九年级中考数学一轮考点复习几何图形 几何图形初步 精练

合集下载

中考一轮复习 数学专题11 几何图形初步与相交线、平行线(老师版)

中考一轮复习 数学专题11 几何图形初步与相交线、平行线(老师版)

专题11 几何图形初步与相交线、平行线一、单选题1.(2022·广东广州)如图是一个几何体的侧面展开图,这个几何体可以是()A.圆锥B.圆柱C.棱锥D.棱柱【答案】A【解析】【分析】由图可知展开侧面为扇形,则该几何体为圆锥.【详解】该几何体的侧面展开图是扇形,所以这个几何体可能是圆锥,故选:A.【点睛】此题主要考查几何体的展开图,熟记几何体的侧面展开图是解题的关键.2.(2022·广西柳州)如图,从学校A到书店B有①、①、①、①四条路线,其中最短的路线是()A.①B.①C.①D.①【答案】B【解析】【分析】根据两点之间线段最短进行解答即可.【详解】解:①两点之间线段最短,①从学校A到书店B有①、①、①、①四条路线中,最短的路线是①,故B正确.故选:B.【点睛】本题主要考查了两点之间线段最短,解题的关键是熟练掌握两点之间所有连线中,线段最短.3.(2022·广西柳州)如图,将矩形绕着它的一边所在的直线l旋转一周,可以得到的立体图形是()A.B.C.D.【答案】B【解析】【分析】根据面动成体:一个长方形绕着它的一条边所在的直线旋转一周后所得到的立体图形是圆柱,据此判断即可.【详解】解:由题意可知:一个长方形绕着它的一条边所在的直线旋转一周后所得到的立体图形是圆柱.故选:B【点睛】本题考查了圆柱的概念和面动成体,属于应知应会题型,熟练掌握基础知识是解题关键.4.(2021·四川巴中)某立体图形的表面展开图如图所示,这个立体图形是()A.B.C.D.【答案】A【解析】【分析】利用立体图形及其表面展开图的特点解题.【详解】解:四个三角形和一个四边形,是四棱锥的组成,所以该立体图形的名称为四棱锥.故选:A.【点睛】本题考查了几何体的展开图,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.5.(2021·山东枣庄)小明有一个呈等腰三角形的积木盒,现在积木盒中只剩下如图的九个空格,下面有四种积木的搭配,其中不能放入的有()A.搭配①B.搭配①C.搭配①D.搭配①【答案】D【解析】【分析】将每个搭配的两组积木进行组合,检验是否可得出图中剩下的九个空格的形状,由此即可得出答案.【详解】解:搭配①、①、①两组积木组合在一起,均可组合成图中剩下的九个空格的形状,只有搭配①不能,故选:D.【点睛】本题考查了图形的剪拼,解题关键是培养学生的空间想象能力以及组合意识.6.(2020·山东东营)如图,直线AB CD 、相交于点,O 射线OM 平分,BOD ∠若42AOC ∠=︒,则AOM ∠等于( )A .159B .161C .169D .138【答案】A【解析】【分析】 先求出①AOD =180°-①AOC ,再求出①BOD =180°-①AOD ,最后根据角平分线平分角即可求解.【详解】解:由题意可知:①AOD =180°-①AOC =180°-42°=138°,①①BOD =180°-①AOD =42°,又①OM 是①BOD 的角平分线,①①DOM =12①BOD =21°, 本号资料皆来源#于微信:数学①①AOM =①DOM +①AOD =21°+138°=159°.故选:A .【点睛】本题考查了角平分线的性质及平角的定义,熟练掌握角平分线的性质和平角的定义是解决此类题的关键. 7.(2022·浙江金华)如图,圆柱的底面直径为AB ,高为AC ,一只蚂蚁在C 处,沿圆柱的侧面爬到B 处,现将圆柱侧面沿AC “剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是( )A.B.C.D.【答案】C【解析】【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:①AB为底面直径,①将圆柱侧面沿AC“剪开”后,B点在长方形上面那条边的中间,①两点之间线段最短,故选:C.【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.∥,①1=70°,则①2的度数是()8.(2022·广西柳州)如图,直线a,b被直线c所截,若a bA.50°B.60°C.70°D.110°【答案】C【解析】【分析】∥,①1=70°,可得2170,从而可得答案.由a b【详解】∥,①1=70°,解:①a b①2170,故选C【点睛】本题考查的是平行线的性质,掌握“两直线平行,同位角相等”是解本题的关键.9.(2022·广西河池)如图,平行线a,b被直线c所截,若①1=142°,则①2的度数是()A.142°B.132°C.58°D.38°【答案】A【解析】【分析】根据两直线平行,同位角相等即可求解.【详解】∥,解:①a b①21142∠=∠=︒,故选A.【点睛】本题考查了平行线的性质,掌握两直线平行同位角相等是解题的关键.10.(2022·北京)如图,利用工具测量角,则1∠的大小为()A .30°B .60°C .120°D .150°【答案】A【解析】【分析】 利用对顶角相等求解.【详解】解:量角器测量的度数为30°,由对顶角相等可得,130∠=︒.故选A .【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.11.(2022·甘肃兰州)如图,直线a b ∥,直线c 与直线a ,b 分别相交于点A ,B ,AC b ⊥,垂足为C .若152∠=︒,则2∠=( )A .52°B .45°C .38°D .26°【答案】C【解析】【分析】 根据平行线的性质可得①ABC =52°,根据垂直定义可得①ACB =90°,然后利用直角三角形的两个锐角互余,进行计算即可解答.【详解】解:①a ∥b ,①①1=①ABC =52°,①AC ①b ,①①ACB =90°,①①2=90°-①ABC =38°,故选:C .【点睛】本题考查了平行线的性质,垂线,熟练掌握平行线的性质是解题的关键.12.(2022·辽宁营口)如图,直线,DE FG Rt ABC 的顶点B ,C 分别在,DE FG 上,若25BCF ∠=︒,则ABE ∠的大小为( )A .55︒B .25︒C .65︒D .75︒【答案】C【解析】【分析】 先根据平行线的性质得到①EBC =①BCF =25°,再利用互余得到①ABE =65°.【详解】解:①DE FG ∥,25BCF ∠=︒,①①EBC =①BCF =25°①①ABC =90°,①①ABE =①ABC -①EBC =90°-25°=65°.故选:C .【点睛】本题考查了平行线的性质、余角和补角,掌握“两直线平行,内错角相等”是解题关键.13.(2022·内蒙古通辽)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当35ABM∠=︒时,DCN∠的度数为()A.55︒B.70︒C.60︒D.35︒【答案】A【解析】【分析】根据题意得:①ABM=①OBC,①BCO=①DCN,然后平行线的性质可得①BCD =70°,即可求解.【详解】解:根据题意得:①ABM=①OBC,①BCO=①DCN,①①ABM=35°,①①OBC=35°,①①ABC=180°-①ABM-①OBC=180°-35°-35°=110°,①CD①AB,①①ABC+①BCD=180°,①①BCD=180°-①ABC=70°,①①BCO+①BCD+①DCN=180°,①BCO=①DCN,①1(180)552DCN BCD︒︒-∠=∠=.故选:A【点睛】本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补是解题的关键.14.(2022·山东潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB 与CD 平行,入射光线l 与出射光线m 平行.若入射光线l 与镜面AB 的夹角14010'∠=︒,则6∠的度数为( )A .10040'︒B .9980'︒C .9940'︒D .9920'︒【答案】C【解析】【分析】 由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得①1=①2,可求出①5,由l //m 可得①6=①5【详解】解:由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得①1=①2,①14010'∠=︒①24010'∠=︒①518012180401040109940'''∠=︒-∠-∠=︒-︒-︒=︒①l //m①659940'∠=∠=︒故选:C【点睛】本题主要考查了平行线的性质,熟记两直线平行,内错角相等是解答本题的关键. 15.(2022·山西)如图,Rt ABC △是一块直角三角板,其中90,30C BAC ∠=︒∠=︒.直尺的一边DE 经过顶点A ,若DE CB ∥,则DAB ∠的度数为( )A .100°B .120°C .135°D .150°【答案】B【解析】【分析】先根据平行线的性质可得90DAC C ∠=∠=︒,再根据角的和差即可得.【详解】解:,90C DE CB ∠=︒,90DAC C ∴∠=∠=︒,30BAC ∠=︒,120DAB D C AC BA ∠=∠+=∴∠︒,故选:B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题关键.16.(2021·贵州黔西)将一副三角板按如图所示的位置摆放在直尺上,则①1的度数为()A .95°B .100°C .105°D .110°【答案】C【解析】【分析】根据平角的定义和平行线的性质即可得到答案.【详解】如图:①①2=180°﹣30°﹣45°=105°,①AB①CD,①①1=①2=105°,故选:C.【点睛】本题考查了平行线的性质,牢记“两直线平行,同位角相等”是解题的关键.17.(2021·四川德阳)如图,直线AB①CD,①M=90°,①CEF=120°,则①MPB=()A.30°B.60°C.120°D.150°【答案】D【解析】【分析】根据平行线的性质和三角形外角性质解答即可.【详解】解:①AB①CD,①①EFP=①CEF=120°,①①MPF=①EFP-①M=120°-90°=30°,①①MPB=180°-①MPF=180°-30°=150°,故选:D.【点睛】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.本号资料皆来源于微信:数学第*六感18.(2021·山东潍坊)如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与出射光线的夹角为60°,则平面镜的垂线与水平地面的夹角α的度数是()A.15°B.30°C.45°D.60°【答案】B【解析】【分析】作CD①平面镜,垂足为G,根据EF①平面镜,可得CD//EF,根据水平线与底面所在直线平行,进而可得夹角α的度数.【详解】解:如图,作CD①平面镜,垂足为G,①EF①平面镜,①CD//EF,①①CDH=①EFH=α,根据题意可知:AG①DF,①①AGC=①CDH=α,①①AGC=α,①①AGC12=∠AGB12=⨯60°=30°,①α=30°.故选:B.【点睛】本题考查了入射角等于反射角问题,解决本题的关键是法线CG平分①AG B.19.(2020·四川广元)如图,//a b,M,N分别在a,b上,P为两平行线间一点,那么123∠+∠+∠=()A.180︒B.270︒C.360︒D.540︒【答案】C【解析】【分析】首先过点P作P A①a,构造三条平行线,然后利用两直线平行,同旁内角互补进行做题.【详解】解:过点P作P A①a,则a①b①P A,①①1+①MP A=180°,①3+①NP A=180°,①①1+①MPN+①3=360°.故选:C.【点睛】本题考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.20.(2020·黑龙江齐齐哈尔)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC①DE,如图①所示,则旋转角①BAD的度数为()A.15°B.30°C.45°D.60°【答案】B【解析】【分析】由平行线的性质可得①CF A=①D=90°,由外角的性质可求①BAD的度数.【详解】解:如图,设AD与BC交于点F,①BC①DE,①①CF A=①D=90°,①①CF A=①B+①BAD=60°+①BAD,①①BAD=30°故选:B .【点睛】本题考查了平行线的性质以及外角的性质,熟知以上知识点是解题的关键.21.(2020·湖北孝感)如图,直线AB ,CD 相交于点O ,OE CD ⊥,垂足为点O .若40BOE ∠=︒,则AOC ∠的度数为( )A .40︒B .50︒C .60︒D .140︒【答案】B【解析】【分析】 已知OE CD ⊥,40BOE ∠=︒,根据邻补角定义即可求出AOC ∠的度数.【详解】①OE CD ⊥①90COE ∠=︒①40BOE ∠=︒①180?180904050AOC COE EOB ∠=-∠-∠=︒-︒-︒=︒故选:B【点睛】本题考查了垂直的性质,两条直线垂直,形成的夹角是直角;利用邻补角的性质求角的度数,平角度数为180°.22.