):设11123(3n n n n a a λλλ-++=+⋅),比较系数得124,2λλ=-=,则数列{}143n na--⋅是首项为111435a --⋅=-,公比为2的等比数列,所以114352n n n a ---⋅=-⋅,即114352n n n a --=⋅-⋅解法二(双方同除以1+n q ): 双方同时除以13n +得:112243333n n n n a a ++=⋅+,下面解法略解法三(双方同除以1+n p ): 双方同时除以12+n 得:nn n n n a a )23(342211⋅+=++,下面解法略3.形如b kn pa a n n ++=+1 (个中k,b 是常数,且0≠k ) 办法1:逐项相减法(阶差法) 办法2:待定系数法经由过程凑配可转化为 ))1(()(1y n x a p y xn a n n +-+=++-; 解题根本步调: 1.肯定()f n =kn+b2.设等比数列)(y xn a b n n ++=,公比为p3.列出关系式))1(()(1y n x a p y xn a n n +-+=++-,即1-=n n pb b4.比较系数求x,y5.解得数列)(y xn a n ++的通项公式6.解得数列{}n a 的通项公式例8 在数列}{n a 中,,23,111n a a a n n +==+求通项n a .(逐项相减法) 解: ,,231n a a n n +=+①∴2≥n 时,)1(231-+=-n a a n n ,两式相减得 2)(311+-=--+n n n n a a a a .令n n n a a b -=+1,则231+=-n n b b运用类型5的办法知2351+⋅=-n n b 即 13511-⋅=--+n nn a a ②再由累加法可得213251--⋅=-n a n n . 亦可联立 ①②解出213251--⋅=-n a n n .例9. 在数列{}na 中,362,2311-=-=-n a a a n n ,求通项n a .(待定系数法)解:原递推式可化为y n x a y xn a n n ++-+=++-)1()(21 比较系数可得:x=-6,y=9,上式即为12-=n n b b 所所以{}n b 一个等比数列,首项299611=+-=n a b ,公比为21.1)21(29-=∴n n b 即:n n n a )21(996⋅=+- 故96)21(9-+⋅=n a n n .4.形如c n b n a pa a n n +⋅+⋅+=+21 (个中a,b,c 是常数,且0≠a ) 根本思绪是转化为等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.例10 已知数列{}n a 知足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++ 比较系数得3,10,18x y z ===,所以2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ 由213110118131320a +⨯+⨯+=+=≠,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为认为21311011813132a +⨯+⨯+=+=首项,以2为公比的等比数列,是以2131018322n n a n n -+++=⨯,则42231018n n a n n +=---. 21 n n n a pa qa ++=+时将n a 作为()f n 求解剖析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的情势,比较系数可求得λ,数列{}1n n a a λ++为等比数列.例11 已知数列{}n a 知足211256,1,2n n n a a a a a ++=-=-=,求数列{}n a 的通项公式.解:设211(5)()n n n n a a a a λλλ++++=++比较系数得3λ=-或2λ=-,无妨取2λ=-,(取-3 成果情势可能不合,但本质雷同)则21123(2)n n n n a a a a +++-=-,则{}12n n a a +-是首项为4,公比为3的等比数列11243n n n a a -+∴-=⋅,所以114352n n n a --=⋅-⋅{}n a 中,若2,821==a a ,且知足03412=+-++n n n a a a ,求n a .答案: nn a 311-=.四.迭代法 rn n pa a =+1(个中p,r 为常数)型例12 已知数列{}n a 知足3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式. 解:因为3(1)21nn n n a a ++=,所以又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n n a --⋅⋅=.注:本题还可分解运用累乘法和对数变换法求数列的通项公式.五.对数变换法 实用于rn n pa a =+1(个中p,r 为常数)型 p>0,0>n a 例14. 设正项数列{}n a 知足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式.解:双方取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n a nb ,则12-=n n b b {}n b 是以2为公比的等比数列,11log 121=+=b 11221--=⨯=n n n b ,1221log -=+n a n ,12log 12-=-n a n ,∴1212--=n n a演习 数列{}n a 中,11=a ,12-=n n a a (n ≥2),求数列{}n a 的通项公式.答案:nn a --=2222例15 已知数列{}n a 知足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n n a a a +=⨯⨯=,,所以100n n a a +>>,.