不等式的解法高中数学公式(一)

合集下载

高中数学 3223 一元二次不等式的解法(1)课件 新人教版必修5

高中数学 3223 一元二次不等式的解法(1)课件 新人教版必修5
第十九页,共30页。
解析:转化为二次项系数为正数,求出对应方程的根,画出对 应二次函数图像,数形结合写出解集.由-x2+2x-3>0得x2-2x+ 3<0.∴Δ=4-4×3=-8<0,∴原不等式解集为∅.
答案:∅
第二十页,共30页。
8.设集合A={x|(x-1)2<3x-7,x∈R},则集合A∩Z中有 ________个元素.
第十五页,共30页。
解析:对应的图像只能是开口向上的抛物线,且最多与x轴有一 个交点,∴a>0,Δ≤0.
答案:C
第十六页,共30页。
6.已知函数f(x)=
x+2,x≤0, -x+2,x>0,
则不等式f(x)≥x2的解集为
() A.[-1,2]
B.[-2,2]
C.[-2,1]
D.[-1,1]
第十七页,共30页。
1.了解一元二次不等式的概念和实际背景. 2.理解一元二次不等式、二次函数、二次方程之间的关系及一 元二次不等式的解法. 3.掌握一元二次不等式的解法.
第六页,共30页。
作基业础训设练计
第七页,共30页。
一、选择题(每小题6分,共36分)
1.设集合M={x|x>1},P={x|x2>1},则下列关系式正确的是
第二十五页,共30页。
(3)原不等式可化为6x2+x-2≤0, ∵Δ=12-4×6×(-2)=49>0, ∴方程6x2+x-2=0有两个不同实根,分别是-23,12, ∴原不等式的解集为x-23≤x≤12. (4)∵原不等式可化为4x2-4x+1≤0,即(2x-1)2≤0, ∴原不等式的解集是xx=12.
第二十一页,共30页。
解析:∵(x-1)2<3x+7的解集为∅,∴A∩Z有0个元素. 答案:0