(2020·四川攀枝花)如图,平行线AB 、CD 被直线EF 所截,过点B 作BG EF ⊥于点G ,已知150∠=︒,则B ∠=( ).A.20︒B.30︒C.40︒D.50︒【答案】C【解析】【分析】延长BG,交CD于H,根据对顶角相等得到①1=①2,再依据平行线的性质得到①B=①BHD,最后结合垂线的定义和三角形内角和得到结果.【详解】解:延长BG,交CD于H,①①1=50°,①①2=50°,①AB①CD,①①B=①BHD,①BG①EF,①①FGH=90°,①①B=①BHD=180°-①2-①FGH=180°-50°-90°=40°.故选C.【点睛】本题考查了对顶角相等,垂线的定义,平行线的性质,三角形内角和,解题的关键是延长BG构造内错角.23.(2022·江苏盐城)小明将一块直角三角板摆放在直尺上,如图所示,则ABC ∠与DEF ∠的关系是( )A .互余B .互补C .同位角D .同旁内角【答案】A【解析】【分析】利用平行线的性质可得出答案.【详解】解:如图,过点G 作GH 平行于BC ,则GH DE ∥,ABC AGH ∴∠=∠,DEF FGH ∠=∠,90AGH FGH ∠+∠=︒,90ABC DEF ∴∠+∠=︒,故选A .【点睛】本题考查了平行线的性质,灵活运用性质解决问题是解题的关键.24.(2022·湖北荆州)如图,直线12l l ∥,AB =AC ,①BAC =40°,则①1+①2的度数是()A .60°B .70°C .80°D .90°【答案】B【解析】【分析】由AB =AC ,①BAC =40°得①ABC =70°,在由12l l ∥得12180ABC BAC ∠+∠+∠+∠=︒即可求解;【详解】解:①AB =AC ,①BAC =40°,①①ABC =12(180°-①BAC )=12(180°-40°)=70°, ①12l l ∥①12180ABC BAC ∠+∠+∠+∠=︒①12180180704070ABC BAC ∠+∠=︒-∠-∠=︒-︒-︒=︒故选:B .【点睛】本题主要考查平行线的性质、等腰三角形的性质,掌握相关性质并灵活应用是解题的关键.25.(2021·湖南娄底)如图,//AB CD ,点,E F 在AC 边上,已知70,130CED BFC ∠=︒∠=︒,则B D ∠+∠的度数为( )A .40︒B .50︒C .60︒D .70︒【答案】C【解析】【分析】取,ED FB 的交点为点G ,过点G 作平行于CD 的线MN ,利用两直线平行的性质,找到角之间的关系,通过等量代换即可求解.【详解】解:取,ED FB 的交点为点G ,过点G 作平行于CD 的线MN ,如下图:根据题意:70,130CED BFC ∠=︒∠=︒,50EFG ∴∠=︒,180507060EGF ∴∠=︒-︒-︒=︒,////MN CD AB ,,B BGN D DGN ∴∠=∠∠=∠,B D BGN DGN BGD ∴∠+∠=∠+∠=∠,,ED BF 相交于点G ,60EGF BGD ∴∠=∠=︒,60B D ∴∠+∠=︒,故选:C .【点睛】本题考查了两直线平行的性质和两直线相交对顶角相等,解题的关键是:添加辅助线,利用两直线平行的性质和对顶角相等,同过等量代换即可得解.26.(2021·安徽)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒【答案】C【解析】【分析】 根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,①//BC EF ,①45FDB F ∠=∠=︒,①180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键. 27.(2020·内蒙古呼伦贝尔)如图,直线//,AB CD AE CE ⊥于点E ,若120EAB ︒∠=,则ECD ∠的度数是( )A .120°B .100°C .150°D .160°【答案】C【解析】延长AE,与DC的延长线交于点F,根据平行线的性质,求出①AFC的度数,再利用外角的性质求出①ECF,从而求出①EC D.【详解】解:延长AE,与DC的延长线交于点F,①AB①CD,①①A+①F=180°,①120∠=︒,EAB①①F=60°,①AE①CE,①①AEC=90°,而①AEC=①F+①ECF,①①ECF=①AEC-①F =30°,①①ECD=180°-30°=150°,故选:C.【点睛】本题考查平行线的性质和三角形外角的性质,正确作出辅助线和掌握平行线的性质是解题的关键.28.(2020·四川绵阳)在螳螂的示意图中,AB①DE,△ABC是等腰三角形,①ABC=124°,①CDE=72°,则①ACD=()A.16°B.28°C.44°D.45°【解析】【分析】延长ED ,交AC 于F ,根据等腰三角形的性质得出28A ACB ,根据平行线的性质得出28CFD A ,本号资料皆来源于*#微信公*众号:数学 【详解】解:延长ED ,交AC 于F ,ABC ∆是等腰三角形,124ABC ∠=︒,28A ACB ,//AB DE ,28CFD A ,72CDECFD ACD , 722844ACD ,故选:C .【点睛】本题考查了等腰三角形的性质,平行线的性质,三角形外角的性质,熟练掌握性质定理是解题的关键. 29.(2020·湖北省直辖县级单位)将一副三角尺如图摆放,点E 在AC 上,点D 在BC 的延长线上,//,90,45,60EF BC B EDF A F ∠=∠=︒∠=︒∠=︒,则CED ∠的度数是( )A .15°B .20°C .25°D .30°【答案】A【解析】根据三角板的特点可知①ACB=45°、①DEF=30°,根据//EF BC可知①CEF=①ACB=45°,最后运用角的和差即可解答.【详解】解:由三角板的特点可知①ACB=45°、①DEF=30°①//EF BC①①CEF=①ACB=45°,①①CED=①CEF-①DEF=45°-30°=15°.故答案为A.【点睛】本题考查了三角板的特点、平行线的性质以及角的和差,其中掌握平行线的性质是解答本题的关键.30.(2020·辽宁鞍山)如图,直线l1//l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连结AC、B C.若①ABC=54°,则①1的大小为()A.36°.B.54°.C.72°.D.73°.【答案】C【解析】【详解】①l1①l2,①ABC=54°,①①2=①ABC=54°,①以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,①AC=AB,①①ACB=①ABC=54°,①①1+①ACB+①2=180°,故选C.二、填空题31.(2022·广西桂林)如图,点C是线段AB的中点,若AC=2cm,则AB=_____cm.本号资料皆来源于微信:数@学【答案】4【解析】【分析】根据中点的定义可得AB=2AC=4cm.【详解】解:根据中点的定义可得:AB=2AC=2×2=4cm,故答案为:4.【点睛】本题主要考查中点的定义,熟知中点的定义是解题关键.32.(2022·广西玉林)已知①α=60°,则①α的余角等于____度.【答案】30【解析】【详解】①互余两角的和等于90°,①α的余角为:90°-60°=30°.故答案为:3033.(2020·黑龙江大庆)将两个三角尺的直角顶点重合为如图所示的位置,若108AOD∠=︒,则COB∠= _________.【答案】72.︒【解析】由①AOB =①COD =90°,①AOC =①BOD ,进而①AOC =①BOD =108°-90°=18°,由此能求出①BO C .【详解】 解: ①AOB =①COD =90°,∴ ①AOC =①BOD , 又①AOD =108°,∴ ①AOC =①BOD =108°-90°=18°,∴ ①BOC =90°-18°=72°.故答案为:72︒.【点睛】本题考查的是角的和差,两锐角的互余,掌握以上知识是解题的关键.34.(2020·四川雅安)如图,//a b c ,与a b ,都相交,150∠=︒,则2∠=_________.【答案】130°【解析】【分析】根据平行线的性质可得①1=①3,再用补角的定义得出①2.【详解】解:①a ①b ,①①1=①3=50°,①①2=180°-50°=130°,故答案为130°.【点睛】本题考查了平行线的性质和补角的定义,解题的关键掌握两直线平行,同位角相等.35.(2022·广西)如图摆放一副三角板,直角顶点重合,直角边所在直线分别重合,那么①BAC 的大小为______【答案】135°##135度【解析】【分析】根据三角板及其摆放位置可得180,45BAO BAC OAC OAC ∠=︒=∠+∠∠=︒,求解即可.【详解】180,45BAO BAC OAC OAC ∠=︒=∠+∠∠=︒,18045135BAC ∴∠=︒-︒=︒,故答案为:135°.【点睛】本题考查了求一个角的补角,即两个角的和为180度时,这两个角互为补角,熟练掌握知识点是解题的关键.36.(2021·黑龙江大庆)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【解析】【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:1(1)2n n -. 【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯ 20条直线相交最多有120191902⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有1(1)2n n -. 37.(2021·湖南益阳)如图,AB 与CD 相交于点O ,OE 是AOC ∠的平分线,且OC 恰好平分EOB ∠,则AOD ∠=_______度. 本号资料皆来源于微#信:数@学@【答案】60【解析】【分析】先根据角平分线的定义、平角的定义可得60COB ∠=︒,再根据对顶角相等即可得.【详解】解:设2AOC x ∠=,OE 是AOC ∠的平分线,12AOE EOC AOC x ∴∠=∠=∠=, OC 平分EOB ∠,COB EOC x ∴∠=∠=,又180AOE EOC COB ∠+∠+∠=︒,180x x x ∴++=︒,解得60x =︒,即60COB ∠=︒,由对顶角相等得:60AOD COB ∠=∠=︒,故答案为:60.【点睛】本题考查了角平分线的定义、平角的定义、对顶角相等,熟练掌握角平分线的定义是解题关键. 38.(2022·山东济宁)如图,直线l 1,l 2,l 3被直线l 4所截,若l 1∥l 2,l 2∥l 3,①1=126o 32',则①2的度数是___________.【答案】5328'︒【解析】【分析】根据平行线的性质得23,34∠=∠∠=∠,根据等量等量代换得34∠=∠,进而根据邻补角性质即可求解.【详解】解:如图l1∥l 2,l 2∥l 3,23∴∠=∠,34∠=∠,24∴∠=∠,①1=12632'︒,2418012632∴∠=∠=-︒'︒17960126325328'''=︒-︒=︒,故答案为:5328'︒.【点睛】本题考查了邻补角,平行线的性质,掌握平行线的性质是解题的关键. 39.(2022·湖北宜昌)如图,C 岛在A 岛的北偏东50︒方向,C 岛在B 岛的北偏西35︒方向,则ACB ∠的大小是_____.【答案】85︒##85度【解析】【分析】过C 作CF DA ∥交AB 于F ,根据方位角的定义,结合平行线性质即可求解.【详解】 解:C 岛在A 岛的北偏东50︒方向,50DAC ∴∠=︒,C岛在B岛的北偏西35︒方向,∴∠=︒,35CBE∥交AB于F,如图所示:过C作CF DA∴∥∥,DA CF EB∴∠=∠=︒∠=∠=︒,FCA DAC FCB CBE50,35∴∠=∠+∠=︒,85ACB FCA FCB故答案为:85︒.【点睛】本题考查方位角的概念与平行线的性质求角度,理解方位角的定义,并熟练掌握平行线的性质是解决问题的关键.40.(2022·四川乐山)如图6,已知直线a①b,①BAC=90°,①1=50°,则①2=______.【答案】40°##40度【解析】【分析】根据平行线的性质可以得到①3的度数,进一步计算即可求得①2的度数.【详解】解:①a①b,①①1=①3=50°,①①BAC =90°,①①2+①3=90°,①①2=90°-①3=40°,故答案为:40°.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.41.(2022·江苏扬州)将一副直角三角板如图放置,已知60E ∠=︒,45C ∠=︒,EF BC ∥,则BND ∠=________°.【答案】105【解析】【分析】根据平行线的性质可得45FAN B ∠=∠=︒,根据三角形内角和定理以及对顶角相等即可求解.【详解】45B C ∠︒∠==,EF BC ∥,∴45FAN B ∠=∠=︒,①①E =60°,①①F =30°,180105BND ANF F BAF ∴∠=∠=︒-∠-∠=︒故答案为:105【点睛】本题考查了平行线的性质,三角形内角和定理,掌握平行线的性质是解题的关键.42.(2021·四川绵阳)如图,直线//a b ,若128∠=︒,则2∠=____.【答案】152︒【解析】【分析】利用平行线的性质可得3128∠=∠=︒,再利用邻补角即可求2∠的度数.