线路主保护之差动与高频详解解读
光纤差动保护

光纤差动保护光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于克希霍夫基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,提高了运行的可靠性。
目前电流差动保护在电力系统的主变压器、线路和母线上大量使用,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点是其他保护形式所无法比拟的。
光纤电流差动保护在继承了电流差动保护的这些优点的同时,以其可靠稳定的光纤传输通道保证了传送电流的幅值和相位正确可靠地传送到对侧1 原理介绍光纤分相电流差动保护借助于线路光纤通道,实时地向对侧传递采样数据,同时接收对侧的采样数据,各侧保护利用本地和对侧电流数据按相进行差动电流计算。
根据电流差动保护的制动特性方程进行判别,判为区内故障时动作跳闸,判为区外故障时保护不动作。
光纤电流差动保护系统的典型构成如图1所示。
当线路在正常运行或发生区外故障时,线路两侧电流相位是反向的。
如图所示,假设M侧为送电端,N侧为受电端,则,M侧电流为母线流向线路,N侧电流为线路流向母线,两侧电流大小相等方向相反,此时线路两侧的差电流为零;当线路发生区内故障时,故障电流都是由母线流向线路,方向相同,线路两侧电流的差电流不再为零,当其满足电流差动保护的动作特性方程时,保护装置发出跳闸令快速将故障相切除。
2 对通信系统的要求光纤电流差动保护借助于通信通道双向传输电流数据,供两侧保护进行实时计算。
其一般采用两种通信方式:一种是保护装置以64Kbps/2Mbps速率,按ITU-T建议G.703规定于数字通信系统复用器的64Kbps/2Mbps数据通道同向接口,即复用PCM方式;另一种是保护装置的数据通信以64Kbps/2Mbps速率采用专用光纤芯进行双向传输,即专用光纤方式。
(详见图3)光纤电流差动保护要求线路两侧的保护装置的采样同时、同步,因此时钟同步对光纤电流差动保护至关重要。
线路的全线速动保护

相继动作区:
等对侧保护动作后短路电流重新分布,本侧保 护再动作叫相继动作; 可能发生相继动作的区域叫相继动作区。
当在平行线路内部任一端母线附近发生短路 时,如图所示:
线路L1 I 1
线路L2 I 2
I1 I 2
.
1 ( I1 I 2 ) M侧: I nTA
小 ,保护不动 。 KA1中的电流 I
同时N侧的保护:
, 在K1点故障时,N端3TA流过电流为 I 2 4TA流过电流为 I , 2
则2KA中的差电流为 2KA动作 跳开3QF 3KW动作 因此,L1线路故障,M侧与N侧保护动作,将 1QF与3QF跳开。
I1 L2线路故障时, I 2 ,与上相同的分析方法, 1KA与2KW动作将2QF跳闸, 2KA与4KW动作将4QF跳闸。
2. 高频保护的分类
高频闭锁方向保护
方向高频
高频闭锁距离保护 高频闭锁零序电流保护
比较被保护线路两端的短路功率方向 相差高频
电流相位差动高频保护
比较被保护线路两端的工频电流相位
二、高频通道的构成
载波
高频通道的分类
微波 通道 光纤
“相一相”制 “相一地”制
对高频通道的要求:
(1) 高频信号在通道中衰耗尽可能小。 (2) 接收端收到信号的波形尽量不失真。 (3) 使信号受外来的干扰影响小。
微波通道与电力输电线路没有直接的联系, 这样线路上任何故障都不会破坏通道的工作, 所以不论是内部或外部短路故障时,微波通道 都可以传送信号,而且不存在防止工频高压对 人身和二次设备的安全问题,输电线路的检修 和运行方式的改变也不影响通道的工作。 利用微波通道构成的继电保护称为微波保护
(三) 光纤通道
第四节 主设备差动保护及开关失灵保护的一些问题