高中数学不等式解题方法全归纳

高中数学不等式解题方法全归纳

高中数学不等式解题方法全归纳大家好,今天咱们来聊聊高中数学里的不等式。

这个话题呢,看起来有点吓人,但其实掌握了几个方法,解起来也就像吃饭喝水那么简单了。

我们就像个探险家,一步步揭开不等式的神秘面纱吧!1. 不等式基础知识1.1 不等式的基本概念首先,不等式呢,其实就是用来比较两个数值之间大小关系的。

最常见的有“<”、“>”、“≤”、“≥”这四种符号。

比如,3 < 5,这里表示3小于5。

其实,不等式就像是一道门,我们要找出哪一方在门的左边,哪一方在右边。

1.2 不等式的基本性质要解不等式,得先了解几个基本性质。

比如说,加减乘除这几个操作在不等式中是怎么表现的。

举个简单的例子:加减法:如果你在不等式的两边都加上或减去一个相同的数,结果不等式的方向不会改变。

比如,3 < 5,加2后变成了5 < 7。

乘除法:如果你在不等式的两边都乘以一个正数,结果不等式的方向也不会改变。

但如果你乘或除以负数,不等式的方向就会翻转。

比如,2 < 4,当你乘以1时,就变成了2 > 4。

2. 不等式的常见解法2.1 线性不等式的解法线性不等式是最简单的一类不等式。

比如,2x + 3 < 7。

这种情况,我们可以通过移项和合并同类项来解。

步骤如下:1. 移项:把常数项移到另一边。

2x < 7 3。

2. 化简:化简右边的数值。

2x < 4。

3. 除以系数:最后,除以2,得到x < 2。

这时候,不等式就解出来了。

简单吧?2.2 二次不等式的解法二次不等式可能有点复杂,但不怕,我们一步步来。

假如有一个不等式x^2 4 < 0。

解这个不等式可以分为几个步骤:1. 解对应的方程:先解x^2 4 = 0。

这个方程的解是x = ±2。

2. 画图分析:我们可以把这个方程的解标在数轴上,x = 2和x = 2。

然后就可以用测试点法或者符号法来判断在哪些区间内不等式成立。

高中不等式课件

高中不等式课件
高中不等式课件
目录
• 不等式的定义与性质 • 一元一次不等式 • 一元二次不等式 • 分式不等式 • 绝对值不等式
01
不等式的定义与性质
不等式个量之间大小关系的式子。
详细描述
不等式是用数学符号表示两个数 或量之间大小关系的式子,通常 用“<”、“>”、“≤”或 “≥”等符号连接两个数或量。
不等式的性质
总结词
不等式具有传递性、可加性、同号得 正、异号得负等性质。
详细描述
不等式的性质是数学中重要的基本性 质,包括传递性、可加性、同号得正 、异号得负等。这些性质在解决不等 式问题时具有重要的作用。
常见不等式类型
总结词
常见的不等式类型包括算术平均数与几何平均数不等式、柯西不等式、切比雪 夫不等式等。
01
当一个不等式中含有多个绝对值项时,需要采用分段讨论的方
法来求解。
含有参数的不等式
02
当一个不等式中含有参数时,需要讨论参数的取值范围来求解
不等式。
含有根号的不等式
03
当一个不等式中含有根号时,需要采用换元法或有理化分母的
方法来求解。
THANKS FOR WATCHING
感谢您的观看
当分式的分子是无理数时,需要 采用更为复杂的方法来解决。
05
绝对值不等式
绝对值不等式的解法
代数法
通过代数运算,将绝对值不等式转化为不含绝对 值的不等式,然后求解。
几何法
利用数轴上的点来表示绝对值,通过观察数轴上 的位置关系来求解不等式。
零点分段法
根据绝对值的零点将数轴分成几个区间,分别讨 论每个区间内函数值的符号,从而求解不等式。
不等式组
由多个一元一次不等式组成的系统,需要同时满足所有不等式,增加了求解的难 度。

高考一元二次不等式及其解法 课件(共51张PPT)

高考一元二次不等式及其解法 课件(共51张PPT)

(4)根据对应二次函数的图象,写出不等
式的解集.
栏目 导引
第六章
不等式与推理证明
例1
解下列不等式:
(1)2x2+4x+3>0; (2)-3x2-2x+8≥0;
(3)12x2-ax>a2(a∈R).
栏目 导引
第六章
不等式与推理证明
【思路分析】
首先将二次项系数转化
为正数,再看二次三项式能否因式分解, 若能,则可得方程的两根,大于号取两边, 小于号取中间;若不能,则再看“Δ”,利
法二比较简单.
栏目 导引
第六章
不等式与推理证明
【解】
(1)要使 mx2-mx-1<0 恒成立,
若 m=0,显然-1<0; 若 m≠0,
m<0 则 ⇒-4<m<0. 2 Δ=m +4m<0
所以-4<m≤0.
栏目 导引
第六章
不等式与推理证明
(2)要使 f(x)<-m+5 在[1,3]上恒成立,就是 12 3 要使 m(x- ) + m-6<0 在 x∈[1,3]上恒 2 4 成立. 有以下两种方法: 12 3 法一:令 g(x)=m(x- ) + m-6,x∈[1,3]. 2 4 当 m>0 时,g(x)在[1,3]上是增函数, 所以 g(x)max=g(3)=7m-6<0, 6 6 所以 m< ,则 0<m< ; 7 7
栏目 导引
第六章
不等式与推理证明
-∞,-1 ∪(1,+∞). ∴不等式的解集为 2
-∞,-1 ∪(1,+∞) 答案: 2
栏目 导引
第六章
不等式与推理证明
5.已知(ax-1)(x-1)>0的解集是{x|x<1 或x>2},则实数a的值为________.

人教课标版高中数学选修4-5第一讲 不等式和绝对值不等式二 绝对值不等式

人教课标版高中数学选修4-5第一讲 不等式和绝对值不等式二 绝对值不等式

② 解不等式│x│< 2 -2 0 ③ 解不等式│x│> 2 -2 0
含 绝 对 值 的 不 等 式 解 法
一、知识回顾
│x│=a(a>0)
其几何意义:数轴上表示实数x的点到原点的距离等于a.
① 解方程
│x│=a
-2 0
解集为{x│x=2, x=-2} 2 解集为{x│-2 < x < 2 } 2 解集为{x│x > 2或x<-2 } 2
(x+3)(x-1)>0
-3
1