【详解】解:如图,//a b ,128∠=︒,3128∴∠=∠=︒,21803152∴∠=︒-∠=︒.故答案为:152︒.【点睛】本题主要考查平行线的性质,解答的关键是结合图形分析清楚角与角之间的关系.43.(2021·辽宁阜新)如图,直线//AB CD ,一块含有30°角的直角三角尺顶点E 位于直线CD 上,EG 平分CEF ∠,则1∠的度数为_________°.【答案】60【解析】【分析】根据角平分线的定义可求出CEG ∠的度数,即可得到CEF ∠的度数,再利用平行线的性质即可解决问题.【详解】一块含有30°角的直角三角尺顶点E 位于直线CD 上,30FEG ∴∠=︒, EG 平分CEF ∠,30CEG FEG ∴∠=∠=︒,60CEF CEG FEG ∴∠=∠+∠=︒,//AB CD ,160CEF ∴∠=∠=︒.故答案为:60.【点睛】本题考查了角平分线定义和平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型. 44.(2021·江苏泰州)如图,木棒AB 、CD 与EF 分别在G 、H 处用可旋转的螺丝铆住,①EGB =100°,①EHD =80°,将木棒AB 绕点G 逆时针旋转到与木棒CD 平行的位置,则至少要旋转 ___°.【答案】20【解析】【分析】根据同位角相等两直线平行,得出当①EHD =①EGN =80°,MN //CD ,再得出旋转角①BGN 的度数即可得出答案.【详解】解:过点G 作MN ,使①EHD =①EGN =80°,①MN //CD ,①①EGB =100°,①①BGN=①EGB -①EGN =100°-80°=20°,①至少要旋转20°.【点睛】本题考查了平行线的判定,以及图形的旋转,熟练掌握相关的知识是解题的关键.45.(2021·湖北恩施)如图,已知//AE BC ,100BAC ∠=︒,50DAE ∠=︒,则C ∠=__________.【答案】30°【解析】【分析】由题意易得50B DAE ∠=∠=︒,然后根据三角形内角和可进行求解.【详解】解:①//AE BC ,50DAE ∠=︒,①50B DAE ∠=∠=︒,①100BAC ∠=︒,①18030C B BAC ∠=︒-∠-∠=︒;故答案为30°.【点睛】本题主要考查平行线的性质及三角形内角和,熟练掌握平行线的性质及三角形内角和是解题的关键. 46.(2020·广西贵港)如图,点O ,C 在直线n 上,OB 平分AOC ∠,若//m n ,156∠=︒,则2∠=_______________.【答案】62°【解析】【分析】根据//m n 和OB 平分AOC ∠,计算出BOC ∠的度数,便可求解.【详解】解:如图:∵//m n∴156AON ∠=∠=, 2BOC ∠=∠180124AOC AON ∴∠=-∠=∵OB 平分AOC ∠1622BOC AOC ∴∠=∠= 62BOC ∴∠=故答案为62°【点睛】本题考查平行线性质,以及角平分线性质,属于基础题.47.(2020·辽宁盘锦)如图,直线//a b ,ABC 的顶点A 和C 分别落在直线a 和b 上,若160∠=︒,40ACB ∠=︒,则2∠的度数是__________.【答案】20°【解析】【分析】根据两直线平行内错角相等可得到12ACB ∠=∠+∠,从而计算出2∠的度数.【详解】解:①直线//a b ,①12ACB ∠=∠+∠,又①160∠=︒,40ACB ∠=︒,①220∠=︒,故答案为:20°.【点睛】本题考查了平行线的性质,熟练掌握两直线平行内错角相等是解题的关键.48.(2021·青海)如图,AB ①CD ,FE ①DB ,垂足为E ,①1=50°,则①2的度数是_____.【答案】40°【解析】【分析】由EF ①BD ,①1=50°,结合三角形内角和为180°,即可求出①D 的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在①DEF 中,①1=50°,①DEF =90°,①①D =180°-①DEF -①1=40°.①AB ①CD ,①①2=①D =40°.故答案为40°.【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是求出①D =40°.解决该题型题目时,根据平行线的性质,找出相等或互补的角是解题技巧.49.(2020·湖北恩施)如图,直线12//l l ,点A 在直线1l 上,点B 在直线2l 上,AB BC =,30C ∠=︒,180∠=︒,则2∠=______.【答案】40︒【解析】【分析】利用等腰三角形的性质得到①C =①4=30︒,利用平行线的性质得到①1=①3=80︒,再根据三角形内角和定理即可求解.【详解】如图,延长CB 交2l 于点D ,①AB =BC ,①C =30︒,①①C =①4=30︒,①12//l l ,①1=80︒,①①1=①3=80︒,①①C +①3+①2+①4 =180︒,即3080230180︒+︒+∠+︒=︒,①240∠=︒,故答案为:40︒.【点睛】本题考查了等腰三角形的性质,平行线的性质以及三角形内角和定理的应用,解决问题的关键是辅助线的作法,注意运用两直线平行,同位角相等.50.(2020·湖南张家界)如图,AOB ∠的一边OA 为平面镜,38AOB ︒∠=,一束光线(与水平线OB 平行)从点C 射入经平面镜反射后,反射光线落在OB 上的点E 处,则DEB ∠的度数是_______度.【答案】76°【解析】【分析】根据平行线的性质可得①ADC 的度数,由光线的反射定理可得①ODE 的度数,在根据三角形外角性质即可求解.【详解】解:①DC ①OB ,①①ADC =①AOB =38°,由光线的反射定理易得,①ODE =①ACD =38°,①DEB =①ODE +①AOB =38°+38°=76°,故答案为:76°.【点睛】本题考查平行线的性质、三角形外角性质和光线的反射定理,掌握入射角=反射角是解题的关键. 本号资料皆来源#于@微信:数学三、解答题51.(2021·湖北武汉)如图,//AB CD ,B D ∠=∠,直线EF 与AD ,BC 的延长线分别交于点E ,F .求证:DEF F ∠=∠.【答案】见解析【解析】【分析】根据已知条件//AB CD ,B D ∠=∠,得到DCF D ∠=∠,从而得到//AD BC ,即可证明DEF F ∠=∠.【详解】证明:①//AB CD ,①DCF B ∠=∠.①B D ∠=∠,①DCF D ∠=∠.①//AD BC .①DEF F ∠=∠.【点睛】本题考查平行线的性质和判定.平行线的性质:两直线平行,内错角相等.平行线的判定:同位角相等,两直线平行.52.(2020·湖北宜昌)光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射,如图,水面AB 与水杯下沿CD 平行,光线EF 从水中射向空气时发生折射,光线变成FH ,点G 在射线EF 上,已知20,45HFB FED ∠=︒∠=︒,求GFH ∠的度数.【答案】25°【解析】【分析】使用平行线的性质得到45GFB FED ∠=∠=︒,再根据GFH GFB HFB ∠=∠-∠得到结果.【详解】解:①//AB CD①45GFB FED ∠=∠=︒①20HFB ∠=︒①GFH GFB HFB ∠=∠-∠452025=︒-︒=︒【点睛】本题考查了平行线的性质,及角度间的加减计算,熟知平行线的性质是解题的关键.53.(2020·四川内江)如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,//AB CD ,AE DF =,A D ∠=∠.(1)求证:AB CD =;(2)若AB CF =,40B ∠=︒,求D ∠的度数.【答案】(1)见解析;(2)70°【解析】【分析】(1)根据角角边求证ABE DCF △≌△即可;(2)根据已知可得CD CF =,根据等边对等角可得结果.【详解】解:(1)证明:①//AB CD ,①B C ∠=∠,在ABE △和DCF 中,B C A D AE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,①()ABE DCF AAS △≌△,①AB CD =;(2)①AB CD =,AB CF =,①CD CF =,①D CFD ∠=∠,①ABE DCF △≌△,①40C B ∠=∠=︒, ①18040702D ︒-︒∠==︒. 【点睛】本题考查了平行线的性质,全等三角形的判定与性质以及等腰三角形的判定与性质,熟知全等三角形的判定与性质定理是解题的关键.54.(2020·江苏镇江)如图,AC 是四边形ABCD 的对角线,①1=①B ,点E 、F 分别在AB 、BC 上,BE =CD ,BF =CA ,连接EF .(1)求证:①D =①2;(2)若EF ①AC ,①D =78°,求①BAC 的度数.【答案】(1)证明见解析;(2)78°.【解析】【分析】(1)由“SAS ”可证①BEF ①①CDA ,可得①D =①2;(2)由(1)可得①D =①2=78°,由平行线的性质可得①2=①BAC =78°. 本号资料皆来源于@@微信公#众号:数学【详解】证明:(1)在①BEF 和①CD A 中,1BE CD B BF CA =⎧⎪∠=∠⎨⎪=⎩,①①BEF ①①CDA (SAS ),①①D =①2;(2)①①D =①2,①D =78°,①①D =①2=78°,①EF ①AC ,①①2=①BAC =78°.【点睛】本题考查了全等三角形的判定与性质,平行线的性质.证明①BEF ①①CDA 是解题的关键55.(2020·湖北武汉)如图,直线EF 分别与直线AB ,CD 交于点E ,F .EM 平分BEF ∠,FN 平分CFE ∠,且EM ①FN .求证:AB ①CD .【答案】证明见解析.【解析】【分析】 先根据角平分线的定义可得11,22MEF BEF N CF FE E ∠=∠∠∠=,再根据平行线的性质可得MEF NFE ∠=∠,从而可得BEF CFE ∠=∠,然后根据平行线的判定即可得证.【详解】 EM 平分BEF ∠,FN 平分CFE ∠11,22MEF BEF NF CFE E ∠=∠∠∠=∴EM //FNMEF NFE ∠=∠∴1122BEF CFE ∴∠=∠,即BEF CFE ∠=∠ //AB CD ∴.【点睛】本题考查了平行线的判定与性质、角平分线的定义等知识点,熟记平行线的判定与性质是解题关键. 56.(2021·西藏)如图,AB ①DE ,B ,C ,D 三点在同一条直线上,①A =90°,EC ①BD ,且AB =C D .求证:AC =CE .【答案】证明见解析.【解析】【分析】由平行线的性质得出①B =①D ,再由垂直的定义得到①DCE =90°=①A ,即可根据ASA 证明①ABC ①①CDE ,最后根据全等三角形的性质即可得解.【详解】证明:①AB ①DE ,①①B =①D ,①EC ①BD ,①A =90°,①①DCE =90°=①A ,在①ABC 和①CDE 中,B D AB CD A DCE ∠=∠⎧⎪=⎨⎪∠=∠⎩,①①ABC ①①CDE (ASA ),①AC =CE .【点睛】此题考查了平行线的性质,全等三角形的判定与性质,根据证明①ABC ①①CDE 是解题的关键. 57.(2021·浙江温州)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.【答案】(1)见解析;(2)35°【解析】【分析】(1)直接利用角平分线的定义和等边对等角求出BED EBC ∠=∠,即可完成求证;(2)先求出①ADE ,再利用平行线的性质求出① ABC ,最后利用角平分线的定义即可完成求解.【详解】解:(1)BE 平分ABC ∠,∴ABE EBC ∠=∠.DB DE =,∴ABE BED ∠=∠,∴BED EBC ∠=∠,∴//DE BC .(2)65A ∠=︒,45AED ∠=︒,∴18070ADE A AED ∠=︒-∠-∠=︒.//DE BC .∴70ABC ADE ∠=∠=︒.BE 平分ABC ∠,∴1352EBC ABC ∠=∠=︒, 即35EBC ∠=︒.【点睛】本题综合考查了角平分线的定义、等腰三角形的性质、平行线的判定与性质等内容,解决本题的关键是牢记概念与性质,本题的解题思路较明显,属于几何中的基础题型,着重考查了学生对基本概念的理解与掌握.58.(2022·四川宜宾)已知:如图,点A 、D 、C 、F 在同一直线上,AB DE ∥,B E ∠=∠,BC EF =. 求证:AD CF =.【答案】见解析【解析】【分析】根据AB DE ∥,可得A EDF ∠=∠,根据AAS 证明ABC DEF △≌△,进而可得AC DF =,根据线段的和差关系即可求解.【详解】证明:①AB DE ∥,①A EDF ∠=∠,在ABC 与DEF 中,A EDFB E BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,①()AAS ABC DEF ≌△△, ①AC DF =,①AC DC DF DC -=-,①AD CF =.【点睛】本题考查了平行线的性质,全等三角形的判定与性质,掌握全等三角形的性质与判定是解题的关键. 本号资料皆来源@于微信:数学59.(2022·湖北武汉)如图,在四边形ABCD 中,AD BC ∥,80B ∠=︒. 本号@@资料皆来源于微信:数学。