第四节 主设备差动保护及开关失灵保护的一些问题本节,将较系统地介绍变压器差动保护、电动机差动保护、母线差动保护及开关失灵保护的一些技术问题。
一 变压器分相纵差保护消除不平衡电流的方法从所周知,正常运行及外部故障时,Y/△接线变压器两侧电流的大小和相位均不相同,其差动TA 二次电流的大小和相位亦不相同。
为确保变压器正常运行及区外故障时纵差保护不误动,需要解决以下问题:使流入同一相差动元件各侧的电流相位相反;使流入同一相差动元件各侧电流产生的作用或安匝数相同;当变压器大电流系统侧网路中发生接地故障时,没有零序电流流入各相差动元件。
上述问题,在模拟式保护装置及微机保护装置中均得到了解决。
1 使流入同一相差动元件各侧电流相位相同(或相反)为使同相差动元件两侧电流的相位相反(或相同),可采用改变高压侧(大电流系统侧)差动TA 的接线方式进行移相,或采用计算机软件进行移相。
改变差动TA 接线对差动一侧电流进行移相的方法,是过去模拟式纵差保护普遍采用的移相方法。
例如:对于接线为Y/△-11的变压器,将其纵差保护两侧TA 接线接成△-11/Y ,使变压器两侧流入同相差动元件电流的相位相反(或相同)。
在采用过的各种型号的变压器纵差保护中,由差动TA 移相也有两种方法,其一是将变压器高压侧差动TA 的二次接成△形,另一种是差动TA 二次仍接成Y/Y 型,而将差动保护高压侧的辅助小TA 接成△型。
对于微机型保护装置,既可以采用改变差动TA 二次接线方式移相,也可以由软件计算进行移相。
微机保护中的软件计算移相法,是由计算机软件通过计算将某相差动元件某侧的电流移一个角度,从而达到差动元件两侧电流的相位相反(或相同)的目的。
目前,在国内生产的变压器微机保护装置中,通过软件对电流进行移相的方法也有两种。
一种是将变压器高压侧(即Y 侧)差动TA 二次电流进行移相,另一种是将变压器低压侧(即△侧)差动TA 二次电流移相。
例如,对接线为Y/△-11的变压器,在Y 侧进行计算移相的方法是:使该侧流入A 、B 、C 三相差动元件的电流分别等效为:B A I I -、C B I I -及A C I I -(A I 、B I 、C I ——高压侧差动TA 二次三相电流);而在△侧计算移相的方法是:将该侧流入A 、B 、C 三相差动元件的电流a i 、b i 、c i (低压侧差动TA 二次三相电流)分别等效为向滞后方向移相300,即分别等于030j a e i -、030-j b e i 、030-j c e i 。
变电站110kV线路差动保护动作分析

变电站110kV线路差动保护动作分析摘要:通过对110kV某L枢纽变电站故障前的运行方式、背景及事故经过的介绍,对其二进线L、H变电站两侧的线路保护录波图形及动作进行了分析,用临时1#变压器替代原1#变压器转运行投至110kVII母手动合闸时,产生不平衡电流中的直流分量较大,导致L变电站二进线的L侧线路保护CSC-163A零序差动保护动作。
关键词:110kV;不平衡电流;零序差动保护;变电站1故障前系统的运行方式110kV线路在我国电网中占有较大的比例,确保110kV线路的运行安全非常重要。
110kV保护装置目前主要配置微机型继电保护装置,其运行可靠,自动化程度高。
为了确保保护装置能够正确动作,需要在定检工作中对其保护的选择性、速动性、灵敏性、可靠性进行调试;本文主要对110KV线路差保护动作进行了详细的阐述。
110KV某L枢纽变电站一次系统为3条电源进线、双母双分段接线方式,运行方式如下,一进线带110KVI母、1#主变和2#变压器,1#主变带10KVI、IV母;二进线带110KVII、IV母,110KVII母带临时1#变压器,110KVIV母带2#主变及10kVII母;三进线带110KVIII母,110KVIII母带3#主变、3#变压器及10kVIII母;3条进线均由220kV某H变电站送电。
2故障前的背景由于现场原因,1#变压器和3#变压器低压侧后备保护装置中的复压过流保护动作,事故跳闸。
由于生产需要,急需将1#、3#变压器送电。
在送电前,对1#、3#变压器进行了相关电气检测试验。
检测报告结果显示,3#变压器直流电阻测定为:AB两相为6.385mΩ;BC两相为6.391mΩ;CA两相为6.375mΩ;测试结果满足要求。
而1#变压器直流电阻测定为:AB两相为8.678mΩ;BC两相为5.847mΩ;CA两相为7.825mΩ;平衡度测试结果等于38%,远远超标,且其油色谱分析显示气体中的含烃量也远远超标。
线路保护装置基本原理PPT课件