-5<x<3
x<-3或x>1
-5
-3
1
3
-5< x< -3或1<x<3 ∴原不等式的解集是{x|-5< x< -3或1<x<3}
常规法解不等式的关键 1去绝对值 2交集与并集的取法
f(x) 分析二 A B C D y=6
解二 ∴ |x² +2x-9|=6 ∴x² +2x-9=6 或 ∴ x² +2x-15=0 (x+5)(x-3) =0

X-500≤5
-(X-500)≤5
由绝对值得意义,这个结果也可以表示成
│X-500│≤5
含 绝 对 值 的 不 等 式 解 法
一、知识回顾
│x│=a(a>0)
其几何意义:数轴上表示实数x的点到原点的距离等于a.
① 解方程
│x│=2 -2 0
解集为{x│x=2, x=-2} 2 解集为{x│-2 < x < 2 } 2 解集为{x│x > 2或x<-2 } 2
(2)不等式x² -5x + 4 < 0的解集是

人教版高中数学课件:一元二次不等式的解法(1)

人教版高中数学课件:一元二次不等式的解法(1)

3、观察二次函数 y x 2 x 3 的 图象,回答下列问题
2
3) 不等式 2x 2 x330 的解集为 2) 0 的解集为 1) 方程 x x {x x>3或x<-1} {x -1<x<3} {x || |x=3或x=-1} ____________;
2 2 2
4、解下列不等式
秦皇岛市职业技术学校 李天乐
1、画出 y=2x-7 的图象,观察图象, 回答下面问题: 3) 当x=___时, y=0,即2x-7=0解集为____ 2) 当x=___时, y<0,即2x-7<0解集为____ 1) y>0,即2x-7>0解集为____
2、设直线y=ax+b(a≠0)与轴交点为 (xo , o),则: 2)当a<0时,不等式ax+b>0的解集为 1)当a>0时,不等式ax+b>0的解集为 {x || x> xoo} {x | x> xo} ax+b<0的解集为________; x< {x x< ___21习题1.5第1、3、6题.
1) x x 6 0
2 2
2) - 3x 6 x 2
2 2
3) 4 x 4 x 1 0 4 ) - x 2 x 3 0
5、课堂练习:
P19~P20第1、2、3题
6、课堂小结: 二次函数
图象 一元二次 方程的根 一元二次不 等式的解
三个二次问题都可以通过图形实现转换