初中数学几何图形初步知识点总复习含解析(1)

初中数学几何图形初步知识点总复习含解析(1)

初中数学几何图形初步知识点总复习含解析(1)一、选择题1.如图将两块三角板的直角顶点重叠在一起,DOB ∠与DOA ∠的比是2:11,则BOC ∠的度数为( )A .45︒B .60︒C .70︒D .40︒【答案】C【解析】【分析】 设∠DOB=2x ,则∠DOA=11x ,可推导得到∠AOB=9x=90°,从而得到角度大小【详解】∵∠DOB 与∠DOA 的比是2:11∴设∠DOB=2x ,则∠DOA=11x∴∠AOB=9x∵∠AOB=90°∴x=10°∴∠BOD=20°∴∠COB=70°故选:C【点睛】本题考查角度的推导,解题关键是引入方程思想,将角度推导转化为计算的过程,以便简化推导2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=( )A .35°B .45°C .55°D .65°【答案】A【解析】【分析】【详解】解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35° 故选:A .【点睛】本题考查余角、补角的计算.3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( )A .90°B .75°C .105°D .120°【答案】B【解析】【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.【详解】∵//BC DE∴30E BCE ==︒∠∠∴453075AFC B BCE =+=︒+︒=︒∠∠∠故答案为:B .【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.4.下列立体图形中,侧面展开图是扇形的是()A .B .C .D.【答案】B【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B.5.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.【答案】C【解析】【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选C .【点睛】本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.6.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A .中B .考C .顺D .利【答案】C【解析】试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“立”是相对面.故选C .考点:正方体展开图.7.如果圆柱的母线长为5cm ,底面半径为2cm ,那么这个圆柱的侧面积是( )A .10cm 2B .10πcm 2C .20cm 2D .20πcm 2【答案】D【解析】【分析】根据圆柱的侧面积=底面周长×高.【详解】根据圆柱的侧面积计算公式可得π×2×2×5=20πcm 2,故选D .【点睛】本题考查了圆柱的计算,解题的关键是熟练掌握圆柱侧面积公式.8.下列图形中1∠与2∠不相等的是( )A.B.C.D.【答案】B【解析】【分析】根据对顶角,平行线,等角的余角相等等知识一一判断即可.【详解】解:A、根据对顶角相等可知,∠1=∠2,本选项不符合题意.B、∵∠1+∠2=90°,∠1与∠2不一定相等,本选项符合题意.C.根据平行线的性质可知:∠1=∠2,本选项不符合题意.D、根据等角的余角相等,可知∠1=∠2,本选项不符合题意.故选:B.【点睛】本题考查平行线的性质对顶角的性质,等角的余角相等等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D 是平行四边形,∴EF ′=AD=3.∴EP+FP 的最小值为3.故选C .考点:菱形的性质;轴对称-最短路线问题10.如图,在ABC V 中,90C ∠=︒,AD 是BAC ∠的平分线,O 是AB 上一点,以OA 为半径的O e 经过点D .若5BD =,3DC =,则AC 的长为( )A .6B .43C .532-D .8【答案】A【解析】【分析】 过点D 作DE AB ⊥于E ,可证ADE ADC △△≌,所以AE AC =,3DE DC ==.又5BD =,利用勾股定理可求得4BE =.设AC AE x ==.因为90C ∠=︒,再利用勾股定理列式求解即可.【详解】解:过点D 作DE AB ⊥于E ,∵90C ∠=︒,AD 是BAC ∠的平分线,∴ADE ADC △△≌,∴AE AC =,3DE DC ==.∵5BD =,∴4BE =,设AC AE x ==.因为90C ∠=︒,∴由勾股定理可得222BC AC AB +=,即2228(4)x x +=+,解得6x =,即6AC =.故选:A .【点睛】本题主要考查圆的相关知识.掌握角平分线的性质以及熟练应用勾股定理是解此题的关键.11.如图,小慧从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为( )A .左转80°B .右转80°C .左转100°D .右转100°【答案】B【解析】【分析】 如图,延长AB 到D ,过C 作CE//AD ,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB 到D ,过C 作CE//AD ,∵此时需要将方向调整到与出发时一致,∴此时沿CE 方向行走,∵从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处, ∴∠A=60°,∠1=20°,AM ∥BN ,CE ∥AB ,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.12.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°【答案】B【解析】【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【详解】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.13.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.A.14 B.15 C.16 D.17【答案】B【解析】【分析】在侧面展开图中,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C 即可.【详解】解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=12×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C22129=15cm,故选:B.【点睛】本题考查了圆柱的最短路径问题,掌握圆柱的侧面展开图、勾股定理是解题的关键.14.如图:点 C 是线段 AB 上的中点,点 D 在线段 CB 上,若AD=8,DB=3AD 4,则CD 的长为( )A .4B .3C .2D .1 【答案】D【解析】【分析】根据线段成比例求出DB 的长度,即可得到AB 的长度,再根据中点平分线段的长度可得AC 的长度,根据CD AD AC =-即可求出CD 的长度.【详解】∵38,4AD DB AD ==∴6DB =∴14AB AD DB =+=∵点 C 是线段 AB 上的中点∴172AC AB == ∴1CD AD AC =-=故答案为:D .【点睛】本题考查了线段的长度问题,掌握成比例线段的性质、中点平分线段的长度是解题的关键.15.如图,在ABC V 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【解析】【分析】 根据作图的过程可以判定AD 是∠BAC 的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC 的度数;利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A 、根据作图方法可得AD 是∠BAC 的平分线,正确;B 、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 是∠BAC 的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C 、∵∠B=30°,∠DAB=30°,∴AD=DB ,∴点D 在AB 的中垂线上,正确;D 、∵∠CAD=30°,∴CD=12AD , ∵AD=DB , ∴CD=12DB , ∴CD=13CB , S △ACD =12CD•AC ,S △ACB =12CB•AC , ∴S △ACD :S △ACB =1:3,∴S △DAC :S △ABD ≠1:3,错误,故选:D .【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.16.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为()A.140° B.130° C.50° D.40°【答案】C【解析】【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】设这个角为α,则它的余角为90°-α,补角为180°-α,根据题意得,180°-α=3(90°-α)+10°,180°-α=270°-3α+10°,解得α=50°.故选C.【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.17.用一副三角板(两块)画角,能画出的角的度数是()A.145C o B.95C o C.115C o D.105C o【答案】D【解析】【分析】一副三角板由两个三角板组成,其中一个三角板的度数有45°、45°、90°,另一个三角板的度数有30°、60°、90°,将两个三角板各取一个角度相加,和等于选项中的角度即可拼成.【详解】选项的角度数中个位是5°,故用45°角与另一个三角板的三个角分别相加,结果分别为:45°+30°=75°,45°+60°=105°,45°+90°=135°,故选:D.【点睛】此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角的度数分别是多少,比较简单,属于基础题.18.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱【答案】D【解析】【分析】根据常见的几何体的展开图进行判断,即可得出结果.【详解】根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:正方体,圆锥,圆柱,三棱柱.故选D.【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解题的关键.19.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.20.下列说法,正确的是( )A.经过一点有且只有一条直线B.两条射线组成的图形叫做角C.两条直线相交至少有两个交点D.两点确定一条直线【答案】D【解析】【分析】根据直线的性质、角的定义、相交线的概念一一判断即可.【详解】A、经过两点有且只有一条直线,故错误;B、有公共顶点的两条射线组成的图形叫做角,故错误;C、两条直线相交有一个交点,故错误;D、两点确定一条直线,故正确,故选D.【点睛】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键.。

初三总复习 第五讲 几何图形初步

初三总复习 第五讲 几何图形初步

第五讲几何图形初步【知识网络】【要点梳理】要点一、从生活中认识几何图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.几何体的构成元素几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1.直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.(2)用尺规作图法:用圆规在射线AC上截取AB=a,如下图:4.线段的比较与运算(1)线段的比较:①度量法;②叠合法(如下图);③估算法.(2)线段的和与差:如下图,有AB+BC=AC,或AC=a+b;AD=AB-BD.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB==.要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等. 如下图,点M,N,P 均为线段AB 的四等分点,则有AB PB NP MN AM 41====.(4)线段的延长线:如下图,图①称为延长线段AB ,或称为反向延长线段BA ;图②称为延长线段BA ,或称为反向延长线段AB. 图中延长的部分叫做原线段的延长线.要点三、角1.角的概念及其表示(1)角的定义:从一点引出的两条射线所形成的图形叫做角,这个点叫做角的顶点,这两条射线是角的边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义.②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示.PN MBA2.角的分类3.角的度量1周角=360°,1平角=180°,1°=60′,1′=60″. 4.角的比较与运算(1)角的比较方法: ①度量法;②叠合法;③估算法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB=2∠1=2∠2. 类似地,还有角的三等分线等.5.余角、补角 (1)定义:若∠1+∠2=90°, 则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(2)性质:同角(或等角)的余角相等;同角(或等角)的补角相等. 要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的. ③只考虑数量关系,与位置无关.∠β 锐角 直角 钝角 平角 周角 范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°④“等角是相等的几个角”,而“同角是同一个角”. 6.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角. 要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.(2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向. (3)方位角在航行、测绘等实际生活中的应用十分广泛. 要点四、平面图形的旋转1.旋转的定义:在平面内,一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转.这个定点叫做旋转中心,转过的角叫做旋转角.2.旋转的性质:(1)旋转不改变图形的大小和形状.(2)图形上的每一点都绕旋转中心沿相同方向转动了相同的角度. (3)任意一对对应点与旋转中心的连线所成的角度都是旋转角. (4)对应点到旋转中心的距离相等. 【典型例题】类型一、从生活中认识几何图形1. 观察图中的立体图形,分别写出它们的名称.类型二、线段和角的概念或性质2.下列说法正确的是( )A.射线AB 与射线BA 表示同一条射线.B.连结两点的线段叫做两点之间的距离.C.平角是一条直线.D.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3.【解析】选项A中端点和延伸方向不同,所以是两条射线;选项B中两点之间的距离是指线段的长度,是一个数值,而不是图形;C中角和直线是两种不同的概念,不能混淆.举一反三:【变式】下列结论中,不正确的是()A.两点确定一条直线B.两点之间,直线最短C.等角的余角相等D.等角的补角相等3.如图所示,要把水渠中的水引到水池C,在渠岸AB的什么地方开沟,才能使沟最短? 画出图来,并说明原因.4.(广西钦州)钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了________度.举一反三:类型三、利用数学思想方法解决有关线段或角的计算1.方程的思想方法5. 如图所示,在射线OF上,顺次取A、B、C、D四点,使AB:BC:CD =2:3:4,又M、N分别是AB、CD的中点,已知AD=90cm,求MN的长.举一反三:【变式】如图所示,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,求∠BOC和∠COD的度数.2.分类的思想方法6.以∠AOB的顶点O为端点的射线OC,使∠AOC:∠BOC=5:4.(1)若∠AOB=18°,求∠AOC与∠BOC的度数;(2)若∠AOB=m,求∠AOC与∠BOC的度数.【答案与解析】解:(1)分两种情况:①OC在∠AOB的外部,可设∠AOC=5x,则∠BOC=4x得∠AOB=x,即x=18°所以∠AOC=90°,∠BOC=72°②OC在∠AOB的内部,可设∠AOC=5x,则∠BOC=4x∠AOB=∠AOC+∠BOC=9x所以9x=18°,则x=2°所以∠AOC=10°,∠BOC=8°(2)仿照(1),可得:若∠AOB=m,则∠AOC=59m,∠BOC=49m,或∠AOC=5m,∠BOC=4m.【总结升华】本题中的已知条件没有明确地说明OC在∠AOB的内部或外部,所以两个问题都必须分类讨论.举一反三:【变式1】已知线段AB=8cm,在直线AB上画线段BC=3cm,求线段AC的长.【变式2】下列判断正确的个数有( ).①已知A、B、C三点,过其中两点画直线一共可画三条.②过已知任意三点的直线有1条.③三条直线两两相交,有三个交点.A.0个B.1个C.2个D.3个3.类比的思想方法7.(1)如图,线段AD上有两点B、C,图中共有______条线段.(2)如图,在∠AOD的内部有两条射线OB、OC,则图中共有个角.类型四、图形的旋转8.如图,图B是图A旋转后得到的,旋转中心是,旋转了 .【巩固练习】一、选择题1.左边的图形绕着虚线旋转一周形成的几何体是由右边的().A. B. C. D.2.将一个三角形旋转,旋转中心应选在().A.三角形的顶点B.三角形的外部C.三角形的三条边上D.平面内的任意位置3.如图,AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是().A.26° B.64° C.54° D.以上答案都不对4.如图所示,点O 在直线AB 上,∠COB =∠DOE =90°,那么图中相等的角的对数是( ).A .3B .4C .5D .75.如图所示的图中有射线( ).A .3条B .4条C .2条D .8条6.赵师傅透过放大5倍的放大镜从正上方看30°的角,则通过放大镜他看到的角等于( ).A.30°B.90°C.150°D.180° 7.十点一刻时,时针与分针所成的角是( ).A .112°30′B .127°30′C .127°50′D .142°30′ 8.已知M 是线段AB 的中点,那么,①AB =2AM ;②BM =21AB ;③AM =BM ; ④AM+BM =AB .上面四个式子中,正确的有 ( ). A .1个 B .2个 C .3个 D .4个 二、填空题9.把一条弯曲的公路改为直道,可以缩短路程,其理由是________. 10.已知∠α=30°18′,∠β=30.18°,∠γ=30.3°,则相等的两角是________.11.一个几何体有一个顶点,一个侧面,一个底面,则这个几何体可能是 .1213.46°35′×3= .15.一副三角板如图摆放,若∠BAE=135 °17′,则∠CAD 的度数是 .16.如下图,点A 、B 、C 、D 代表四所村庄,要在AC 与BD 的交点M 处建一所“希望小学”,请你说明选择校址依据的数学道理 .三、解答题17.如图所示,C ,D 两点把线段AB 分成了2:3:4三部分,M 是AB 的中点,DB=12,求MD 的长.D18.如图所示,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=19°,求∠AOB的度数.19.在一张城市地图上,如图所示,有学校、医院、图书馆三地,图书馆被墨水染黑,具体位置看不清,但知道图书馆在学校的北偏东45°方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?20.如图所示,线段AB=4,点O是线段AB上一点,C、D分别是线段OA、OB的中点,小明据此很轻松地求得CD=2.在反思过程中突发奇想:若点O运动到AB的延长线上,原来的结论“CD=2”是否仍然成立?请帮小明画出图形并说明理由.。