区外故障,通道故障,不误动
区内故障,通道故障, 可靠动作
区内故障,通道故障,拒动
位置停信(发信)和母差停信(发信)
1)位置停信(发信):跳闸位置继电器停信,是考虑当故障发生在本侧出口时,由 接地距离保护快速动作跳闸,而高频保护还未来得行及动作,故障已被切除,并发出 连续高频信号,闭锁了对侧高频保护,只能由二段带延时跳闸。为了克服此缺点,采 用由跳闸位置继电器停信,使对侧自发自收,实现无延时跳闸。其他应用:(a)在发生 区内故障时,一侧断路器先跳闸,如果不立即停信,由于无操作电流,发信机将发生 连续的高频信号,对侧收信机也收到连续的高频信号,则闭锁保护出口,不能跳闸; (b)当手动或自动重合于永久性故障时,由于对侧没有合闸,于是经远方起动回路,发 出高频连续波,使先合闸的一侧被闭锁,保护拒动。为了保证在上述情况下两侧装置 可靠动作,必须设置断路器三跳停信回路。
闭锁式纵联方向保护原理逻辑框图(以下图2):
1)启动元件动作首先发讯,此时门7未动作,可经门9发讯。 2)停讯必须满足2个条件:a.反方向元件D-不动,正方向元件D+动作,与门3有输出,表示 正方向故障;b.收信10 ms后,即或门2启动时间t2(10 ms),与门4有输出。 2个条件满足,与门7有输出,经反向器闭锁门9,停止发讯。 3)区内故障: a.D-不动作,D+动作,正方向故障; b.先收讯10 ms后,无闭锁信号,与 门5有输出。满足这2个条件,判为区内故障,与门8有输出,可以跳闸。 注意:先收到过10ms闭锁信号,主要是考虑区外故障时可靠收到对侧的闭锁信号,防止本侧保 护误动。因为高频信号沿通道传输需要时间,最严重的情况是反方向侧保护启动元件损坏(或 因某种原因没有启动),依靠远方启信使对侧收发信机启动,此时通道信号将往返一次,并考 虑一定的裕度。
主变送电时线路光纤差动保护动作的分析

主变送电时线路光纤差动保护动作的分析摘要:变压器空载投运时会产生励磁涌流,励磁涌流存在很大的非周期分量,可能会导致主变差动保护、线路光纤差动保护误动作,本文分析了励磁涌流出现时线路光差保护误动的案例,希望对类似的事件能有所借鉴。
关键词:励磁涌流,线路光纤差动保护1、引言励磁涌流是由于变压器空载投运时,铁芯中磁通不能突变,出现非周期分量磁通,使铁芯饱和,励磁电流急剧增大而产生的。
变压器励磁涌流最大值,可以达到变压器额定电流的6-8倍,并且跟变压器的容量大小有关,变压器容量越小,励磁涌流倍数越大。
励磁涌流存在很大的非周期分量,并以一定时间系数衰减[1]。
励磁涌流可能会导致主变差动保护、线路保护误动作,本文结合案例分析了励磁涌流对线路光差保护的影响,希望对类似的事件能有所借鉴。
2、案例分析2.1 故障情况220kV佳桥站通过110kV桥北线供110kV北坝站,并通过110kV北金线转供110kV金山站。
110kV北坝站、金山站均为两台三圈变,北坝主变容量为2*31.5MVA,金山主变容量为2*40MVA,两站站内接线一致,均为全接线形式,每侧母线均为单母分段形式。
110kV桥北线、北金线均配置并投入了光纤差动保护。
一次接线示意图如下:图1 系统一次接线示意图2016年11月13日按照检修计划对110kV北坝站10kVI母及1#主变总路开关进行检修,工作完毕14:11分合上北坝站Z101开关对1#主变送电,110kV桥北线光纤差动保护动作,差动电流1.55A,桥北线两侧开关跳闸,选相B相,110kV北坝、金山站失压。
调控中心立即通知运维人员对线路巡线,运维人员巡视线路后发现任何故障点,决定对110kV桥北线进行试送一次。
在拉开北坝、金山主变及线路开关后,16:00分对110kV桥北线试送电成功,16:14分对110kV金山线送电成功。
由于金山站部分负荷急需用电,16:16分对金山站1#主变送电,在1#主变C101开关合闸后,110kV桥北线光差保护动作再次跳闸,差动电流0.88A,选相A相。
光纤差动保护原理介绍

