2021年最新中考数学试题分类汇编

合集下载

2021年中考数学真题分类汇编--统计与概率(学生版)

2021年中考数学真题分类汇编--统计与概率(学生版)
A.摸出的2个球中至少有1个红球B.摸出的2个球都是白球
C.摸出的2个球中1个红球、1个白球D.摸出的2个球都是红球
二.填空题
1.(2021•湖南省邵阳市)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机选择其中一条路径,则它遇到食物的概率是.
2.(2021•岳阳市)一个不透明 袋子中装有5个小球,其中3个白球,2个黑球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是白球的概率为_______.
6.(2021•呼和浩特市)动物学家通过大量的调查,估计某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,据此若设刚出生的这种动物共有a只.则20年后存活的有__________只,现年20岁的这种动物活到25岁的概率是__________.
7.(2021• 上海市)有数据 ,从这些数据中取一个数据,得到偶数的概率为__________.
23.(2021•内蒙古通辽市)如图所示,电路连接完好,且各元件工作正常.随机闭合开关S1,S2,S3中的两个,能让两个小灯泡同时发光的概率是.
24.(2021• 黑龙江省龙东地区)一个不透明的口袋中装有标号为1、2、3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋并摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是偶数的概率是___________.
12.(2021•四川省南充市)在﹣2,﹣1,1,2这四个数中随机取出一个数,其倒数等于本身的概率是.
13.(2021•天津市)不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.
14.(2021•浙江省湖州市)某商场举办有奖销售活动,每张奖券被抽中的可能性相同.若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是.

2021年辽宁省中考数学真题分类汇编:数与式(附答案解析)

2021年辽宁省中考数学真题分类汇编:数与式(附答案解析)

2021年辽宁省中考数学真题分类汇编:数与式一.选择题(共6小题)1.(丹东)﹣5的相反数是()A.5B.C.﹣5D.0.52.(丹东)下列运算正确的是()A.a﹣2•a3=a﹣6B.(m﹣n)2=m2﹣mn+n2C.(2a3)3=8a6D.(2m+1)(2m﹣1)=4m2﹣13.(大连)2021年党中央首次颁发“光荣在党50年”纪念章,约7100000名党员获此纪念章.数7100000用科学记数法表示为()A.71×105B.7.1×105C.7.1×106D.0.71×107 4.(大连)下列计算正确的是()A.(﹣)2=﹣3B.=2C.=1D.(+1)(﹣1)=35.(营口)估计的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间6.(本溪)下列运算正确的是()A.x2•x=2x2B.(xy3)2=x2y6C.x6÷x3=x2D.x2+x=x3二.填空题(共3小题)7.(丹东)分解因式:ma2+2mab+mb2=.8.(营口)若代数式有意义,则x的取值范围是.9.(本溪)分解因式:2x2﹣4x+2=.三.解答题(共4小题)10.(大连)计算:•﹣.11.(营口)先化简,再求值:,其中x=+|﹣2|﹣3tan60°.12.(本溪)先化简,再求值:÷(1+),其中a=2sin30°+3.13.(丹东)先化简,再求代数式的值:++,其中a=2sin30°+2(π﹣1)0.2021年辽宁省中考数学真题分类汇编:数与式参考答案与试题解析一.选择题(共6小题)1.(丹东)﹣5的相反数是()A.5B.C.﹣5D.0.5【考点】相反数.【分析】根据相反数的定义,可得答案.【解答】解:﹣5的相反数是5,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(丹东)下列运算正确的是()A.a﹣2•a3=a﹣6B.(m﹣n)2=m2﹣mn+n2C.(2a3)3=8a6D.(2m+1)(2m﹣1)=4m2﹣1【考点】整式的混合运算;负整数指数幂.【专题】计算题;整式;运算能力.【分析】根据同底数幂的乘法、幂的乘方、完全平方公式和平方差公式,逐个计算得结论.【解答】解:∵a﹣2•a3=a﹣2+3=a≠a﹣6,故选项A错误;(m﹣n)2=m2﹣2mn+n2≠m2﹣mn+n2,故选项B错误;(2a3)3=8a9≠8a6,故选项C错误;(2m+1)(2m﹣1)=4m2﹣1,故选项D正确.故选:D.【点评】本题考查了整式的运算,掌握整式的乘法公式、幂的运算法则是解决本题的关键.3.(大连)2021年党中央首次颁发“光荣在党50年”纪念章,约7100000名党员获此纪念章.数7100000用科学记数法表示为()A.71×105B.7.1×105C.7.1×106D.0.71×107【考点】科学记数法—表示较大的数.【专题】实数;数感.【分析】根据科学记数法的定义即可判断,将一个较大或较小的数字写成a×10n的形式,其中1≤a<10且n为整数.【解答】解:根据科学记数法的定义,将一个较大或较小的数字写成a×10n的形式,其中1≤a<10且n为整数.∴7100000=7.1×106.故选:C.【点评】本题属于基础简单题,主要考查科学记数法,即将一个较大或较小的数字写成a ×10n的形式,其中1≤a<10且n为整数.4.(大连)下列计算正确的是()A.(﹣)2=﹣3B.=2C.=1D.(+1)(﹣1)=3【考点】立方根;平方差公式;二次根式的性质与化简.【专题】计算题;实数;二次根式;运算能力.【分析】根据二次根式的性质,立方根的概念,平方差公式进行化简计算,从而作出判断.【解答】解:A、(﹣)2=3,故此选项不符合题意;B、,正确,故此选项符合题意;C、,故此选项不符合题意;D、(+1)(﹣1)=2﹣1=1,故此选项不符合题意,故选:B.【点评】本题考查二次根式的性质,立方根的概念和二次根式的混合运算,理解二次根式的性质和概念是解题基础.5.(营口)估计的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【考点】估算无理数的大小.【专题】二次根式;运算能力.【分析】先写出21的范围,再写出的范围.【解答】解:∵16<21<25,∴4<<5,故选:B.【点评】本题考查了无理数的估算,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.6.(本溪)下列运算正确的是()A.x2•x=2x2B.(xy3)2=x2y6C.x6÷x3=x2D.x2+x=x3【考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【专题】计算题;运算能力.【分析】根据同底数幂的乘法,积的乘方,同底数幂的除法,合并同类项法则进行计算,从而作出判断.【解答】解:A.x2•x=x3,故此选项不符合题意;B.(xy3)2=x2y6,计算正确,故此选项符合题意;C.x6÷x3=x3,故此选项不符合题意;D.x2,x不是同类项,不能合并计算,故此选项不符合题意;故选:B.【点评】本题考查同底数幂的乘法,积的乘方,同底数幂的除法,掌握运算法则准确计算是解题关键.二.填空题(共3小题)7.(丹东)分解因式:ma2+2mab+mb2=m(a+b)2.【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取m,再利用完全平方公式分解即可.【解答】解:原式=m(a2+2ab+b2)=m(a+b)2,故答案为:m(a+b)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.8.(营口)若代数式有意义,则x的取值范围是x≤.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得1﹣2x≥0,再解不等式即可.【解答】解:由题意得:1﹣2x≥0,解得:x≤,故答案为:x≤.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.9.(本溪)分解因式:2x2﹣4x+2=2(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因数2,再利用完全平方公式进行二次分解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:2x2﹣4x+2,=2(x2﹣2x+1),=2(x﹣1)2.【点评】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.三.解答题(共4小题)10.(大连)计算:•﹣.【考点】分式的混合运算.【专题】计算题;分式;运算能力.【分析】分式的混合运算,先算乘法,然后再算减法.【解答】解:原式====1.【点评】本题考查分式的混合运算,掌握运算顺序和计算法则是解题基础.11.(营口)先化简,再求值:,其中x=+|﹣2|﹣3tan60°.【考点】实数的运算;分式的化简求值;特殊角的三角函数值.【专题】实数;分式;运算能力.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由二次根式的性质、绝对值的性质及特殊锐角的三角函数值得出x的值,继而代入计算即可.【解答】解:原式=[﹣]•=(﹣)•=•=,当x=+|﹣2|﹣3tan60°=3+2﹣3=2时,原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及特殊锐角的三角函数值、二次根式的性质及绝对值的性质.12.(本溪)先化简,再求值:÷(1+),其中a=2sin30°+3.【考点】分式的化简求值;特殊角的三角函数值.【专题】分式;运算能力.【分析】根据分式的加法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:÷(1+)=÷==,当a=2sin30°+3=2×+3=1+3=4时,原式==2.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.13.(丹东)先化简,再求代数式的值:++,其中a=2sin30°+2(π﹣1)0.【考点】实数的运算;分式的化简求值;零指数幂;特殊角的三角函数值.【专题】分式;运算能力.【分析】先通分,然后进行分式的加减运算,化简整理,最后将x的值代入化简后的式子求值即可.【解答】解:++==+﹣==,当a=2sin30°+2(π﹣1)0=2×+2×1=1+2=3时,原式==﹣.【点评】本题主要考查了分式的化简求值,熟练运用分式运算法则化简是解题的关键,注意代入计算要仔细,属于常考题型.。