双方取经常运用对数得1lg 5lg lg3lg2n n a a n +=++ 设1lg (1)5(lg )n n a x n y a xn y ++++=++(同类型四) 比较系数得,lg 3lg 3lg 2,4164x y ==+ 由1lg 3lg 3lg 2lg 3lg 3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠,得lg 3lg 3lg 2lg 04164n a n +++≠,所以数列lg 3lg 3lg 2{lg }4164n a n +++是认为lg 3lg 3lg 2lg 74164+++首项,以5为公比的等比数列,则1lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)541644164n n a n -+++=+++,是以11111111116164444111115161644445415151164lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464[lg(7332)]5lg(332)lg(7332)lg(332)lg(732)n n n n n n n n n n a n --------=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅则11541515164732n n n n n a -----=⨯⨯.六.倒数变换法 实用于分式关系的递推公式,分子只有一项 例16 已知数列{}n a 知足112,12nn n a a a a +==+,求数列{}n a 的通项公式. 解:求倒数得11111111111,,22n n n n n n a a a a a a +++⎧⎫=+∴-=∴-⎨⎬⎩⎭为等差数列,首项111a =,公役为12,112(1),21n n n a a n ∴=+∴=+ 七.换元法 实用于含根式的递推关系 例17 已知数列{}n a知足111(14116n n a a a +=+=,,求数列{}n a 的通项公式.解:令n b =则21(1)24n n a b =-代入11(1416n n a a +=++得 即2214(3)n n b b +=+因为0n b =,则123n n b b +=+,即11322n n b b +=+,可化为113(3)2n n b b +-=-,所所以{3}n b -认为13332b -===首项,认为21公比的等比数列,是以121132()()22n n n b ---==,则21()32n n b -=+,21()32n -=+,得2111()()3423n n n a =++. 八.数学归纳法 经由过程首项和递推关系式求出数列的前n 项,猜出数列的通项公式,再用数学归纳法加以证实.例18 已知数列{}n a 知足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得由此可猜测22(21)1(21)n n a n +-=+,下面用数学归纳法证实这个结论. (1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立.(2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时, 由此可知,当1n k =+时等式也成立.依据(1),(2)可知,等式对任何*n N ∈都成立. 九.阶差法(逐项相减法) 1.递推公式中既有n S ,又有n a 剖析:把已知关系经由过程11,1,2n n n S n a S S n -=⎧=⎨-≥⎩转化为数列{}n a 或n S 的递推关系,然后采取响应的办法求解.例19 已知数列{}n a 的各项均为正数,且前n 项和n S 知足1(1)(2)6n n n S a a =++,且249,,a a a 成等比数列,求数列{}n a 的通项公式.解:∵对随意率性n N +∈有1(1)(2)6n n n S a a =++⑴ ∴当n=1时,11111(1)(2)6S a a a ==++,解得11a =或12a = 当n ≥2时,1111(1)(2)6n n n S a a ---=++⑵ ⑴-⑵整顿得:11()(3)0n n n n a a a a --+--= ∵{}n a 各项均为正数,∴13n n a a --=当11a =时,32n a n =-,此时2429a a a =成立当12a =时,31n a n =-,此时2429a a a =不成立,故12a =舍去所以32n a n =-演习.已知数列}{n a 中,0>n a 且2)1(21+=n n a S ,求数列}{n a 的通项公式.答案:n n na S S =--1212)1()1(+=--n n a a 12-=n a n2.对无限递推数列例20 已知数列{}n a 知足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式.解:因为123123(1)(2)n n a a a a n a n -=++++-≥① 所以1123123(1)n n n a a a a n a na +-=++++-+② 用②式-①式得1.n n n a a na +-=则1(1)(2)n n a n a n +=+≥ 故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=. 所以,{}n a 的通项公式为!.2n n a =十.不动点法 目标是将递推数列转化为等比(差)数列的办法不动点的界说:函数()f x 的界说域为D ,若消失0()f x x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点或称00(,())x f x 为函数()f x 的不动点.剖析:由()f x x =求出不动点0x ,在递推公式双方同时减去0x ,在变形求解.