高中数学 第一讲 不等式和绝对值不等式 1.2 绝对值不

高中数学 第一讲 不等式和绝对值不等式 1.2 绝对值不

1.2.2 绝对值不等式的解法课堂导学三点剖析一、绝对值不等式的典型类型和方法(一) 【例1】 解下列不等式: (1)1<|x+2|<5; (2)|3-x|+|x+4|>8.解析:(1)法一:原不等式⇔⎩⎨⎧<<--<->⇔⎩⎨⎧<+<->+⇔⎩⎨⎧<+>+.37,31525125|2|1|2|x x x x x x x 或 故原不等式的解集为{x|-1<x<3或-7<x<-3}.法二:原不等式⎩⎨⎧<--<<+⎩⎨⎧<+<≥+⇔521,02521,02x x x x 或, ⇔⎩⎨⎧-<<--<⎩⎨⎧<<--≥⇔37,231,2x x x x 或-1<x<3或-7<x<-3.∴原不等式的解集为{x|-1<x<3或-7<x<3}.(2)法一:原不等式⎩⎨⎧>++-<<-⎩⎨⎧>---≤⇔,843,34843,4x x x x x x 或⎩⎨⎧>≥⎩⎨⎧><<-⎩⎨⎧>---≤⇔⎩⎨⎧>++-≥.72,387,34821,4843,3x x x x x x x x 或或或 ∴x>27或x<29-. ∴原不等式的解集为{x|x<29-或x>27}.法二:将原不等式转化为|x-3|+|x+4|-8>0,构造函数y=|x-3|+|x+4|-8,即y=⎪⎩⎪⎨⎧≥-<<---≤--.3,72,34,1,492x x x x作出函数的图象如图.从图象可知当x>27或x<29-时,y>0,故原不等式的解集为{x|x>27或x<29-}. 温馨提示在本例中主要利用了绝对值的概念,|x|<a(或|x|>a)的解集以及数形结合的方法,这些方法都是解绝对值不等式的典型方法. 各个击破 类题演练1 解下列不等式:(1)|432-x x|≤1; (2)|x+3|-|2x-1|>2x+1.解析:(1)原不等式⎩⎨⎧≥+-±≠⇔⎪⎩⎪⎨⎧-≤≠-⇔016172)4(904242222x x x x x x ⇔⎩⎨⎧≥≤±≠⇔161222x x x 或-1≤x≤1或x≤-4或x≥4. 故原不等式的解集为{x|-1≤x≤1或x≤-4或x≥4}. (2)由x+3=0,得x 1=-3, 由2x-1=0,得x 2=21. ①当x<-3时,不等式化为x-4>2x+1,解得x>10,而x<-3,故此时无解; ②当-3≤x<21时,不等式化为3x+2>2x +1,解得x>52-,这时不等式的解为52-<x<21;③当x≥21时,不等式化为-x+4>2x +1,即x<2,这时不等式的解为21≤x<2.综合上述,原不等式的解集为{x|52-<x<2}.变式提升1(1)解不等式|x 2-5x+5|<1.解析:不等式可化为-1<x 2-5x+5<1,即⎪⎩⎪⎨⎧->+-<+-.155,15522x x x x解之,得1<x<2或3<x<4.所以原不等式的解集为{x|1<x<2或3<x<4}.(2)求使不等式|x-4|+|x-3|<a 有解的a 的取值范围. 解法一:将数轴分为(-∞,3),[3,4],(4,+∞)三个区间. 当x<3时,得(4-x)+(3-x)<a,x>27a -有解条件为27a-<3,即a>1; 当3≤x≤4,得(4-x)+(x-3)<a,即a>1; 当x>4时,得(x-4)+(x-3)<a,则x<27+a有解条件为27+a >4.∴a>1. 以上三种情况中任何一个均可满足题目要求,故是它们的并集,即仍为a>1.解法二:设数x 、3、4在数轴上对应的点分别为P 、A 、B,由绝对值的几何意义,原不等式即求|PA|+|PB|<a 成立.因为|AB|=1,故数轴上任一点到A 、B 距离之和大于(等于)1,即|x-4|+|x-3|≥1,故当a>1时,|x-4|+|x-3|<a 有解.另外,本题还可利用绝对值不等式性质求函数的最值方法处理: ∵|x -4|+|x-3|=|x-4|+|3-x| ≥|x -4+3-x|=1,∴a 的取值范围是a>1.二、绝对值不等式的典型类型和方法(二)【例2】 解不等式|x 2-9|≤x+3.解析:方法一:原不等式⎪⎩⎪⎨⎧+≤-≥-⇔39,0922x x x ⎪⎩⎪⎨⎧+≤-≥-39,0922x x x 或 由①得x=-3或3≤x≤4,由②得2≤x<3,∴原不等式解集是{x|2≤x≤4或x=-3}.方法二:原不等式⎪⎩⎪⎨⎧≤≤--≤-≥⇔⎩⎨⎧+≤-≤+-≥+⇔433339)3(032x x x x x x x x ⇔或2≤x≤4. ∴原不等式的解集为{x|x=-3或2≤x≤4}. 温馨提示对于|f(x)|≤g(x)型的不等式,通常有两种思路,一种是利用绝对值的意义,将其转化为f(x)≥0,⎩⎨⎧≤-<⎩⎨⎧≤≥).()(,0)()()(,0)(x g x f x f x g x f x f 或 另一种则是转化为⎩⎨⎧≤≤-≥)()()(,0)(x g x f x g x g 来求.当然也可直接转化为-g(x)≤f(x)≤g(x)来解(为什么?请同学们思考). 类题演练2解不等式|2x-1|>3x.解析:①当x<0时,原不等式显然成立;②当x≥0时,两端平方,得(2x-1)2>9x 2,即5x 2+4x-1<0,解之,得-1<x<51, ∴0≤x<51. 由①②知原不等式的解集为{x|x<51}. 变式提升2(1)解不等式|x 2-3x+2|>x 2-3|x|+2.解析:在同一坐标系内分别画出函数y=|x 2-3x+2|和y=x 2-3|x|+2=|x|2-3|x|+2的图象(如图所示).由图可知,原不等式的解集为{x|x<0或1<x<2}. (2)解不等式|x+1|(x-1)≥0. 解析:1° x+1=0,适合不等式;2° x+1≠0,则|x+1|>0,故原不等式等价于x-1≥0,∴x≥1,显然x+1≠0. ∴原不等式的解集为{x|x≥1或x=-1}. 三、绝对值不等式的证明【例3】 设f(x)=ax 2+bx+c,当|x|≤1时,总有|f(x)|≤1,求证:当|x|≤2时,|f(x)|≤7. 证明:由于f(x)是二次函数,|f(x)|在[-2,2]上的最大值只能是|f(2)|,|f(-2)|或|f(a b 2-)|,故只要证明|f(2)|≤7,|f(-2)|≤7;当|a b 2-|≤2时,有|f(ab 2-)|≤7. 由题意有|f(0)|≤1,|f(-1)|≤1,|f(1)|≤1.由⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--+=⎪⎩⎪⎨⎧+-=-++==).0()],1()1([21)],0(2)1()1([21,)1(,)1(,)0(f c f f b f f f a c b a f c b a f c f 得∴|f(2)|=|4a+2b+c|=|3f(1)+f(-1)-3f(0)|≤3|f(1)|+|f(-1)|+3|f(0)|≤3+1+3=7, |f(-2)|=|4a-2b+c|=|f(1)+3f(-1)-3f(0)|≤|f(1)|+3|f(-1)|+3|f(0)|≤1+3+3=7. ∵|b|=21|f(1)-f(-1)|≤21(|f(1)|+|f(-1)|)≤21(1+1)=1, ∴当|ab2-|≤2时,|f(a b 2-)|=|a b ac 442-|=|c a b 42-|=|c a b 2-·2b |≤|c|+|a b 2|·2||b ≤1+2×21=2<7.因此当|x|≤2时,|f(x)|≤7.类题演练3已知f(x)=x 2+ax+b(x 、a 、b∈R ,a 、b 是常数),求证:|f(1)|、|f(2)|、|f(3)|中至少有一个不小于21. 证明:假设|f(1)|、|f(2)|、|f(3)|全都小于21,即有|f(1)|<21,|f(2)|<21,|f(3)|<21. 于是|f(1)+f(3)-2f(2)|≤|f(1)|+|f(3)|+2|f(2)|<21+21+2×21=2.又f(1)+f(3)-2f(2)=2,二者产生矛盾,故|f(1)|、|f(2)|、|f(3)|中至少有一个不小于21. 变式提升3已知函数f(x)=ax+b,满足|x|≤1,a 2+b 2=1,求证:|f(x)|≤2.证法一:|f(x)|≤2⇔2-≤f(x)≤2⇔f(x)min ≥2-且f(x)max ≤2.若a>0,则f(x)max =f(1)=a+b≤2)(222=+b a ,f(x)min =f(-1)=-a+b≥2])[(222-=+--b a . 若a=0,则f(x)=b 且b 2=1, ∴|f(x)|≤2.若a<0,则f(x)max =f(-1)=-a+b≤2)(222=+b a ,f(x)min =f(1)=a+b≥2)(222-=+-b a . 综上,知不等式成立. 证法二:|f(x)|2-(2)2=(ax+b)2-2(a 2+b 2)=a 2x 2+b 2+2abx-2(a 2+b 2)≤a 2+b 2+2abx-2(a 2+b 2)=2abx-a 2-b 2≤2abx -a 2x 2-b 2=-(ax-b)2≤0, ∴|f(x)|≤2.。