2021年四川省中考数学真题分类汇编:图形的性质(附答案解析)

2021年四川省中考数学真题分类汇编:图形的性质(附答案解析)

2021年四川省中考数学真题分类汇编:图形的性质一.选择题(共9小题)1.(2021•宜宾)一块含有45°的直角三角板和直尺如图放置,若∠1=55°,则∠2的度数是()A.30°B.35°C.40°D.45°2.(2021•达州)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB 平行,当∠ABM=40°时,∠DCN的度数为()A.40°B.50°C.60°D.80°3.(2021•广元)观察下列作图痕迹,所作线段CD为△ABC的角平分线的是()A.B.C.D.4.(2021•广安)如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A、B是圆上的点,O为圆心,∠AOB=120°,小强从A走到B,走便民路比走观赏路少走()米.A.6π﹣6B.6π﹣9C.12π﹣9D.12π﹣18 5.(2021•雅安)如图,在Rt△ABC中,∠ABC=90°,BF是AC边上的中线,DE是△ABC 的中位线,若DE=6,则BF的长为()A.6B.4C.3D.5 6.(2021•雅安)如图,将△ABC沿BC边向右平移得到△DEF,DE交AC于点G.若BC:EC=3:1.S△ADG=16.则S△CEG的值为()A.2B.4C.6D.8 7.(2021•宜宾)下列说法正确的是()A.平行四边形是轴对称图形B.平行四边形的邻边相等C.平行四边形的对角线互相垂直D.平行四边形的对角线互相平分8.(2021•广元)如图,从一块直径是2的圆形铁片上剪出一个圆心角为90°的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是()A.B.C.D.1 9.(2021•乐山)七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,如图1所示.19世纪传到国外,被称为“唐图”(意为“来自中国的拼图”),图2是由边长为4的正方形分割制作的七巧板拼摆而成的“叶问蹬”图,则图中抬起的“腿”(即阴影部分)的面积为()A.3B.C.2D.二.填空题(共3小题)10.(2021•广安)一个多边形的内角和是外角和的3倍,则这个多边形的边数是.11.(2021•雅安)如图,ABCDEF为正六边形,ABGH为正方形,则图中∠BCG的度数为.12.(2021•雅安)如图,在矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC于点M,交CD于点F,过点D作DE∥BF交AC于点N.交AB于点E,连接FN,EM.有下列结论:①四边形NEMF为平行四边形;②DN2=MC•NC;③△DNF为等边三角形;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的序号.三.解答题(共6小题)13.(2021•广安)如图,四边形ABCD是菱形,点E、F分别在边AB、AD的延长线上,且BE=DF,连接CE、CF.求证:CE=CF.14.(2021•雅安)如图,△OAD为等腰直角三角形,延长OA至点B使OB=OD,ABCD 是矩形,其对角线AC,BD交于点E,连接OE交AD于点F.(1)求证:△OAF≌△DAB;(2)求的值.15.(2021•广安)如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段AB的端点都在格点上.要求以AB为边画一个平行四边形,且另外两个顶点在格点上.请在下面的网格图中画出4种不同的设计图形16.(2021•南充)如图,A,B是⊙O上两点,且AB=OA,连接OB并延长到点C,使BC =OB,连接AC.(1)求证:AC是⊙O的切线;(2)点D,E分别是AC,OA的中点,DE所在直线交⊙O于点F,G,OA=4,求GF 的长.17.(2021•凉山州)如图,在Rt△ABC中,∠C=90°,AE平分∠BAC交BC于点E,点D在AB上,DE⊥AE,⊙O是Rt△ADE的外接圆,交AC于点F.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为5,AC=8,求S△BDE.18.(2021•眉山)如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=2,边长为2的正方形DEFG的对角线交点与点C重合,连接AD,BE.(1)求证:△ACD≌△BCE;(2)当点D在△ABC内部,且∠ADC=90°时,设AC与DG相交于点M,求AM的长;(3)将正方形DEFG绕点C旋转一周,当点A、D、E三点在同一直线上时,请直接写出AD的长.2021年四川省中考数学真题分类汇编:图形的性质参考答案与试题解析一.选择题(共9小题)1.(2021•宜宾)一块含有45°的直角三角板和直尺如图放置,若∠1=55°,则∠2的度数是()A.30°B.35°C.40°D.45°【考点】平行线的性质;等腰直角三角形.【专题】线段、角、相交线与平行线;等腰三角形与直角三角形;推理能力.【分析】根据平行线的性质及对顶角相等求解即可.【解答】解:如图,延长ME,交CD于点F,∵AB∥CD,∠1=55°,∴∠MFC=∠1=55°,在Rt△NEF中,∠NEF=90°,∴∠3=90°﹣∠MFC=35°,∴∠2=∠3=35°,故选:B.【点评】此题考查了平行线的性质,熟记平行线的性质定理及对顶角相等是解题的关键.2.(2021•达州)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB 平行,当∠ABM=40°时,∠DCN的度数为()A.40°B.50°C.60°D.80°【考点】平行线的性质.【专题】线段、角、相交线与平行线;推理能力.【分析】根据“两直线平行,同旁内角互补”解答即可.【解答】解:∵∠ABM=40°,∠ABM=∠OBC,∴∠OBC=40°,∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣40°﹣40°=100°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=80°,∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,∴∠DCN=(180°﹣∠BCD)=50°,故选:B.【点评】此题考查了平行线的性质,熟记“两直线平行,同旁内角互补”是解题的基础.3.(2021•广元)观察下列作图痕迹,所作线段CD为△ABC的角平分线的是()A.B.C.D.【考点】三角形的角平分线、中线和高;作图—基本作图.【专题】作图题;几何直观.【分析】根据基本作图的方法对各选项进行判断.【解答】解:根据基本作图,A、D选项中为过C点作AB的垂线,B选项作AB的垂直平分线得到AB边上的中线CD,C选项作CD平分∠ACB.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的角平分线、中线和高.4.(2021•广安)如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A、B是圆上的点,O为圆心,∠AOB=120°,小强从A走到B,走便民路比走观赏路少走()米.A.6π﹣6B.6π﹣9C.12π﹣9D.12π﹣18【考点】勾股定理;垂径定理;弧长的计算.【专题】与圆有关的计算;应用意识.【分析】作OC⊥AB于C,如图,根据垂径定理得到AC=BC,再利用等腰三角形的性质和三角形内角和计算出∠A,从而得到OC和AC,可得AB,然后利用弧长公式计算出的长,最后求它们的差即可.【解答】解:作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∠AOB=120°,∴∠A=∠B=(180°﹣∠AOB)=30°,在Rt△AOC中,OC=OA=9米,AC==米,∴AB=2AC=米,又∵=米,∴走便民路比走观赏路少走()米,故选:D.【点评】本题考查了垂径定理,勾股定理,解题的关键是构造直角三角形,可解决计算弦长、半径、弦心距等问题.5.