类型一:形如1 n n a qa d +=+例21 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解:递推关系是对应得递归函数为()21f x x =+,由()f x x =得,不动点为-1 ∴112(1)n n a a ++=+,…… 类型二:形如1n n n a a ba c a d+⋅+=⋅+剖析:递归函数为()a x bf x c x d⋅+=⋅+(1)如有两个相异的不动点p,q 时,将递归关系式双方分离减去不动点p,q,再将两式相除得11n nn n a p a pk a q a q++--=⋅--,个中a pck a qc-=-,∴111111()()()()n n n a q pq k a p pq a a p k a q -----=---(2)如有两个雷同的不动点p,则将递归关系式双方减去不动点p,然后用1除,得111n n k a p a p+=+--,个中2c k a d =+. 例22. 设数列{}n a 知足7245,211++==+n n n a a a a ,求数列{}n a 的通项公式.剖析:此类问题经常运用参数法化等比数列求解. 解:对等式两头同时加参数t,得:725247)52(727)52(72451+++++=+++=+++=++n n n n n n n a t t a t a t a t t a a t a , 令5247++=t t t , 解之得t=1,-2 代入72)52(1+++=++n n n a t a t t a 得 721311+-=-+n n n a a a ,722921++=++n n n a a a ,相除得21312111+-⋅=+-++n n n n a a a a ,即{21+-n n a a }是首项为412111=+-a a ,公比为31的等比数列,21+-n n a a =n -⋅1341, 解得13423411-⋅+⋅=--n n n a . 办法2:,721311+-=-+n n n a a a ,双方取倒数得1332)1(39)1(2)1(372111-+=-+-=-+=-+n n n n n n a a a a a a , 令b 11-=n n a ,则b =n n b 332+,, 转化为累加法来求. 例23 已知数列{}n a 知足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,则1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n nn n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+.所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是认为112422343a a --==--首项,认为913公比的等比数列,故12132()39n n n a a --=-,则113132()19n n a -=+-.十一.特点方程法 形如21(,n n n a pa qa p q ++=+是常数)的数列形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特点根法求得通项n a ,其特点方程为2x px q =+…①若①有二异根,αβ,则可令1212(,n n n a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,n n a c nc c c α=+是待定常数) 再运用1122,,a m a m ==可求得12,c c ,进而求得n a例24 已知数列{}n a 知足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a解:其特点方程为232x x =-,解得121,2x x ==,令1212n n n a c c =⋅+⋅,由1122122243a c c a c c =+=⎧⎨=+=⎩,得12112c c =⎧⎪⎨=⎪⎩, 112n n a -∴=+例25.数列{}n a 知足1512a =-,且212542924n n n a a a +-=+求数列{}na 的通项. 解:2211252925244429292244n n n n n n n a a a a a a a λλλλ++-++-+==+=++……① 令229254λλ-=,解得12251,4λλ==,将它们代回①得,()21112924n n n a a a +++=+……②,212525429424nn n a a a +⎛⎫+ ⎪⎝⎭+=+……③,③÷②,得21125254411n n n n a a a a ++⎛⎫++ ⎪= ⎪++ ⎪⎝⎭,则11252544lg2lg 11n n n n a a a a ++++=++,∴数列254lg 1n n a a ⎧⎫+⎪⎪⎨⎬+⎪⎪⎩⎭成等比数列,首项为1,公比q =2所以1254lg 21n n n a a -+=+,则12254101n n n a a -+=+,112225104101n n n a ---∴=-十二.根本数列1.形如)(1n f a a n n =-+型 等差数列的广义情势,见累加法.)(1n f a a nn =+型 等比数列的广义情势,见累乘法. )(1n f a a n n =++型(1)若d a a n n =++1(d 为常数),则数列{n a }为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来评论辩论;(2)若f(n)为n 的函数(异常数)时,可经由过程结构转化为)(1n f a a n n =-+型,经由过程累加来求出通项;或用逐差法(两式相减)得)1()(11--=--+n f n f a a n n ,,分奇偶项来分求通项.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列专项-2
观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项。