2023年中考数学一轮复习讲义:几何初步与尺规作图

2023年中考数学一轮复习讲义:几何初步与尺规作图

2023年中考复习讲义几何初步与尺规作图第一部分:知识点精准记忆一、直线、射线、线段1.直线的性质:1)两条直线相交,只有一个交点;2)经过两点有且只有一条直线,即两点确定一条直线;3)直线的基本事实:经过两点有且只有一条直线.2.线段的性质:两点确定一条直线,两点之间,线段最短,两点间线段的长度叫两点间的距离.3.线段的中点性质:若C是线段AB中点,则AC=BC=12AB;AB=2AC=2BC.4.两条直线的位置关系:在同一平面内,两条直线只有两种位置关系:平行和相交.5.垂线的性质:1)两条直线相交所构成的四个角中有一个角是直角,则这两条直线互相垂直,其中一条直线叫做另一条直线的垂线;2)①经过一点有且只有一条直线与已知直线垂直;②直线外一点与直线上各点连接的所有线段中,垂线段最短.6.点到直线的距离:从直线外一点向已知直线作垂线,这一点和垂足之间线段的长度叫做点到直线的距离.二、角1.角:有公共端点的两条射线组成的图形.2.角平分线(1)定义:在角的内部,以角的顶点为端点把这个角分成两个相等的角的射线(2)性质:若OC是∠AOB的平分线,则∠AOC=∠BOC =12∠AOB,∠AOB=2∠AOC =2∠BOC.3.度、分、秒的运算方法:1°=60′,1′=60″,1°=3600″.1周角=2平角=4直角=360°.4.余角和补角1)余角:∠1+∠2=90°⇔∠1与∠2互为余角;2)补角:∠1+∠2=180°⇔∠1与∠2互为补角.3)性质:同角(或等角)的余角相等;同角(或等角)的补角相等.5.方向角和方位角:在描述方位角时,一般应先说北或南,再说偏西或偏东多少度,而不说成东偏北(南)多少度或西偏北(南)多少度.当方向角在45°方向上时,又常常说成东南、东北、西南、西北方向.三、相交线1.三线八角1)直线a,b被直线l所截,构成八个角(如图).∠1和∠5,∠4和∠8,∠2和∠6,∠3和∠7是同位角;∠2和∠8,∠3和∠5是内错角;∠5和∠2,∠3和∠8是同旁内角.2)除了基本模型外,我们还经常会遇到稍难一些的平行线加折线模型,主要是下面两类:做这类题型时,一般在折点处作平行线,进而把线的关系转换成角的关系,如上图:2.垂直1)定义:两条直线相交所形成的四个角中有一个是直角时叫两条直线互相垂直.2)性质:过一点有且只有一条直线垂直于已知直线;垂线段最短.3.点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.4.邻补角1)定义:两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,互为邻补角.2)邻补角是补角的一种特殊情况:邻补角既包含位置关系,又包含数量关系,数量上两角的和是180°,位置上有一条公共边.3)邻补角是成对出现的,单独的一个角不能称为邻补角,两条直线相交形成四对邻补角.5.对顶角1)定义:两个角有一个公共的顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种关系的两个角,互为对顶角.2)性质:对顶角相等.但相等的角不一定是对顶角.四、平行线1.定义:在同一平面内,不相交的两条直线叫做平行线.2.平行线的判定1)同位角相等,两直线平行.2)内错角相等,两直线平行.3)同旁内角互补,两直线平行.4)平行于同一直线的两直线互相平行.5)垂直于同一直线的两直线互相平行. 3.平行线的性质1)两直线平行,同位角相等.2)两直线平行,内错角相等.3)两直线平行,同旁内角互补. 4.平行线间的距离1)定义:同时垂直于两条平行线,并且夹在这两条平行线的线段的长度,叫做这两条平行线的距离.2)性质:两平行线间的距离处处相等,夹在两平行线间的平行线段相等.五、五种基本作图:1.作一条线段等于已知线段。

部编版2020届中考数学一轮复习第四章几何初步第7节矩形菱形试题70

部编版2020届中考数学一轮复习第四章几何初步第7节矩形菱形试题70

第七节矩形、菱形课标呈现指引方向1.理解平行四边形、矩形、菱形的概念,以及它们之间的关系.2.探索并证明矩形、菱形的性质定理:矩形的四个角都是直角,对角线相等:菱形的四条边相等,对角线互相垂直.以及它们的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形.考点梳理夯实基础1.矩形:(1)矩形的性质:矩形是特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:①角:它的四个角为_____;②对角线:它的对角线_____;③对称性:它是轴对称图形,它的对称轴是_____所在的直线.【答案】直角相等对边中点(2)矩形的判定判定1:_________的平行四边形是矩形(定义);判定2:_________的平行四边形是矩形;判定3:_________的四边形是矩形.【答案】有一个角为直角两条对角线相等有三个角为直角注:(1)矩形被它的对角线分成四个______三角形和四个_____三角形;(2)矩形中常见题目是对角线相交成60°或120°角时,利用直角三角形、等边三角形等图形的性质解决问题.【答案】等腰直角2.菱形:(1)菱形的性质:菱形是特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:①边:它的四条边________;②对角线:它的对角线________,并且每一条对角线平分________;③对称性:它是轴对称图形,它的对称轴是________;④面积:它的面积除底乘以高外还有________.【答案】相等互相垂直每一组对角对角线所在的直线两对角线乘积的一半(2)菱形的判定判定1:________的平行四边形是菱形(定义);判定2:________的平行四边形是菱形;判定3:________的四边形是菱形.【答案】一组邻边相等两对角线垂直四边相等注:(1)菱形被它的对角线分成四个全等的________三角形和两对全等的________三角形.(2)菱形中常见题目是内角为60°或120°角时,利用直角三角形、等边三角形等图形的性质解决问题.【答案】直角等腰考点精析专项突破考点一矩形的性质【例1】(2016包头)如图,在矩形ABCD中,对角线AC与BD相交于点O.过点A作AE⊥BD.垂足为点E,若∠EAC=2∠CAD,则∠BAE=_______度.【答案】22.5解题点拨:首先证明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可.考点二菱形的性质【例2】(2015通辽)菱形ABCD的一条对角线长为6,边AB的长为方程y2-7y+10=0的一个根,则菱形ABCD的周长为 ( )A.8 B.20 C.8或20 D.10【答案】B解题点拨:边AB的长是方程y2-7y+10=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长. 考点三矩形、菱形的综合【例3】(2016南宁)已知四边形ABCD是菱形,AB=4,∠ABC=60°.∠EAF的两边分别与射线CB、DC相交于点E.F.且∠EAF= 60°.(1)如图l,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.解题点拨:(1)结论AE=EF=AF.只要证明AE=AF即可,证明△AEF是等边三角形.(2)欲证明BE=CF,只要证明△BAE≌△CAF即可.(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH =CF·cos30°,因为CF= BE,只要求出BE即可解决问题.【答案】(1)解:结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∵△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∵AF⊥CD,∵AE=AF(菱形的高相等),∴△AEF是等边三角形.∴AE=EF=AF.(2)证明:如图2中,连接AC,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,BAE CAF BA ACB ACF ⎧∠=∠⎪=⎨⎪∠=∠⎩∴△BAE≌△CAF.∴BE= CF.(3)解:过点A作AG⊥BC于点G,过点F作FH ⊥EC于点H, ∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在RT△AGB中,∴∠ABC=60°,AB=4,∴BG=2,AG=23,在RT△AEG中,∵∠AEG=∠EAG=45°,∵AG=GE=23,∵EB=EG-BG=23-2,∴△AEB≌△AFC,∴AE=AF,EB=CF=23-2,在RT△CHF中,∵∠CFH=30°,CF=23-2,∴FH=CF.cos30°=(23-2).32=3一3.∴点F到BC的距离为3-3.课堂训练当堂检测1.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB= 30°,则∠AOB的大小为 ( )A.30°B.60°C.90°D.120°【答案】B2.(2015桂林)如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是 ( )A.18 B.183 C.36 D.363【答案】B3.如图,菱形ABCD 中,AC 、BD 相交于点O ,若∠BCO=55°,则∠ADO=_______.【答案】35°4.(2015曲靖)如图,菱形ABCD 的对角线AC 与BD 相交于点0,且BE ∥AC ,CE ∥BD .(1)求证:四边形OBEC 是矩形;(2)若菱形ABCD 的周长是10,tana=12,求四边形OBEC 的面积. (1)证明:∵菱形ABCD 的对角线AC 与BD 相交于点O,∴AC ⊥BD,∵BE ∥AC,CE ∥BD,∴∠BOC=∠OCE=∠OBE=90°,∴四边形OBEC 是矩形.(2)解:∵菱形ABCD 的周长是10,∴10∵tana=12, ∴设CO=x,则B0=2x,∵2x + 2(2x)=2(10), 解得:2∴四边形OBEC 22.中考达标 模拟自测A 组 基础训练一、选择题1.(2016无锡)下列性质中,菱形具有而矩形不一定具有的是 ( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直【答案】C2.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC= 28°,则∠OBC 的度数为 ( )A .28°B .52°C .62°D .72°【答案】C3.(2016枣庄)如图,四边形ABCD 是菱形,AC=8,DB= 6,DH ⊥AB 于H ,则DH 等于 ( )A.245B.125C.5D.4【答案】 A4.(2015安徽)如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是 ( )A.5.5 C.5 D.6【答案】C二、填空题5.如图,菱形ABCD中,∠A= 60°,BD=7,则菱形ABCD的周长为_____. 【答案】286.(2016成都)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为_______.【答案】37.(2016巴中)如图,延长矩形ABCD的边BC至点E,使CE=BD.连结AE,如果∠ADB=30°,则∠E=______度.【答案】15三、解答题8.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.解:(1)证明:∵四边形ABCD是平行四边形.∴AD∥BC,∴∠DAE= ∠AEB.∵AE是角平分线,∴∠DAE= ∠BAE.∴∠BAE= ∠AEB,∴AB=BE,同理AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(2)作PH⊥AD于H,∵四边形ABEF是菱形.∠ABC=60°,AB=4,∴AB=AF=4,∠ABF= 30°,AP⊥BF.∴AP=12AB=2,∴3DH =5,∴tan∠ADP= PHDH=35.9.(2015乌鲁木齐)如图,平行四边形ABCD中,点E,F在直线AC上(点E在F左侧),BE ∥DF.(1)求证:四边形BEDF 是平行四边形;(2)若AB ⊥AC ,AB=4,BC=213,当四边形BEDF 为矩形时,求线段AE 的长. 解:(1)证明:∵四边形ABCD 是平行四边形,∵AD ∥BC ,AD=BC ,∴∠DAF=∠BCE .又∵BE ∥DF .∴∠BEC= ∠DFA .在△BEC 与△DFA 中,BEC DFA BCE DAF BC AD ⎧∠=∠⎪∠=∠⎨⎪=⎩∴△BEC ≌△DFA(AAS),:.BE=DF,又∵BE ∥DF .∴四边形BEDF 为平行四边形:(2)连接BD ,BD 与AC 相交于点D ,如图:∵AB ⊥AC ,AB=4,BC=213,∴AC=6.∴A0=3.∴Rt △BAO 中,B0=5,∵四边形BEDF 是矩形.∴OE=OB=5.∴点E 在OA 的延长线上,且AE=2.B 组提高练习10.(2016舟山)如图,矩形ABCD 中,AD=2.AB=3,过点A ,C 作相距为2的平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 的长是 ( )A .5 B. 136C.1D. 56 【答案】D(提示:过F 作FH ⊥AE 于h ,∵四边形ABCD 是矩形,∵AB=CD ,AB ∥CD ,∵AE ∥CF ,∴四边形AECF 是平行四边形.∴AF=CE,∴DE=BF,∴AF=3- DE,∴AE=224DE +,∵∠FHA=∠D=∠DAF=90°,∴∠AFH+ ∠HAF= ∠DAE+ ∠FAH=90°,∴∠DAE= ∠AFH ,∴△ADE ∽△AFH ,∴AE AF =AD FH ,∴AE =AF,∴ 224DE +=3—DE .∴DE=56,故选D.) 11.如图,在边长为2的菱形ABCD 中,∠A= 60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A ’MN ,连接A'C .则A'C 长度的最小值是______.【答案】7-1(提示:如图所示:MC,MA’是定值,A’C长度的最小值时,即A’在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,CD=2,∠ADC=120°,∠FDA=60°,∠FMD=30°,FD=12, FM=DM·cos30°=32,MC=22FM CF=7,A’C=MC-MA’=7-1.12.(2016重庆一中)已知四边形ABCD为菱形,连接BD,点E为菱形ABCD外任意一点.⑴如图⑴,若∠A=45°,AB=6,点E为过点B作AD边的垂线与CD边的延长线的交点,BE,AD交于点F,求DE的长.⑵如图⑵,若2∠AEB=180°-∠BED,∠ABE=60°,求证:BC=BE+DE.⑶如图⑶,若点E在CB延长线上时,连接DE,试猜想∠BED,∠ABD,∠CDE三个角之间的数量关系,直接写出结论.【答案】⑴解:在菱形ABCD中,AB=AD=6,AB∥DE∴∠A=∠ADE=45°∴AD⊥BE∴∠AFB=∠DFE=90°∴∠A=∠ABF=∠FDE=∠FED=45°,AF=BF,DF=EF则△AFB,△DEF为等腰直角三角形∴AF=22AB=22×6= 3∴DF=EF=AD-AF=6- 3∴DE=2DF=23-6.⑵证明:延长BE至K,使EK=ED,连接AK 在菱形ABCD中,AB=BC=AD∵2∠AEB=180°-∠BED∴∠AEB +∠BED =180°-∠AEB∴∠AED =∠AEB +∠BED =180°-∠AEB =∠AEK 在△AEK 和△AED 中⎩⎪⎨⎪⎧AE =AE∠AEK =∠AED EK =ED∴△AEK ≌△AED∴AK =AD =AB∵∠ABK =60°∴△ABK 为等边三角形.则BK =BE +KE =AB =BC ,即:BC =BE +DE .⑶∠BED +∠CDE =2∠ABD .。