(2021•雅安)如图,在Rt△ABC中,∠ABC=90°,BF是AC边上的中线,DE是△ABC的中位线,若DE=6,则BF的长为()A.6B.4C.3D.5【考点】直角三角形斜边上的中线;三角形中位线定理.【专题】等腰三角形与直角三角形;推理能力.【分析】根据三角形中位线定理求出AC,根据直角三角形的斜边上的中线等于斜边的一半计算,得到答案.【解答】解:∵DE是△ABC的中位线,若DE=6,∴AC=2DE=12,在Rt△ABC中,∠ABC=90°,BF是AC边上的中线,∴BF=AC=6,故选:A.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.6.(2021•雅安)如图,将△ABC沿BC边向右平移得到△DEF,DE交AC于点G.若BC:EC=3:1.S△ADG=16.则S△CEG的值为()A.2B.4C.6D.8【考点】三角形的面积;平移的性质.【专题】平移、旋转与对称;几何直观.【分析】根据平移的性质得出AD=BE,进而得出BE:EC=2:1,利用三角形面积之比解答即可.【解答】解:由平移性质可得,AD∥BE,AD=BE,∴△ADG∽△ECG,∵BC:EC=3:1,∴BE:EC=2:1,∴AD:EC=2:1,∴=4,∵S△ADG=16,∴S△CEG=4,故选:B.【点评】此题考查平移的性质和三角形的面积,关键是根据平移的性质得出三角形面积之比解答.7.(2021•宜宾)下列说法正确的是()A.平行四边形是轴对称图形B.平行四边形的邻边相等C.平行四边形的对角线互相垂直D.平行四边形的对角线互相平分【考点】平行线的性质;轴对称图形.【专题】多边形与平行四边形;应用意识.【分析】根据平行四边形的性质以及平行四边形的对称性对各选项分析判断即可得解.【解答】解:A、平行四边形不是轴对称图形而是中心对称图形,故原命题错误,不符合题意;B、平行四边形的邻边不等,对边相等,故原命题错误,不符合题意;C、平行四边形对角线互相平分,错误,故本选项不符合题意;D、平行四边形对角线互相平分,正确,故本选项符合题意.故选:D.【点评】本题考查了中轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.(2021•广元)如图,从一块直径是2的圆形铁片上剪出一个圆心角为90°的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是()A.B.C.D.1【考点】圆锥的计算.【专题】与圆有关的计算;运算能力.【分析】首先求得扇形的弧长,然后利用圆的周长公式即可求得.【解答】解:∵⊙O的直径为2,则半径是:1,∴S⊙O=π×12=π,连接BC、AO,根据题意知BC⊥AO,AO=BO=1,在Rt△ABO中,AB==,即扇形的对应半径R=,弧长l==,设圆锥底面圆半径为r,则有2πr=,解得:r=.故选:B.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.9.(2021•乐山)七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,如图1所示.19世纪传到国外,被称为“唐图”(意为“来自中国的拼图”),图2是由边长为4的正方形分割制作的七巧板拼摆而成的“叶问蹬”图,则图中抬起的“腿”(即阴影部分)的面积为()A.3B.C.2D.【考点】七巧板.【专题】矩形菱形正方形;几何直观.【分析】分别求出阴影部分平行四边形,三角形的面积可得结论.【解答】解:由题意,阴影部分的平行四边形的面积=2×1=2,阴影部分的三角形的面积=×2×1=1,∴阴影部分的面积=2+1=3,故选:A.【点评】本题考查七巧板,正方形的性质,平行四边形的性质,等腰直角三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.二.填空题(共3小题)10.(2021•广安)一个多边形的内角和是外角和的3倍,则这个多边形的边数是八.【考点】多边形内角与外角.【分析】根据多边形的内角和定理,多边形的内角和等于(n﹣2)•180°,外角和等于360°,然后列方程求解即可.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故答案为:八.【点评】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键,要注意“八”不能用阿拉伯数字写.11.(2021•雅安)如图,ABCDEF为正六边形,ABGH为正方形,则图中∠BCG的度数为15°.【考点】多边形内角与外角.【专题】多边形与平行四边形;几何直观;运算能力.【分析】分别求出正六边形和正方形的一个内角度数,再求出∠CBG的大小,即可求解.【解答】解:∵ABCDEF为正六边形,ABGH为正方形,∴AB=BC=BG,∴∠BCG=∠BGC,∵正六边形ABCDEF的每一个内角是4×180°÷6=120°,正方形ABGH的每个内角是90°,∴∠CBG=360°﹣120°﹣90°=150°,∴∠BCG+∠BGC=180°﹣150°=30°,∴∠BCG=15°.故答案为:15°.【点评】本题考查正多边形的内角.熟练掌握正多边形内角的求法是解题的关键.12.(2021•雅安)如图,在矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC于点M,交CD于点F,过点D作DE∥BF交AC于点N.交AB于点E,连接FN,EM.有下列结论:①四边形NEMF为平行四边形;②DN2=MC•NC;③△DNF为等边三角形;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的序号①②④.【考点】四边形综合题.【专题】矩形菱形正方形;推理能力.【分析】①正确.想办法证明EN=FM,EN∥FM,可得结论.②正确.证明△AMB∽△BMC,推出=,再证明DN=BM,AM=CN,可得结论.③错误.用反证法证明即可.④正确.证明DE=BE,可得结论.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,CD∥AB∴∠DAN=∠BCM,∵BF⊥AC,DE∥BF,∴DE⊥AC,∴∠DNA=∠BMC=90°,在△ADN和△CBM中,,∴△ADN≌△CBM(AAS),∴DN=BM,∵DF∥BE,DE∥BF,∴四边形DFBE是平行四边形,∴DE=BF,∴EN=FM,∵NE∥FM,∴四边形NEMF是平行四边形,故①正确,∵△ADN≌△CBM,∴AN=CM,∴CN=AM,∵∠AMB=∠BMC=∠ABC=90°,∴∠ABM+∠CBM=90°,∠CBM+∠BCM=90°,∴∠ABM=∠BCM,∴△AMB∽△BMC,∴=,∵DN=BM,AM=CN,∴DN2=CM•CN,故②正确,若△DNF是等边三角形,则∠CDN=60°,∠ACD=30°,这个与题目条件不符合,故③错误,∵四边形ABCD是矩形,∴OA=OD,∵AO=AD,∴AO=AD=OD,∴△AOD是等边三角形,∴∠ADO=∠DAN=60°,∴∠ABD=90°﹣∠ADO=30°,∵DE⊥AC,∴∠ADN=ODN=30°,∴∠ODN=∠ABD,∴DE=BE,∵四边形DEBF是平行四边形,∴四边形DEBF是菱形;故④正确.故答案为:①②④.【点评】本题考查了矩形的性质、菱形的判定、平行四边形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、等腰三角形的判定等知识;熟练掌握矩形的性质和菱形的判定,证明三角形全等是解题的关键.三.解答题(共6小题)13.(2021•广安)如图,四边形ABCD是菱形,点E、F分别在边AB、AD的延长线上,且BE=DF,连接CE、CF.求证:CE=CF.【考点】全等三角形的判定与性质;菱形的性质.【专题】矩形菱形正方形;推理能力.【分析】由四边形ABCD是菱形,得出BC=CD,∠ABC=∠ADC,根据等角的补角相等得出∠CBE=∠CDF,从而△CDF≌△CBE(SAS)即可.【解答】证明:∵四边形ABCD是菱形,∴BC=CD,∠ABC=∠ADC,∵∠ABC+∠CBE=180°,∠ADC+∠CDF=180°,∴∠CBE=∠CDF,在△CDF和△CBE中,,∴△CDF≌△CBE(SAS),∴CE=CF.【点评】本题主要考查了菱形的性质,以及全等三角形的判定与性质,证出∠CBE=∠CDF是解题的关键.14.