例1.写出下列数列的一个通项公式a n
(1)-1,4,-9,16,-25,36,......;
(2)2,3,5,9,17,33,......。

公式法:若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 11,(1),(2)
n n n S n a S S n -=⎧=⎨-≥⎩构造两式作差求解。

用此公式时要注意结论有两种可能,一种是“一分为二”,即分段式;另一种是“合二为一”,即1a 和n a 合为一个表达,(要先分1n =和2≥n 两种情况分别进行运算,然后验证能否统一)。

例2.设数列{}a n 的前n 项和为()()
*∈-=N n a S n n 131 (1)求21a a 、;(2)求数列n a 的通项公式。

例3.设数列{}a n 的前n 项和为()*∈+
=N n a S n
n 12,求证n a 为等比数列并求其通项公式。

累加法:
形如(1n f a n n +=+型的递推数列(其中)(n f 是关于n 的函数)可构造: 11221(1)(2)..(1.
)
n n n n a a f n a a f n a a f ----=⎧⎪⎪⎨--=--=⎪⎪⎩ 将上述1-n 个式子两边分别相加,可得:
1(1)(2)...(2)(1),(2)n a f n f n f f a n =-+-+++≥
适用于)(n f 是可求和的情况。

①若()f n 是关于n 的一次函数,累加后可转化为等差数列求和;
例4.设数列{}a n 满足11=a ,121+=-+n a a n n ,求数列的通项公式。

② 若()f n 是关于n 的指数函数,累加后可转化为等比数列求和;
例5.设数列{}a n 满足21=a ,n n n a a 21=-+,求数列的通项公式。

③若()f n 是关于n 的二次函数,累加后可分组求和;
例6.设数列{}a n 满足11=a ,1321++=-+n n a a n n ,求数列的通项公式。

④若()f n 是关于n 的分式函数,累加后可裂项求和.
例7.设数列{}a n 满足11=a ,)
1(11+=-+n n a a n n ,求数列的通项公式。

累乘法: 形如1()n n a f n +=⋅1()n n a f n a +⎛⎫=型的递推数列(其中)(n f 是关于n 的函数)可构造:1
1221
(1)
(.2)(1..)n n n n a f n a a f n a a f a ---=-=-⎧⎪⎪⎪⎪⎨=⎪⎪⎪⎪⎩ 将上述1-n 个式子两边分别相乘,可得:
1(1)(2)...(2)(1),(2)n a f n f n f f a n =-⋅-⋅⋅≥
有时若不能直接用,可变形成这种形式,然后用这种方法求解。

适用于积可求和的情况。

例8.设数列{}a n 满足21=a ,n n a n
n a 11+=+,求数列的通项公式。

例9.设数列{}a n 满足21=a ,)2(log 11+⨯=++n a a n n n ,求数列的通项公式。

巩固习题
1.等比数列n a 的前n 项和12-=n n
S ,则?......2232221=++++n a a a a 2.已知数列n a 满足1321
+⨯+=+n n n a a ,31=a ,求数列的通项公式。

3.已知数列n a 满足n n n a n a ⨯+=+5121
)(,31=a ,求数列的通项公式。

4.已知数列n a 满足11=a ,)2()1(......321321≥-++++=-n a n a a a a n n ,求数列的通项公式。

5.在数列{}a n 中,131=a ,且4321+=+n n a a ,求数列n a 的通项公式。

答案详解
例1.
)()1()1(2*∈⋅-=N n n a n n
)(12)2(1*∈+=-N n a n n 例2. 4
1,21)1(21=-=a a
)()21
()2(*∈-=N n a n n 例3. )(21*∈-=-N n a n n 例4. )(2*∈=N n n a n 例5. )(2*∈=N n a n n
例6. )(13
)3)(1(2*∈++-=N n n n a n 例7. )(1
2*∈-=N n n a n
例8. )(2*∈=N n n a n 例9. ))(1(log 22*∈+=N n n a n
巩固习题
1. )(3
14*∈-=N n a n n 2. )(1
3*∈++=N n n a n n 3. )(!5232)
1-(1*∈⨯⨯⨯=-N n n a n n n n 4. ⎪⎩⎪⎨⎧≥==2,2
!1,1n n n a n 5. )(12)32
(1*∈+=-N n a n n。

相关文档
最新文档