中考复习4、1.图形认识初步2023年九年级数学中考一轮复习题

中考复习4、1.图形认识初步2023年九年级数学中考一轮复习题

中考复习4、1.图形认识初步中考一轮复习一、选择题(本大题共8小题,共24分。

)1. 用一副三角板,不可能画出的角度是( )A. 15∘B. 75∘C. 165∘D. 145∘2. 如图,OO是∠OOO的平分线,OO是∠OOO的平分线,那么下列各式中正确的是( )A. ∠OOO=12∠OOO B. ∠OOO=23∠OOOC. ∠OOO=12∠OOO D. ∠OOO=23∠OOO3. 如果点O在线段OO上,那么下列表达式中: ①OO=12OO②OO=OO ③OO=2OO④OO+OO=OO,能表示O是线段OO的中点的有( )A. 1个B. 2个C. 3个D. 4个4. 把2.36°用度、分、秒表示正确的是( )A. 2°3′6″B. 2°30′6″C. 2°21′6″D. 2°21′36″5. (对应目标15)下面是“蒙牛”牌牛奶软包装盒,其表面展开图不正确的是( )A. B. C. D.6. 如图,一副三角尺按不同的位置摆放,摆放位置中∠O=∠O的图形个数是( )A. 1B. 2C. 3D. 47. (对应目标15)如图是一个长方体纸盒表面展开图,纸片厚度忽略不计,按图中数据,这个盒子容积为( )A. 6B. 8C. 10D. 158. 钟面角是指时钟的时针与分针所成的角(这里所说的角均是指不大于平角的角),如:在3:00时的钟面角为90°,那么在3:30与5:00之间钟面角恰好为90°的次数共有( )A. 2次B. 3次C. 4次D. 5次二、填空题(本大题共8小题,共24分)9. 72.125°=度分秒.10. 下图中小于平角的角有个.11. 如图,C是线段AB上一点,M是线段AC的中点.若AB=10cm、BC=2cm,则MC=_____。

12. 已知∠AOB和∠COD是共顶点的两个角,∠COD的OC边始终在∠AOB的内部,并且∠COD的边OC把∠AOB分为1:2的两个角,若∠AOB=60°,∠COD= 30°,则∠AOD的度数是_______.13. 将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体,其中三面涂色的小正方体有8个,两面涂色的小正方体有12个,一面涂色的小正方体有6个,各面都没有涂色的小正方体有1个;现将这个正方体的棱O等分,如果得到各面都没有涂色的小正方体216个,那么O的值为.14. 如图,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少需要个小正方体,此时王亮所搭几何体的表面积为.15. 已知两个角的和是67∘56′,差是12∘40′,则这两个角的度数分别是.16. 由于钟表的表面被分成12大格,每格为30∘,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹角的度数是度.三、解答题(本大题共9小题,共72分。

九年级数学总复习《 几何初步》


02
相交线、平行线
03 命题的构成与真假
04
拓展训练
典例精讲
真假命题的识别
知识点三
【例3】①若a3>b3,则a2>b2;②若点A(x1,y1)和点B(x2,y2)在二次函数 y=x2-2x-1的图象上,且满足x1<x2<1,则y1>y2>-2;③在同一平面内 ,a,b,c是直线,且a∥b,b⊥c,则a∥c;④周长相等的所有等腰直角三角形
A.m=-1
B.m=0
C.m=4
D.m=5
2.判断命题“如果n<1,那么n2-1<0”是假命题,只需举出一个反例,反例
中的n可以是( A )
A.-2
B.-0.5
C.0D.0.5Fra bibliotek知识点
01 直线、射线、线段与角
02
相交线、平行线
03 命题的构成与真假
04
拓展训练
拓展训练 几何初步及相交线与平行线 提升能力
2.如图,已知AB∥CD,∠EAB=3∠EAF,∠ECD=3∠ECF,∠AFC=62º,则∠AEC的
度数是_9_3_º_.
3.如图所示,将含有30º角的三角板的直角顶点放在相互平行的两条直线
中的一条上,若∠1=43º,则∠2=_1_7_º__.
A
B
EF
30º 2
C
D
1
知识点
01 直线、射线、线段与角
全等.上述命题中真命题的个数是( C )
A.4个 B.3个 C.2个 D.1个
温馨提示
主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命
题.判断命题的真假关键是要熟悉课本中的性质定理.
强化训练
命题
知识点三
1.能说明命题“关于x方程x2-4x+m=0一定有实数根”是假命题的反例为( D)

2025年九年级中考数学一轮复习备考知识清单:几何图形初步

几何图形初步——中考数学一轮复习备考知识清单知识梳理一、线与角的概念和基本性质直线与线段基本事实(1)经过两点有一条直线,并且只有一条直线(两点确定一条直线);(2)两点的所有连线中,线段最短(两点之间,线段最短)两点间的距离连接两点间的线段的长度.图中线段AB的长度为A,B两点间的距离线段的和与差在线段AC上取一点B,则有:AB BC AC+=;AB AC BC=-;BC AC AB=-线段的中点点M把线段AB分成相等的两条线段AM 与MB,点M叫做线段AB的中点,几何语言:12AM MB AB==垂线(1)基本事实:在同一平面内,过一点有且只有一条直线与已知直线垂直;(2)连接直线外一点与直线上各点的所有线段中,垂线段最短;(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.图中点P与直线l上各点连接的所有线段中,PB最短,点P到直线l的距离是PB 的长度角与角平分线量角器的使用量角器的中心与角的顶点对齐,量角器的零刻度线和角的一边对齐,做到两对齐后角的另一边与刻度线对应的度数度、分、秒的换算1周角=360°,1平角=180°,1°=60′,1′=60''余角和补角互余90,αβαβ+=︒⇔互为余角应用:同角(等角)的余角相等互补180,αβαβ+=︒⇔互为补角应用:同角(等角)的补角相等角的平分线一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线二、应用平行线的性质求角度相交线与平行线对顶角性质:对顶角相等.如1∠与3∠,2∠与4∠,5∠与7∠,6∠与8∠邻补角性质:互为邻补角的两个角之和等于180°.如1∠与4∠,1∠与2∠,2∠与3∠等三线八角(1)同位角:1∠与5∠,2∠与6∠,4∠与8∠,3∠与7∠.(2)内错角:2∠与8∠,3∠与5∠.(3)同旁内角:2∠与5∠,3∠与8∠基本事实(平行公理)经过直线外一点,有且只有一条直线与这条直线平行推论如果两条直线都与第三条直线平行,那么这两条直线也互相平行平行线的判定和性质(1)同位角相等−−−→←−−−判定性质两直线平行.如图12∠=∠−−−→←−−−判定性质a b∥;(2)内错角相等−−−→←−−−判定性质两直线平行.如图,34∠=∠−−−→←−−−判定性质a b ∥; (3)同旁内角互补−−−→←−−−判定性质两直线平行.如图,23=180∠+∠︒−−−→←−−−判定性质a b ∥ 两平行线间的距离定义:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离 性质:两条平行线之间的距离处处相等方法点拨1.解立方体图形的表面展开图问题立方图形的表面展开图,多以考察正方体的表面展开图为主.正方体的表面由6个大小完全相同的正方形组成,因为选择剪开的棱不一样,所以正方体的表面展开图有11种不同的形式,可概括为四种基本类型. 一四一型:二三一型:三三型:二二二型:【注意】凡是出现“田”“凹”字形的一定不是正方体的表面展开图,五连长链和六连长链均不是正方体的表面展开图. 2.解相交直线的交点个数问题探究几条直线的交点个数,可先从简单的图形入手,然后加一条直线,注意这条直线与其余直线都要相交,它与每一条直线相交,便多一个交点,依次类推,就可以找到规律. 【规律总结】平面上n 条直线相交最多有(1)2n n -个交点(2n ≥且n 为整数) [提示:(1)1232n n n +++++=] 3.解识别同位角、内错角、同旁内角的问题同位角、内错角、同旁内角都是由两条直线被第三条直线所截而成的角.是被这些角时要结合图形认识它们的特征,或从图形中抽象出数学模型进行识别.同位角的图形结构特征可看成字母“F”,模型即;内错角可看成字母“Z”,模型即;同旁内角可看成字母“U”,模型即.【方法总结】从复杂的图形中抽象出“三线”,根据“三线”所形成图形的结构特征,可以帮助我们快速识别同位角、内错角或同旁内角. 4.求线段长度的问题求线段长度,通常涉及的问题就是求线段的和或差如果题中没有明确的图形,要注意分类讨论,以防止漏解.当题目中有线段中点时,常利用线段中点的性质解决问题.例如,若点C 是线段AB 的中点,常用到的关系式是22AB AC BC ==或12AC BC AB ==. 5.有关余角和补角的问题若两个角的和等于90︒(直角),则称这两个角互为余角;若两个角的和等于180︒(平角),则称这两个角互为补角.同角或等角的余角相等,同角或等角的补角相等,常根据以上知识进行计算或证明. 6.解钟表表面上的指针夹角问题把钟表表面看成一个周角,其上共有12个大格,每个大格的度数为3603012︒=︒,每个大格中又有5个小格,所以每个小格的度数为3065︒=︒.因此,时针每小时转过30︒,时针每分钟转过300.560︒=︒,分钟每分钟转过6︒. 【方法总结】求时针与分针的夹角,也就是求时针转过的角度与分针转过的角度之差的绝对值. 7.解角的计算问题解角的计算题时要结合图形,利用对顶角相等、垂直得到90︒、角平分线分得的两个角相等等性质,根据各角之间的关系进行求解.当两条直线相交时要充分利用对顶角相等,当两条直线互相垂直时要利用垂直形成的角是直角,当已知角平分线时要利用角平分线的定义,这些都是解决有关角的计算问题的关键. 8.解命题的真假判断问题命题分为真命题和假命题,正确的命题是真命题,错误的命题是假命题.要判定一个命题是真命题需要经过推理证明,即根据已知事实来推断未知事实,也有一些命题是人们经过长期实践后公认的正确命题;要判定一个命题是假命题只需要举一个反例即可. 9.判定两直线平行的方法判定两直线平行的方法有六种:(1)平行线的定义;(2)平行公理的推论(如果两直线都与第三条直线平行,那么这两条直线也互相平行);(3)利用同位角相等说明两直线平行;(4)利用内错角相等说明两直线平行;(5)利用同旁内角互补说明两直线平行;(6)利用同一平面内,垂直于同一直线的两条直线互相平行来判定. 10.解“折线”“拐角”类问题在与平行线有关的涉及角的计算和推理中,常见一类“折线”“拐角”型问题,解决这类问题的方法是经过拐点作平行线,把已知角和未知角联系起来,从而化未知为可知,如果遇到“”“”“”型的图形问题,可利用添加平行线来解决问题.。