(2021•雅安)如图,△OAD为等腰直角三角形,延长OA至点B使OB=OD,ABCD 是矩形,其对角线AC,BD交于点E,连接OE交AD于点F.(1)求证:△OAF≌△DAB;(2)求的值.【考点】全等三角形的判定与性质;等腰直角三角形;矩形的性质.【专题】几何综合题;推理能力.【分析】(1)根据矩形的性质和等腰直角三角形的性质得到∠BOE=∠BDA,AO=AD,∠OAD=∠BAD,进而可以判定;(2)由△OAF≌△DAB得到AF=AB,得到AF与BF的关系,利用垂直平分线的性质得到DF=BF,进而可得.【解答】解:(1)证明:∵四边形ABCD是矩形,∴BE=DE,∠BAD=90°,∴∠ABD+∠ADB=90°,∵OB=OD,BE=DE,∴OE⊥BD,∴∠OEB=90°,∴∠BOE+∠OBE=90°,∴∠BOE=∠BDA,∵△OAD为等腰直角三角形,∴AO=AD,∠OAD=90°,∴∠OAD=∠BAD,在△AOF和△ABD中,,∴△OAF≌△DAB(ASA),(2)由(1)得,△OAF≌△DAB,∴AF=AB,连接BF,如图,∴BF=AF,∵BE=DE,OE⊥BD,∴DF=BF,∴DF=AF,∴=.【点评】本题主要考查了矩形的性质,等腰直角三角形的性质,全等三角形的判定和性质,关键是熟记这些图形的性质.15.(2021•广安)如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段AB的端点都在格点上.要求以AB为边画一个平行四边形,且另外两个顶点在格点上.请在下面的网格图中画出4种不同的设计图形【考点】等边三角形的性质;作图—复杂作图.【专题】作图题;几何直观.【分析】根据平行四边形的判定画出图形即可.【解答】解:如图,四边形ABCD即为所求.【点评】本题考查作图﹣复杂作图,等边三角形的性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握平行四边形的判定和性质,属于中考常考题型.16.(2021•南充)如图,A,B是⊙O上两点,且AB=OA,连接OB并延长到点C,使BC =OB,连接AC.(1)求证:AC是⊙O的切线;(2)点D,E分别是AC,OA的中点,DE所在直线交⊙O于点F,G,OA=4,求GF 的长.【考点】三角形中位线定理;垂径定理;切线的判定与性质.【专题】与圆有关的位置关系;与圆有关的计算;推理能力.【分析】(1)证明∠OAC=90°即可;(2)求弦长,根据垂径定理先求出弦长的一半即可.连结OF,过点O作OH⊥GF于点H,根据中位线定理得DE∥OC,所以∠OEH=∠AOB=60°,求出OH,根据勾股定理求出HF,乘2即可求出GF.【解答】(1)证明:∵AB=OA=OB,∴△OAB是等边三角形.∴∠AOB=∠OBA=∠OAB=60°.∵BC=OB,∴BC=AB,∴∠BAC=∠C,∵∠OBA=∠BAC+∠C=60°,∴∠BAC=∠C=30°.∴∠OAC=∠OAB+∠BAC=90°.∴OA⊥AC,∴点A在⊙O上,∴AC是⊙O的切线;(2)解:如图,连结OF,过点O作OH⊥GF于点H.∴GF=2HF,∠OHE=∠OHF=90°.∵点D,E分别是AC,OA的中点,∴OE=AE=OA=×4=2,DE∥OC.∴∠OEH=∠AOB=60°,OH=OE sin∠OEH=.∴HF===.∴GF=2HF=2.【点评】本题考查了切线的判定,三角形中位线定理,垂径定理,属于中档题,构造直角三角形,利用勾股定理求出HF的长是解题的关键.17.(2021•凉山州)如图,在Rt△ABC中,∠C=90°,AE平分∠BAC交BC于点E,点D在AB上,DE⊥AE,⊙O是Rt△ADE的外接圆,交AC于点F.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为5,AC=8,求S△BDE.【考点】圆周角定理;三角形的外接圆与外心;切线的判定与性质.【专题】等腰三角形与直角三角形;与圆有关的位置关系;图形的相似;推理能力;模型思想.【分析】(1)根据直角三角形两锐角互余,等腰三角形性质以及等量代换可得出∠AEC+∠OEA=90°,即OE⊥BC,从而得出BC是⊙O的切线;(2)根据△ACE∽△AED和勾股定理可求出AE,DE,根据角平分线的性质可得出三角形BDE的BD边上的高EM,再根据相似三角形和勾股定理求出BD即可.【解答】解:(1)连接OE,∵∠C=90°,∴∠2+∠AEC=90°,又∵OA=OE,∴∠1=∠OEA,∵∠1=∠2,∴∠AEC+∠OEA=90°,即OE⊥BC,∴BC是⊙O的切线;(2)过点E作EM⊥AB,垂足为M,∵∠1=∠2,∠C=∠AED=90°,∴△ACE∽△AED,∴=,即=,∴AE=4,由勾股定理得,CE==4=EM,DE==2,∵∠DEB=∠1,∠B=∠B,∴△BDE∽△BEA,∴==,设BD=x,则BE=2x,在Rt△BOE中,由勾股定理得,OE2+BE2=OB2,即52+(2x)2=(5+x)2,解得x=,∴S△BDE=BD•EM=××4=.【点评】本题考查切线的判定,相似三角形,勾股定理,掌握切线的判定方法,相似三角形的判定和性质以及勾股定理是解决问题的前提.18.(2021•眉山)如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=2,边长为2的正方形DEFG的对角线交点与点C重合,连接AD,BE.(1)求证:△ACD≌△BCE;(2)当点D在△ABC内部,且∠ADC=90°时,设AC与DG相交于点M,求AM的长;(3)将正方形DEFG绕点C旋转一周,当点A、D、E三点在同一直线上时,请直接写出AD的长.【考点】四边形综合题.【专题】几何综合题;推理能力.【分析】(1)由等腰直角三角形的性质和正方形两条对角线互相垂直平分且相等的性质,可证明△ACD≌△BCE;(2)过点M作MH⊥AD于点H,当∠ADC=90°时,则∠ADM=45°,由正方形的边长和AC的长,可计算出AD的长,利用△AMH和△DMH边之间的特殊关系列方程,可求出AM的长;(3)A、D、E三点在同一直线上又分两种情况,即点D在A、E两点之间或在射线AE 上,需要先证明点B、E、F也在同一条直线上,然后在△ABE中用勾股定理列方程即可求出AD的长.【解答】解:(1)如图1,∵四边形DEFG是正方形,∴∠DCE=90°,CD=CE;∵∠ACB=90°,∴∠ACD=∠BCE=90°﹣∠BCD,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).(2)如图1,过点M作MH⊥AD于点H,则∠AHM=∠DHM=90°.∵∠DCG=90°,CD=CG,∴∠CDG=∠CGD=45°,∴∠ADC=90°,∴∠MDH=90°﹣45°=45°,∴MH=DH•tan45°=DH;∵CD=DG•sin45°=2×=,AC=2,∴AD==,∴=tan∠CAD==,∴AH=3MH=3DH,∴3DH+DH=3;∴MH=DH=,∵=sin∠CAD==,∴AM=MH=×=.(3)如图3,A、D、E三点在同一直线上,且点D在点A和点E之间.∵CD=CE=CF,∠DCE=∠ECF=90°,∴∠CDE=∠CED=∠CEF=∠CFE=45°;由△ACD≌△BCE,得∠BEC=∠ADC=135°,∴∠BEC+∠CEF=180°,∴点B、E、F在同一条直线上,∴∠AEB=90°,∵AE2+BE2=AB2,且DE=2,AD=BE,∴(AD+2)2+AD2=(2)2+(2)2,解得AD=﹣1或AD=﹣﹣1(不符合题意,舍去);如图4,A、D、E三点在同一直线上,且点D在AE的延长线上.∵∠BCF=∠ACE=90°﹣∠ACF,BC=AC,CF=CE,∴△BCF≌△ACE(SAS),∴∠BFC=∠AEC,∵∠CFE=∠CED=45°,∴∠BFC+∠CFE=∠AEC+∠CED=180°,∴点B、F、E在同一条直线上;∵AC=BC,∠ACD=∠BCE=90°+∠ACE,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE;∵AE2+BE2=AB2,∴(AD﹣2)2+AD2=(2)2+(2)2,解得AD=+1或AD=﹣1(不符合题意,舍去).综上所述,AD的长为﹣1或+1.【点评】此题重点考查正方形的性质、等腰直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次根式的化简等知识与方法,解第(3)题时要分类讨论,以免丢解.。