差动保护特点
►装置采用了经差流开放的电压起动元件, 负荷侧装置能正常起动
►差动保护能自动适应系统运行方式的改变
►装置能实测电容电流,根据差动电流验证 线路容抗整定是否合理
差动保护特点
►装置能实时监测通道工作情况,当通道发 生故障或通道网络拓扑发生变化时,装置 能起动新的同步过程,直至两侧采样重新 同步,同时记录同步次数及通道误码总数 等;两侧采样没有同步时,差动保护自动 退出。
电容电流补偿条件
容抗整定和实际系统不相符合判据:
0且 .75*XUXc1Uc1IC0D或 .1I0N.或 75I*CIDCD0.1XIUNc1
其中Icd为正常情况下的实测差流,即实际的电容电流; 1.实测电容电流和经XC1计算得到的电容电流具有可比性(至少有一个>0.1In) ,并且较大的0.75倍>较小值,可认为容抗整定和实际系统不相符合。 2.当实测电容电流和经XC1计算得到的电容电流都小于0.1In时,认为两者不具备 可比性,不再判别容抗整定是否同实际系统相符。
光纤差动保护
►采样同步 ►数据交换/通信构成
▪ 通道方案 ▪ 码型变换 ▪ 时钟提取 ▪ 通道监视
►保护原理 ►2M与64K接口的区别
通道方案
一 专用光纤 二 复接PCM
专用光纤
►一根光纤只用来传输一个方向的保护信息, 不与其它任何信息复用。
►一对光纤可用来传输(双向)一条线路两 侧的保护信息。
数据发送 64Kb/s 从SCC来
发时钟
数据接收 64Kb/s 去SCC
通信接口的功能框图
码型变换
光纤发送 (主)
光纤
时钟提取 DPLL
线路保护原理与配置

4.220kV及以上保护双重化配置原则的要 求
①每套完整、独立的保护装置应能处理可能发生的所有类型 的故障。两套保护之间不应有任何电气联系,当一套保护退出 时不影响另一套保护的运行。
②两套保护的电流回路应分别取自电流互感器互相独立的绕 组,并合理分配电流互感器二次绕组,避免可能出现的保护死 区。
③两套保护的跳闸回路应与断路器的两个跳圈分别一一对应。
110kVLFP-941线路保护装置压板
交流电压断线时发“DX”信号的同时,将距离保护退出运行,同时将 零序方向过流保护的方向元件退出,即将零序四段方向过流保护改为无方向 性跳闸方式。同时投入经延时的相电流过流保护(受投距离压板影响 ),若 将“投距离”压板解除,则此PT断线下的相电流保护不起作用。
三 、不同电压等级线路保护的配置
110kV线路保护装置
装置的正面面板布置如下:
(2)指示灯定义如下: “运行”灯为绿色,装置正常运行时点亮。 “TV断线”灯为 黄色,当发生电压回路断线时点亮。“充电”灯为黄色,当重 合闸充电完成时点亮。 “跳闸”、 “重合闸”灯为红色,当保护动作出口点亮,在 “信号复归”后熄灭。 “跳位”灯为红色,“合位”灯为绿色,指示当前开关位置。
继电保护装置基本要求
1、对继电保护性能的要求
继电保护装置应满足选择性、可靠性、灵敏性和
速动性的要求。 2、继电保护“四统一”原则:统一技术标准;统一原 理接线;统一符号;统一端子排布置。 3、继电保护“六统一”原则:统一技术标准;统一原 理接线;统一符号;统一端子排布置;统一定值单格 式;统一故障报告格式。
RCS900系列保护装置上电后,正常运行时液晶屏幕显示主 画面,格式如下:
保护动作时液晶显示说明:本装置能存储128次动作报告,24次故障录 波报告,当保护动作时,液晶屏幕自动显示最新一次保护动作报告,当一次 动作报告中有多个动作元件时,所有动作元件及测距结果将滚屏显示。