中考数学专题训练第4讲几何初步、相交线、平行线(知识点梳理)

几何初步、相交线、平行线知识点梳理考点01 几何图形一、几何图形(一)几何图形的概念和分类1.定义:把从实物中抽象出的各种图形统称为几何图形.2.几何图形的分类:立体图形和平面图形。

(1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,例如:长方体、圆柱、圆锥、球等。

立体图形按形状可分为:球、柱体(圆柱、棱柱)、椎体(圆锥、棱锥)、台体(圆台、棱台).按围成立体图形的面是平面或曲面可以分为:多面体(有平面围成的立体图形)、曲面体(围成立体图形中的面中有曲面)。

(2)平面图形:有些几何图形(如线段、角、三角形、圆、四边形等)的各部分都在同一平面内,称为平面图形.常见的平面图形有圆和多边形(三角形、四边形、五边形、六边形等)。

(二)从不同方向看立体图形:从正面看:正视图.从左面看:侧视图.从上面看:俯视图。

(三)立体图形的展开图:1.有些立体图形是由一些平面图形围成,把他们的表面沿着边剪开,可以展开形成平面图形。

2.立体图形的展开图的注意事项:(1)不是所有的立体图形都可以展开形成平面图形,例如:球不能展开形成平面图形. (2)不同的立体图形可展开形成不同的平面图形,同一个立体图形,沿不同的棱剪开,也可得到不同的平面图形。

(四)正方体的平面展开图正方体的展开图由6个小正方形组成,把正方体各种展开图分类如下:二、点、线、面、体1.体:长方体、正方体、圆柱体、圆锥体、球、棱锥、棱柱等都是几何体,几何体也简称体。

2.面:包围着体的是面,面有平的面和曲的面两种.3.线:面和面相交的地方形成线,线也分为直线和曲线两种.4.点:线和线相交的地方形成点。

5.所有的几何图形都是由点、线、面、体组成的,从运动的角度来看,点动成线,线动成面,面动成体。

考点02 直线、射线、线段一、直线1.直线的表示方法:(1)可以用直线上表示两个点的大写英文字母表示,可表示为直线AB或直线BA.(2)也可以用一个小写英文字母表示,例如直线m等.2.直线的基本性质:经过两点有一条直线,并且只有1条直线.简称:两点确定一条直线。

2022年春北师大版九年级数学中考一轮复习几何部分综合练习题(附答案)