2021年中考数学试题分类汇编8(共87个专题)

2021年中考数学试题分类汇编8(共87个专题)

2021中考全国100份试卷分类汇编一元一次不等式(组)1、(德阳市2021年)适合不等式组的全部整数解的和是A.一1 B 、0 C .1 D .2 答案:B解析:解(1)得:32x >-,解(2)得:1x ≤,所以,原不等式组的解为:312x -<≤,所有整数为:-1,0,1,和为0,故选B 。

2、(绵阳市2021年)设“▲”、“●”、“■”分别表示三种不同的物体,现用天平秤两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为( C ) A .■、●、▲ B .▲、■、● C .■、▲、● D .●、▲、■ 解析:3、(2021陕西)不等式组⎪⎩⎪⎨⎧<->-321021x x 的解集为( ) A .21>x B .1-<x C .211<<-x D .21->x 考点:不等式的解法及不等式组的解集的选取。

解析:此题一般考不等式组或者是一元一次方程的应用等简单的计算能力考查。

易错就是不等式的性质3,乘除负数时不等号的方向应改变。

解集的选取应尊循:“大大取大;小小取小;大小小大取中间;大大小小取不了”的原则。

第1个不等式解得:21>x ;第2个不等式解得:1->x ;因此不等式组的解集为:21>x ;此题故选A4、(2021济宁)已知ab=4,若﹣2≤b ≤﹣1,则a 的取值范围是( ) A .a ≥﹣4 B .a ≥﹣2 C .﹣4≤a ≤﹣1 D .﹣4≤a ≤﹣2 考点:不等式的性质.分析:根据已知条件可以求得b=,然后将b 的值代入不等式﹣2≤b ≤﹣1,通过解该不等式即可求得a 的取值范围. 解答:解:由ab=4,得 b=,∵﹣2≤b ≤﹣1, ∴﹣2≤≤﹣1, ∴﹣4≤a ≤﹣2. 故选D .点评:本题考查的是不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变. (3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5、(2021年临沂)不等式组20,1 3.2x x x ->⎧⎪⎨+≥-⎪⎩的解集是(A)8x ≥. (B)2x >. (C)02x <<. (D)28x <≤答案:D解析:第一个不等式的解集为x >2,解第二个不等式得:x ≤8,所以不等式的解集为:28x <≤6、(2021年武汉)不等式组⎩⎨⎧≤-≥+0102x x 的解集是( )A .-2≤x ≤1B .-2<x <1C .x ≤-1D .x ≥2答案:A解析:解(1)得:x ≥-2,解(2)得x ≤1,所以,-2≤x ≤17、(2021四川南充,5,3分)不等式组()⎪⎩⎪⎨⎧≥+--+23x 321x 1x 3>的整数解是()A.-1,0,1B. 0,1C. -2,0,1D. -1,1 答案:A解析:解第1个不等式,得:x >-2,解第2个不等式,得:32x ≤,所以,322x -<≤,整数有:-1,0,1,选A 。