高中数学中所有不等式解法汇总每题均含详细解析

高中数学中所有不等式解法汇总每题均含详细解析

专项一 简单不等式的解法汇总解简单不等式是指:解二元一次不等式组、解一元二次不等式、解含绝对值的简单不等式、解分式不等式、解简单的高次不等式。

一、有关分数不等式的性质 若a >b >0,m >0,则①b a <b +m a +m ;b a >b -m a -m (b -m >0). ②a b >a +m b +m ;a b <a -m b -m (b -m >0). 二、“三个二次”的关系22三、解一元二次方程一元二次方程可以采用的方法有,一是:求根公式x =,首先要求有根,也就是要求240b ac -≥;二是采取因式分解法,因式分解的重要措施就是使用“十字相乘法”,十字相乘法适用于求解20(0)ax bx c a ++=≠,拆分形式图如:m p n q ⎛⎫⎪⎝⎭需要满足的条件是:;;;mn a pq c mq pn b =⎧⎪=⎨⎪+=⎩,m n p q 、、、四个关键参数需要考生观察想到,则该式即可化成:()()0mx p nx q ++=,则两根可解出,但是要知道一点,十字相乘法不是万能的,有些方程因为不能满足上述三个条件而不能使用;三是使用配方法,这个方法在初中的时候,是作为重要方法进行训练的,相信大家没有问题。