2022年春北师大版九年级数学中考一轮复习几何部分综合练习题(附答案)1.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.2.在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)3.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.菱形D.平行四边形4.如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为()A.2B.4C.3D.25.已知△ABC∽△A'B'C',AD和A'D'是它们的对应中线,若AD=10,A'D'=6,则△ABC 与△A'B'C'的周长比是()A.3:5B.9:25C.5:3D.25:96.如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连接AC,AD,BD,CD,若⊙O的半径是13,BD=24,则sin∠ACD的值是()A.B.C.D.7.如图,点P是以AB为直径的半圆上的动点,CA⊥AB,PD⊥AC于点D,连接AP,设AP=x,P A﹣PD=y,则下列函数图象能反映y与x之间关系的是()A.B.C.D.8.如图AB∥CD,CB∥DE,∠B=50°,则∠D=°.9.如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB=2,则AD的长为.10.如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).11.如图,在四边形ABCD中,点E,F,G,H分别是AB,CD,AC,BD的中点,若AD =BC=2,则四边形EGFH的周长是.12.如图,正方形ABCD的对角线AC上有一点E,且CE=4AE,点F在DC的延长线上,连接EF,过点E作EG⊥EF,交CB的延长线于点G,连接GF并延长,交AC的延长线于点P,若AB=5,CF=2,则线段EP的长是.13.在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相似比为,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为.14.如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG 交AD于点P,若AP=3,则点P到BD的距离为.15.如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n的横坐标为(结果用含正整数n的代数式表示)16.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.17.如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=,∠CBG=45°,BC=4,则▱ABCD的面积是.18.如图,AB是⊙O的直径,BC是⊙O的弦,直线MN与⊙O相切于点C,过点B作BD ⊥MN于点D.(1)求证:∠ABC=∠CBD;(2)若BC=4,CD=4,则⊙O的半径是.19.如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.20.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE =DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.21.小李要外出参加“建国70周年”庆祝活动,需网购一个拉杆箱,图1,2分别是她上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,即DE=BC=AB,B,F在AC上,C在DE上,支杆DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°,请根据以上信息,解决下列问题.(1)求AC的长度(结果保留根号);(2)求拉杆端点A到水平滑杆ED的距离(结果保留根号).22.如图,点P为正方形ABCD的对角线AC上的一点,连接BP并延长交CD于点E,交AD的延长线于点F,⊙O是△DEF的外接圆,连接DP.(1)求证:DP是⊙O的切线;(2)若tan∠PDC=,正方形ABCD的边长为4,求⊙O的半径和线段OP的长.23.在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC边上一点,且DA=DB,O是AB的中点,CE是△BCD的中线.(1)如图a,连接OC,请直接写出∠OCE和∠OAC的数量关系:;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使∠MON=∠ADB,ON与射线CA交于点N.①如图b,猜想并证明线段OM和线段ON之间的数量关系;②若∠BAC=30°,BC=m,当∠AON=15°时,请直接写出线段ME的长度(用含m的代数式表示).24.思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP 的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是;②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;③当α=150°时,若BC=3,DE=1,请直接写出PC2的值.25.阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC 上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).参考答案1.解:主视图有3列,每列小正方形数目分别为2,1,1.故选:B.2.解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),故选:A.3.解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选:C.4.解:∵四边形ABCD是矩形,∴∠B=∠D=90°,CD=AB=4,AD∥BC,∴∠AFE=∠CEF,由折叠的性质得:∠AEF=∠CEF,AE=CE,∠D'=∠D=90°,AD'=CD=4,∴∠AFE=∠AEF,∴AF=AE=CE,设AF=AE=CE=x,则BE=8﹣x,在Rt△ABE中,由勾股定理得:AB2+BE2=AE2,即42+(8﹣x)2=x2,解得:x=5,∴AF=5,在Rt△AFD'中,由勾股定理得:D'F===3;故选:C.5.解:∵△ABC∽△A'B'C',AD和A'D'是它们的对应中线,AD=10,A'D'=6,∴△ABC与△A'B'C'的周长比=AD:A′D′=10:6=5:3.故选:C.6.解:∵AB是直径,∵⊙O的半径是13,∴AB=2×13=26,由勾股定理得:AD=10,∴sin∠B===,∵∠ACD=∠B,∴sin∠ACD=sin∠B=,故选:D.7.设:圆的半径为R,连接PB,则sin∠ABP=,∵CA⊥AB,即AC是圆的切线,则∠P AD=∠PBA=α,则PD=AP sinα=x×=x2,则y=P A﹣PD=﹣x2+x,图象为开口向下的抛物线,故选:C.8.解:∵AB∥CD,∴∠B=∠C=50°,∵BC∥DE,∴∠C+∠D=180°,∴∠D=180°﹣50°=130°,故答案为:130.9.解:∵△ABC是等边三角形,∴∠B=∠BAC=∠ACB=60°,∵CD=AC,∵∠ACB=∠CAD+∠D=60°,∴∠CAD=∠D=30°,∴∠BAD=90°,∴AD===2.故答案为2.10.解:在Rt△BCD中,tan∠BDC=,则BC=CD•tan∠BDC=10(m),在Rt△ACD中,tan∠ADC=,则AC=CD•tan∠ADC≈10×1.33=13.3(m),∴AB=AC﹣BC=3.3≈3(m),故答案为:3.11.证明:∵E、G是AB和AC的中点,∴EG=BC=×=,同理HF=BC=,EH=GF=AD==.∴四边形EGFH的周长是:4×=4.故答案为:4.12.解:如图,作FH⊥PE于H.∵四边形ABCD是正方形,AB=5,∴AC=5,∠ACD=∠FCH=45°,∵∠FHC=90°,CF=2,∴CH=HF=,∵CE=4AE,∴EC=4,AE=,∴EH=5,在Rt△EFH中,EF2=EH2+FH2=(5)2+()2=52,∵∠GEF=∠GCF=90°,∴E,G,F,C四点共圆,∴∠EFG=∠ECG=45°,∴∠ECF=∠EFP=135°,∵∠CEF=∠FEP,∴△CEF∽△FEP,∴=,∴EF2=EC•EP,∴EP==.故答案为.13.解:以点O为位似中心,相似比为,把△ABO缩小,点A的坐标是A(4,2),则点A的对应点A1的坐标为(4×,2×)或(﹣4×,﹣2×),即(2,1)或(﹣2,﹣1),故答案为:(2,1)或(﹣2,﹣1).14.解:结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.15.解:过点B1、C1、C2、C3、C4分别作B1D⊥x轴,C1D1⊥x轴,C2D2⊥x轴,C3D3⊥x 轴,C4D4⊥x轴,……垂足分别为D、D1、D2、D3、D4……∵点B1在直线l:y=x上,点B1的横坐标为2,∴点B1的纵坐标为1,即:OD=2,B1D=1,图中所有的直角三角形都相似,两条直角边的比都是1:2,∴点C1的横坐标为:2++()0,点C2的横坐标为:2++()0+()0×+()1=+()0×+()1点C3的横坐标为:2++()0+()0×+()1+()1×+()2=+()0×+()1×+()2点C4的横坐标为:=+()0×+()1×+()2×+()3……点∁n的横坐标为:=+()0×+()1×+()2×+()3×+()4×……+()n﹣1=+[()0+()1×+()2+()3+()4……]+()n﹣1=()n﹣1.故答案为:()n﹣1.16.证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS)∴AF=DE.17.(1)证明:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DF∥BE,∴∠DF A=∠BEC,∵DF=BE,∴△ADF≌△CBE(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形;(2)解:∵CG⊥AB,∴∠G=90°,∵∠CBG=45°,∴△BCG是等腰直角三角形,∵BC=4,∴BG=CG=4,∵tan∠CAB=,∴AG=10,∴AB=6,∴▱ABCD的面积=6×4=24,故答案为:24.18.(1)证明:连接OC,∵MN为⊙O的切线,∴OC⊥MN,∵BD⊥MN,∴OC∥BD,∴∠CBD=∠BCO.又∵OC=OB,∴∠BCO=∠ABC,∴∠CBD=∠ABC.;(2)解:连接AC,在Rt△BCD中,BC=4,CD=4,∴BD==8,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠CDB=90°,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴=,即=,∴AB=10,∴⊙O的半径是5,故答案为5.19.(1)证明:作DF⊥BC于F,连接DB,∵AP是⊙O的切线,∴∠P AC=90°,即∠P+∠ACP=90°,∵AC是⊙O的直径,∴∠ADC=90°,即∠PCA+∠DAC=90°,∴∠P=∠DAC=∠DBC,∵∠APC=∠BCP,∴∠DBC=∠DCB,∴DB=DC,∵DF⊥BC,∴DF是BC的垂直平分线,∴DF经过点O,∵OD=OC,∴∠ODC=∠OCD,∵∠BDC=2∠ODC,∴∠BAC=∠BDC=2∠ODC=2∠OCD;(2)解:∵DF经过点O,DF⊥BC,∴FC=BC=3,在△DEC和△CFD中,,∴△DEC≌△CFD(AAS)∴DE=FC=3,∵∠ADC=90°,DE⊥AC,∴DE2=AE•EC,则EC==,∴AC=2+=,∴⊙O的半径为.20.证明:(1)∵AB∥CD,∠B=45°∴∠C+∠B=180°∴∠C=135°∵DE=DA,AD⊥CD∴∠E=45°∵∠E+∠C=180°∴AE∥BC,且AB∥CD∴四边形ABCE是平行四边形∴AE=BC(2)∵四边形ABCE是平行四边形∴AB=CE=3∴AD=DE=AB﹣CD=2∴四边形ABCE的面积=3×2=621.解:(1)过F作FH⊥DE于H,∴∠FHC=∠FHD=90°,∵∠FDC=30°,DF=30,∴FH=DF=15,DH=DF=15(cm),∵∠FCH=45°,∴CH=FH=15(cm),∴(cm),∵CE:CD=1:3,∴DE=CD=(20+20)(cm),∵AB=BC=DE,∴AC=(40+40)cm;(2)过A作AG⊥ED交ED的延长线于G,∵∠ACG=45°,∴AG=AC=(20+20)(cm),答:拉杆端点A到水平滑杆ED的距离为(20+20)cm.22.(1)连接OD,∵正方形ABCD中,CD=BC,CP=CP,∠DCP=∠BCP=45°,∴△CDP≌△CBP(SAS),∴∠CDP=∠CBP,∵∠BCD=90°,∴∠CBP+∠BEC=90°,∵OD=OE,∴∠ODE=∠OED,∠OED=∠BEC,∴∠BEC=∠OED=∠ODE,∴∠CDP+∠ODE=90°,∴∠ODP=90°,∴DP是⊙O的切线;(2)∵∠CDP=∠CBE,∴tan,∴CE=,∴DE=2,∵∠EDF=90°,∴EF是⊙O的直径,∴∠F+∠DEF=90°,∴∠F=∠CDP,在Rt△DEF中,,∴DF=4,∴==2,∴,∵∠F=∠PDE,∠DPE=∠FPD,∴△DPE∽△FPD,∴,设PE=x,则PD=2x,∴,解得x=,∴OP=OE+EP=.23.解:(1)结论:∠ECO=∠OAC.理由:如图1中,连接OE.∵∠BCD=90°,BE=ED,BO=OA,∵CE=ED=EB=BD,CO=OA=OB,∴∠OCA=∠A,∵BE=ED,BO=OA,∴OE∥AD,OE=AD,∴CE=EO.∴∠EOC=∠OCA=∠ECO,∴∠ECO=∠OAC.故答案为:∠OCE=∠OAC.(2)如图2中,∵OC=OA,DA=DB,∴∠A=∠OCA=∠ABD,∴∠COA=∠ADB,∵∠MON=∠ADB,∴∠AOC=∠MON,∴∠COM=∠AON,∵∠ECO=∠OAC,∴∠MCO=∠NAO,∵OC=OA,∴△COM≌△AON(ASA),∴OM=ON.②如图3﹣1中,当点N在CA的延长线上时,∵∠CAB=30°=∠OAN+∠ANO,∠AON=15°,∴∠AON=∠ANO=15°,∴OA=AN=m,∵△OCM≌△OAN,∴CM=AN=m,在Rt△BCD中,∵BC=m,∠CDB=60°,∴BD=m,∵BE=ED,∴CE=BD=m,∴EM=CM+CE=m+m.如图3﹣2中,当点N在线段AC上时,作OH⊥AC于H.∵∠AON=15°,∠CAB=30°,∴∠ONH=15°+30°=45°,∴OH=HN=m,∵AH=m,∴CM=AN=m﹣m,∵EC=m,∴EM=EC﹣CM=m﹣(m﹣m)=m﹣m,综上所述,满足条件的EM的值为m+m或m﹣m.24.(1)解:∵CD∥AB,∴∠C=∠B,在△ABP和△DCP中,,∴△ABP≌△DCP(AAS),∴DC=AB.∵AB=200米.∴CD=200米,故答案为:200.(2)①PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE.理由如下:如解图1,延长EP交BC于F,同(1)理,可知∴△FBP≌△EDP(AAS),∴PF=PE,BF=DE,又∵AC=BC,AE=DE,∴FC=EC,又∵∠ACB=90°,∴△EFC是等腰直角三角形,∵EP=FP,∴PC=PE,PC⊥PE.②PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE.理由如下:如解图2,作BF∥DE,交EP延长线于点F,连接CE、CF,同①理,可知△FBP≌△EDP(AAS),∴BF=DE,PE=PF=,∵DE=AE,∴BF=AE,∵当α=90°时,∠EAC=90°,∴ED∥AC,EA∥BC∵FB∥AC,∠FBC=90,∴∠CBF=∠CAE,在△FBC和△EAC中,,∴△FBC≌△EAC(SAS),∴CF=CE,∠FCB=∠ECA,∵∠ACB=90°,∴∠FCE=90°,∴△FCE是等腰直角三角形,∵EP=FP,∴CP⊥EP,CP=EP=.③如解图3,作BF∥DE,交EP延长线于点F,连接CE、CF,过E点作EH⊥AC交CA 延长线于H点,当α=150°时,由旋转旋转可知,∠CAE=150°,DE与BC所成夹角的锐角为30°,∴∠FBC=∠EAC=α=150°同②可得△FBP≌△EDP(AAS),同②△FCE是等腰直角三角形,CP⊥EP,CP=EP=,在Rt△AHE中,∠EAH=30°,AE=DE=1,∴HE=,AH=,又∵AC=BC=3,∴CH=3+,∴EC2=CH2+HE2=∴PC2==.25.证明:(1)∵AB=AD,∴∠ABD=∠ADB,∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE,∴∠BAE=∠DAC,(2)设∠DAC=α=∠BAE,∠C=β,∴∠ABC=∠ADB=α+β,∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC,∴∠EAC=2β,∵AF平分∠EAC,∴∠F AC=∠EAF=β,∴∠F AC=∠C,∠ABE=∠BAF=α+β,∴AF=FC,AF=BF,∴AF=BC=BF,∵∠ABE=∠BAF,∠BGA=∠BAC=90°,∴△ABG∽△BCA,∴∵∠ABE=∠BAF,∠ABE=∠AFB,∴△ABF∽△DBA,∴,且AB=kBD,AF=BC=BF,∴k=,即,∴(3)∵∠ABE=∠BAF,∠BAC=∠AGB=90°,∴∠ABH=∠C,且∠BAC=∠BAC,∴△ABH∽△ACB,∴,∴AB2=AC×AH设BD=m,AB=km,∵,∴BC=2k2m,∴AC==km,∴AB2=AC×AH,(km)2=km×AH,∴AH=,∴HC=AC﹣AH=km﹣=,∴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学一轮考点复习几何图形
《几何图形初步》精练
一、选择题
1.如图所示的几何体从前面看到的图形是( )
2.下列各图中,可以是一个正方体的平面展开图的是( )
A. B. C. D.
3.观察下图,把左边的图形绕着给定直线旋转一周后可能形成的几何体是( )
4.已知线段AB=6,C在线段AB 上,且AC=1
3
AB,点D是AB的中点,那么DC等于
( )
A.1
B.2
C.3
D.4
5.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线中( )
A.a户最长
B.b户最长
C.c户最长
D.一样长
6.如果线段AB=6,点C在直线AB上,BC=4,D是AC的中点,那么A、D两点间
的距离是( )
A.只有5
B.只有2.5
C.5或2.5
D.5或1
7.在时刻8:30时,时钟上的时针与分针之间的所成的夹角是( )
A.60°
B.70°
C.75°
D.85°
8.如果∠α=n°,而∠α既有余角,也有补角,那么n的取值范围是( )
A.90°<n<180°
B.0°<n<90°
C.n=90°
D.n=180°
9.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数是( )
A.25
B.66
C.91
D.120
10.如图,已知A、B、C、D、E五点在同一直线上,点D是线段AB的中点,点E 是线段BC的中点,若线段AC=12,则线段DE等于( )
A.10
B.8
C.6
D.4
11.如图,一根长为10厘米的木棒,棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,能量的长度共有( )
A.7个
B.6个
C.5个
D.4个
12.如图,OB,OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式为( )
A.2α-β
B.α-β
C.α+β
D.2α
二、填空题
13.立方体木块的表面标有六个字1,2,3,4,5,6,下图是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是 .
14.如图所示,M,N把线段AB三等分,C为NB的中点,且CN=5cm,AB=________cm.
15.已知A,B,C,D是同一条直线上从左到右的四个点,且AB∶BC∶CD=1∶2∶3,若BD=15cm,则AC=____________cm,__________是线段AD的中点.
16.比较大小:52°52′________ 52.52°.(填“>”、“<”或“=”)
17.如图,数轴上O,A两点的距离为4,一动点P从点A出发.
按以下规律跳动:
第1次跳动到AO的中点A
1
处,
第2次从A
1点跳动到A
1
O的中点A
2
处,
第3次从A
2点跳动到A
2
O的中点A
3
处,
按照这样的规律继续跳动到点A
4,A
5
,A
6
,…,A
n
.(n≥3,n是整数)处,
那么线段A
n
A的长度为(n≥3,n是整数).
18.如图,OA的方向是北偏东15°,OB的方向是北偏西40°.
(1)若∠AOC=∠AOB,则OC的方向是____________;
(2)如果OD是OB的反向延长线,那么OD的方向是____________;
(3)∠BOD可看做是OB绕点O逆时针方向旋转180°至OD所成的角,作∠BOD的平分线OE,OE的方向是____________;
(4)在(1)(2)(3)的条件下,OF是OE的反向延长线,则∠COF=____________.
三、作图题
19.已知平面上的点A,B,C,D.按下列要求画出图形:
(1) 作直线AB,射线CB;
(2) 取线段AB的中点E,连接DE并延长与射线CB交于点O;
(3) 连接AD并延长至点F,使得AD=DF.
四、解答题
20.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.
(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;
(2)若图中的正方形边长为5cm,长方形的长为8cm,请计算修正后所折叠而成的长方体的表面积.
21.如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB,CD的中点E,F之间的距离是10 cm,求线段AB,CD的长度.
22.如图,点O 在直线AC 上,OD 是∠AOB 的平分线,OE 在∠BOC 内.若∠BOE=12
∠EOC ,∠DOE=72°,求∠EOC 的度数.
23.如图是一个正方体的表面展开图,请回答下列问题:
(1)与面B 、C 相对的面分别是 ;
(2)若A=a 3+a 2b+3,B=a 2b ﹣3,C=a 3﹣1,D=﹣(a 2b ﹣6),且相对两个面所表示的代数式的和都相等,求E 、F 分别代表的代数式.
24.如图,点A、B、C在数轴上,点O为原点.线段AB的长为12,BO=1
2
AB,CA=
1
3
AB.
(1)求线段BC的长;
(2)求数轴上点C表示的数;
(3)若点D在数轴上,且使DA=2
3
AB,求点D表示的数.
25.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.
(1)如图1,当∠BOC=70°时,求∠DOE的度数;
(2)如图2,当射线OC在∠AOB内绕点O旋转时,∠DOE的大小是否发生变化?若变化,说明理由;若不变,求∠DOE的度数.
参考答案
1.B.
2.C.
3.D
4.A
5.D.
6.D
7.C.
8.B
9.C.
10.C
11.B
12.A.
13.答案为:7.
14.答案为:30
15.答案为:9 点C
16.答案为:>.
17.答案为:4﹣.
18.答案为:(1)北偏东70°(2)南偏东40°(3)南偏西50°(4)20°
19.解:如图:
20.解:(1)多余一个正方形,如图所示:
(2)表面积为52×2+8×5×4=50+160=210(cm)2.
21.解:设BD=x cm,则AB=3x cm,CD=4x cm,AC=6x cm. 因为E,F分别为线段AB,CD的中点,
所以AE=1
2
AB=1.5x(cm),CF=
1
2
CD=2x(cm).
所以EF=AC-AE-CF=6x-1.5x-2x=2.5x(cm). 因为EF=10 cm,
所以2.5x=10,解得x=4.
所以AB=12 cm,CD=16 cm.
22.解:设∠BOE=x,∵∠BOE=1
2
∠EOC,
∴∠EOC=2x. ∵∠DOE=72°,
∴∠DOB=1
2
∠AOB=72°-x,
∴2(72°-x)+x+2x=180°,解得x=36°,
∴∠EOC=72°.
23.解:(1)由图可得:面A和面D相对,面B和面F,相对面C和面E相对,故答案为:F、E;
(2)因为A的对面是D,且a3+a2b+3+[﹣(a2b﹣6)]=a3+9.
所以C的对面E=a3+9﹣(a3﹣1)=10.
B的对面F=a3+9﹣(a2b﹣3)=a3﹣a2b+12.
24.解:(1)答案为:8.
(2)答案为:-2.
(3)答案为:-14或2.
25.解:(1)45°;(2)不变,∠DOE=45°.。

相关文档
最新文档