2021年全国中考数学真题分类汇编6---四边形

2021年全国中考数学真题分类汇编6---四边形

2021年全国中考数学真题分类汇编四边形一、选择题(共20小题)1.(2021•资阳)下列命题正确的是()A .每个内角都相等的多边形是正多边形B .对角线互相平分的四边形是平行四边形C .过线段中点的直线是线段的垂直平分线D .三角形的中位线将三角形的面积分成1:2两部分2.(2021•株洲)如图所示,在正六边形ABCDEF 内,以AB 为边作正五边形ABGHI ,则(FAI ∠=)A .10︒B .12︒C .14︒D .15︒3.(2021•株洲)如图所示,四边形ABCD 是平行四边形,点E 在线段BC 的延长线上,若132DCE ∠=︒,则(A ∠=)A .38︒B .48︒C .58︒D .66︒4.(2021•扬州)如图,点A 、B 、C 、D 、E 在同一平面内连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则(A B D E ∠+∠+∠+∠=)A .220︒B .240︒C .260︒D .280︒5.(2021•湘西州)如图,在菱形ABCD 中,E 是AC 的中点,//EF CD ,交AD 于点F ,如果 5.5EF =,那么菱形ABCD 的周长是()A .11B .22C .33D .446.(2021•无锡)如图,D 、E 、F 分别是ABC ∆各边中点,则以下说法错误的是()A .BDE ∆和DCF ∆的面积相等B .四边形AEDF 是平行四边形C .若AB BC =,则四边形AEDF 是菱形D .若90A ∠=︒,则四边形AEDF 是矩形7.(2021•铜仁市)用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.工人师傅不能用下列哪种形状、大小完全相同的一种地砖在平整的地面上镶嵌()A.等边三角形B.正方形C.正五边形D.正六边形8.(2021•苏州)如图,在平行四边形ABCD中,将ABC∆沿着AC所在的直线折叠得到△AC=,则B D'的长是() AB C',B C'交AD于点E,连接B D',若60B∠=︒,45∠=︒,6ACBA.1B.2C.3D.629.(2021•绍兴)如图,菱形ABCD中,60-方向∠=︒,点P从点B出发,沿折线BC CDB移动,移动到点D停止.在ABP∆形状的变化过程中,依次出现的特殊三角形是()A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形10.(2021•绍兴)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形纵向排列放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是()A .用3个相同的菱形放置,最多能得到6个菱形B .用4个相同的菱形放置,最多能得到16个菱形C .用5个相同的菱形放置,最多能得到27个菱形D .用6个相同的菱形放置,最多能得到41个菱形11.(2021•宁波)如图是一个由5张纸片拼成的平行四边形ABCD ,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为1S ,另两张直角三角形纸片的面积都为2S ,中间一张矩形纸片EFGH 的面积为3S ,FH 与GE 相交于点O .当AEO ∆,BFO ∆,CGO ∆,DHO ∆的面积相等时,下列结论一定成立的是()A .12S S =B .13S S =C .AB AD =D .EH GH =12.(2021•南充)如图,点O 是ABCD 对角线的交点,EF 过点O 分别交AD ,BC 于点E ,F ,下列结论成立的是()A .OE OF =B .AE BF =C .DOC OCD ∠=∠D .CFE DEF ∠=∠13.(2021•眉山)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,6AB =,60DAC ∠=︒,点F 在线段AO 上从点A 至点O 运动,连接DF ,以DF 为边作等边三角形DFE ,点E 和点A 分别位于DF 两侧,下列结论:①BDE EFC ∠=∠;②ED EC =;③ADF ECF ∠=∠;④点E 运动的路程是23,其中正确结论的序号为()A .①④B .①②③C .②③④D .①②③④14.(2021•泸州)下列命题是真命题的是()A .对角线相等的四边形是平行四边形B .对角线互相平分且相等的四边形是矩形C .对角线互相垂直的四边形是菱形D .对角线互相垂直平分的四边形是正方形15.(2021•乐山)如图,已知点P 是菱形ABCD 的对角线AC 延长线上一点,过点P 分别作AD 、DC 延长线的垂线,垂足分别为点E 、F .若120ABC ∠=︒,2AB =,则PE PF -的值为()A .32B 3.2D .5216.(2021•河北)如图1,ABCD 中,AD AB >,ABC ∠为锐角.要在对角线BD 上找点N ,M ,使四边形ANCM 为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案()A .甲、乙、丙都是B .只有甲、乙才是C .只有甲、丙才是D .只有乙、丙才是17.(2021•广元)下列命题中,真命题是()A .1122x x-= B .对角线互相垂直的四边形是菱形C .顺次连接矩形各边中点的四边形是正方形D .已知抛物线245y x x =--,当15x -<<时,0y <18.(2021•成都)如图,四边形ABCD 是菱形,点E ,F 分别在BC ,DC 边上,添加以下条件不能判定ABE ADF ∆≅∆的是()A .BE DF =B .BAE DAF ∠=∠C .AE AD =D .AEB AFD ∠=∠19.(2021•包头)如图,在平面直角坐标系中,矩形OABC 的OA 边在x 轴的正半轴上,OC边在y 轴的正半轴上,点B 的坐标为(4,2),反比例函数2(0)y x x =>的图象与BC 交于点D ,与对角线OB 交于点E ,与AB 交于点F ,连接OD ,DE ,EF ,DF .下列结论: ①sin cos DOC BOC ∠=∠;②OE BE =;③DOE BEF S S ∆∆=;④:2:3OD DF =.其中正确的结论有()A .4个B .3个C .2个D .1个20.(2021•包头)如图,在ABC ∆中,AB AC =,DBC ∆和ABC ∆关于直线BC 对称,连接AD ,与BC 相交于点O ,过点C 作CE CD ⊥,垂足为C ,AD 相交于点E ,若8AD =,6BC =,则2OE AE BD+的值为()A .43B .34C .53D .54二、填空题(共20小题)21.(2021•淄博)两张宽为3cm 的纸条交叉重叠成四边形ABCD ,如图所示.若30α∠=︒,则对角线BD 上的动点P 到A ,B ,C 三点距离之和的最小值是.22.(2021•株洲)如图所示,线段BC为等腰ABC∆的底边,矩形ADBE的对角线AB与DE 交于点O,若2OD=,则AC=.23.(2021•长沙)如图,菱形ABCD的对角线AC,BD相交于点O,点E是边AB的中点,若6OE=,则BC的长为.24.(2021•枣庄)如图,45=,点A在OB上,四边形ABCD是矩形,∠=︒,BO DOBOD连接AC,BD交于点E,连接OE交AD于点F.下列4个判断:①OE BDADB∠=︒;⊥;②30③2=;④若点G是线段OF的中点,则AEGDF AF∆为等腰直角三角形,其中,判断正确的是.(填序号)25.(2021•云南)已知ABC∆的三个顶点都是同一个正方形的顶点,ABC∠的平分线与线段AC交于点D.若ABC∆的一条边长为6,则点D到直线AB的距离为.26.(2021•益阳)如图,已知四边形ABCD是平行四边形,从①AB AD=,②AC BD=,③ABC ADC∠=∠中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是(限填序号).27.