四、解一元二次不等式(1) .我们统一养成一个习惯,将一元二次不等式的二次项系数处理为正数,之后凡是解“大于零或大于等于零”的一元二次不等式,一律“取两边”; 凡是解“小于零或小于等于零”的,一律“取中间”。

(2).(x -a )(x -b )>0或(x -a )(x -b )<0型不等式的解法【1】.(教材改编)不等式x 2-3x -10>0的解集是( ) A.(-2,5) B.(5,+∞)C.(-∞,-2)D.(-∞,-2)∪(5,+∞)答案 D解析 解方程x 2-3x -10=0得x 1=-2,x 2=5,由y =x 2-3x -10的开口向上,所以x 2-3x -10>0的解集为(-∞,-2)∪(5,+∞). 【2】.设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N 等于( ) A.(0,4] B.[0,4) C.[-1,0) D.(-1,0] 答案 B解析 ∵M ={x |x 2-3x -4<0}={x |-1<x <4}, ∴M ∩N =[0,4).【3】.已知不等式ax 2-bx -1≥0的解集是⎣⎡⎦⎤-12,-13,则不等式x 2-bx -a <0的解集是( ) A.(2,3) B.(-∞,2)∪(3,+∞) C.⎝⎛⎭⎫13,12 D.⎝⎛⎭⎫-∞,13∪⎝⎛⎭⎫12,+∞ 答案 A解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝⎛⎭⎫-13=b a ,-12×⎝⎛⎭⎫-13=-1a.解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3). 【4】.(教材改编)若关于x 的不等式m (x -1)>x 2-x 的解集为{x |1<x <2},则实数m 的值为________. 答案 2解析 因为m (x -1)>x 2-x 的解集为{x |1<x <2}. 所以1,2一定是m (x -1)=x 2-x 的解,∴m =2.【5】.若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A.(-3,0]B.[-3,0)C.[-3,0]D.(-3,0)解析D (1)2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×(-38)<0,解之得-3<k <0. 【6】.设a 为常数,∀x ∈R ,ax 2+ax +1>0,则a 的取值范围是( ) A.(0,4) B.[0,4) C.(0,+∞)D.(-∞,4)解析B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式的解法高中数学公式(一)
不等式的解法公式
一次不等式的解法
•公式1:加减法原则
当不等式的两边加减同一个数时,不等号的方向不变。

–例子:将不等式3x−4<5x+2中的x求解出来。

解答:根据加减法原则,将同项进行归并,得到−6<2x,再把式子中的系数2移到右边,得到2x>
−6。

最后,将不等号的方向翻转,得到解为x>−3。

•公式2:乘除法原则
当不等式的两边乘除同一个正数时,不等号的方向不变;当乘除同一个负数时,不等号的方向翻转。

–例子:将不等式1
3x+2≥2
5
x−1中的x求
解出来。

解答:根据乘除法原则,将不等式中所有项的系数化为整数,得到5x+30≥6x−15。

继续归并同项,得到45≥x。

由于不等式中系数为正,所以不等号的方向不变,解为x≤45。

二次不等式的解法
•公式1:移项与配方
将二次不等式化为0的形式,通过因式分解或配方法,找到不等式的根,从而得到不等式的解。

–例子:将二次不等式x2−4x−5≥0求解出来。

解答:对二次不等式进行因式分解,得到
(x−5)(x+1)≥0。

然后,利用零点的性质,绘制出区间
图,并确定不等式的解为x≤−1或x≥5。

•公式2:求导法
当二次不等式的导函数性质已知时,可以通过求导函数的零点和判断函数的增减性来求解不等式。

–例子:将二次不等式x2−6x+5<0求解出来。

解答:首先,求导函数f′(x)=2x−6的零点,得到x=3。

然后,通过判断导函数的增减性,得知当
x<3时,导函数小于0,所以f(x)是减函数;当x>3
时,导函数大于0,所以f(x)是增函数。

综上所述,不
等式x2−6x+5<0的解为3−∞<x<3。

相关文档
最新文档