(2021•新疆)四边形的外角和等于︒.28.(2021•湘潭)如图,在ABCD中,对角线AC,BD相交于点O,点E是边AB的中点.已知10BC=,则OE=.29.(2021•绍兴)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若30=,则BC长为cm(结AB cm果保留根号).30.(2021•黔东南州)如图,BD是菱形ABCD的一条对角线,点E在BC的延长线上,若∠的度数为度.∠=︒,则DCE32ADB31.(2021•宁波)如图,在矩形ABCD中,点E在边AB上,BEC∆关于直线EC对∆与FEC称,点B的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点.若BM BE=,1∠的值为.MG=,则BN的长为,sin AFE32.(2021•牡丹江)如图,在四边形ABCD中,AB DC=,请添加一个条件,使四边形ABCD 成为平行四边形,你所添加的条件为.33.(2021•连云港)如图,菱形ABCD的对角线AC、BD相交于点O,OE AD⊥,垂足为E,8BD=,则OE的长为.AC=,634.(2021•黄冈)正五边形的一个内角是度.35.(2021•黑龙江)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,在不添加任何辅助线的情况下,请你添加一个条件,使平行四边形ABCD是矩形.36.(2021•黑龙江)如图,在ABC∆中,D,E,F分别是AB,BC和AC边的中点,请添加一个条件,使四边形BEFD为矩形.(填一个即可)37.(2021•黑龙江)如图,在矩形ABCD中,对角线AC、BD相交于点O,在不添加任何辅助线的情况下,请你添加一个条件,使矩形ABCD是正方形.38.(2021•贺州)如图,在边长为6的正方形ABCD中,点E,F分别在BC,CD上,3=BC BE 且BE CF⊥,垂足为G,O是对角线BD的中点,连接OG,则OG的长为.=,AE BF39.(2021•哈尔滨)四边形ABCD是平行四边形,6∠的平分线交直线BC于点AB=,BADE,若2CE=,则ABCD的周长为.40.(2021•北京)如图,在矩形ABCD中,点E,F分别在BC,AD上,AF EC=.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是(写出一个即可).三、解答题(共20小题)41.(2021•长沙)如图,ABCD的对角线AC,BD相交于点O,OABAB=.∆是等边三角形,4(1)求证:ABCD是矩形;(2)求AD的长.42.(2021•岳阳)如图,在四边形ABCD中,AE BD⊥,CF BD⊥,垂足分别为点E,F.(1)请你只添加一个条件(不另加辅助线),使得四边形AECF为平行四边形,你添加的条件是;(2)添加了条件后,证明四边形AECF为平行四边形.43.(2021•玉林)如图,在四边形ABCD 中,对角线AC 与BD 交于点O ,已知OA OC =,OB OD =,过点O 作EF BD ⊥,分别交AB 、DC 于点E ,F ,连接DE ,BF .(1)求证:四边形DEBF 是菱形:(2)设//AD EF ,12AD AB +=,43BD =,求AF 的长.44.(2021•益阳)如图,在矩形ABCD 中,已知6AB =,30DBC ∠=︒,求AC 的长.45.(2021•梧州)如图,在正方形ABCD 中,点E ,F 分别为边BC ,CD 上的点,且AE BF ⊥于点P ,G 为AD 的中点,连接GP ,过点P 作PH GP ⊥交AB 于点H ,连接GH .(1)求证:BE CF =;(2)若6AB =,13BE BC =,求GH 的长.46.(2021•遂宁)如图,在ABCD中,对角线AC与BD相交于点O,过点O的直线EF与BA、DC的延长线分别交于点E、F.(1)求证:AE CF=;(2)请再添加一个条件,使四边形BFDE是菱形,并说明理由.47.(2021•随州)如图,在菱形ABCD中,E,F是对角线AC上的两点,且AE CF=.(1)求证:ABE CDF∆≅∆;(2)求证:四边形BEDF是菱形.48.(2021•十堰)如图,已知ABC∆中,D是AC的中点,过点D作DE AC⊥交BC于点E,过点A作//AF BC交DE于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若2∠=︒,求AB的长.B∠=︒,45FACCF=,3049.(2021•绍兴)问题:如图,在ABCD 中,8AB =,5AD =,DAB ∠,ABC ∠的平分线AE ,BF 分别与直线CD 交于点E ,F ,求EF 的长.答案:2EF =.探究:(1)把“问题”中的条件“8AB =”去掉,其余条件不变. ①当点E 与点F 重合时,求AB 的长;②当点E 与点C 重合时,求EF 的长.(2)把“问题”中的条件“8AB =,5AD =”去掉,其余条件不变,当点C ,D ,E ,F 相邻两点间的距离相等时,求AD AB的值.50.(2021•邵阳)如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 是对角线AC 上的两点,且AE CF =.连接DE ,DF ,BE ,BF .(1)证明:ADE CBF ∆≅∆.(2)若42AB =,2AE =,求四边形BEDF 的周长.51.(2021•聊城)如图,在四边形ABCD中,AC与BD相交于点O,且AO CO=,点E在BD上,满足EAO DCO∠=∠.(1)求证:四边形AECD是平行四边形;(2)若AB BC=,5AC=,求四边形AECD的面积.CD=,852.(2021•连云港)如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;(2)如果AB AE=,求证:四边形ACED是矩形.53.(2021•荆门)如图,点E是正方形ABCD的边BC上的动点,90=,AEF∠=︒,且EF AE ⊥.FH BH(1)求证:BE CH=;(2)若3=,用x表示DF的长.AB=,BE x54.(2021•呼和浩特)如图,四边形ABCD是平行四边形,//BE DF且分别交对角线AC于点E,F.(1)求证:ABE CDF∆≅∆;(2)当四边形ABCD分别是矩形和菱形时,请分别说出四边形BEDF的形状.(无需说明理由)55.(2021•菏泽)如图,在菱形ABCD中,点M、N分别在AB、CB上,且ADM CDN∠=∠,求证:BM BN=.56.已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B 作BM CE⊥,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.(1)如图1,求证:CE BH=;(2)如图2,若AE AB=,连接CF,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(AEG∆除外),使写出的每个三角形都与AEG∆全等.57.(2021•桂林)如图,在平行四边形ABCD中,点O是对角线BD的中点,EF过点O,交AB于点E,交CD于点F.(1)求证:12∠=∠;(2)求证:DOF BOE∆≅∆.58.(2021•广安)如图,四边形ABCD是菱形,点E、F分别在边AB、AD的延长线上,且BE DF=,连接CE、CF.求证:CE CF=.59.(2021•丹东)如图,在平行四边形ABCD中,点O是AD的中点,连接CO并延长交BA 的延长线于点E,连接AC、DE.(1)求证:四边形ACDE是平行四边形;(2)若AB AC=,判断四边形ACDE的形状,并说明理由.60.(2021•郴州)如图,四边形ABCD中,AB DC=,将对角线AC向两端分别延长至点E,=.证明:四边形ABCD是平行四边形.F,使AE CF=.连接BE,DF,若BE DF。

2021年全国中考数学真题分类汇编--图形与变换:平移与旋转(答案版 )

2021年全国中考数学真题分类汇编--图形与变换:平移与旋转(答案版  )

如此循环,每旋转 7 次,而 2021=6×336+5, ∴A2021 在第四象限,且 OA2021=42021,示意图如下:
OH= OA2021=52020,A2021H= OH= 2020,
∴A2021((42020,﹣ 故选:C.
×22020),
9. (2021•天津市)如图,在 V ABC 中, BAC 120 ,将 V ABC 绕点 C 逆时针旋转 得到 VDEC ,点 A,B 的对应点分别为 D,E,连接 AD .当点 A,D,E 在同一条直线上时,
∴AA'=
= =.
故选:B.
4. (2021•长沙市)下列几何图形中,是中心对称图形的是( )
A.
B.
C.
D.
【答案】C
5. (2021•江苏省苏州市).如图,在方格纸中,将 Rt△AOB 绕点 B 按顺时针方向旋转 90° 后得到 Rt△A′O′B( )
A.
B.
C.
D.
【分析】本题主要考查旋转的性质,旋转过程中图形和大小都不发生变化,根据旋转性
A.
B.
C.
D.
【分析】根据中心对称图形的概念对各选项分析判断即可得解.把一个图形绕某一点旋 转 180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形, 这个点叫做对称中心. 【解答】解:A.不是中心对称图形,故本选项不合题意; B.不是中心对称图形,故本选项不合题意;
C.是中心对称图形,故本选项符合题意; D.不是中心对称图形,故本选项不合题意. 故选:C.
D、是轴对称图形也是中心对称图形,故符合题意;
故选 D .
19. (2021•辽宁省本溪市)下列漂亮的图案中似乎包含了一些曲线,其实它们这种神韵是 由多条线段呈现出来的,这些图案中既是中心对称图形又是轴对称图形的是( )

2021年中考数学试题分类汇编(Word可编辑版)

2021年中考数学试题分类汇编(Word可编辑版)

2021年中考数学试题分类汇编(最新版)-Word文档,下载后可任意编辑和处理-2021年中考数学试题分类汇编--数与式一、选择题:1. (邵阳市) 的相反数为( )2. (仙桃市) 的绝对值是( )A. B. C. D. 3.(宜昌市)如果a与2互为倒数,则下列结论正确的为( ).(A)a= (B)a=-2 (C)a=-(D)a=24.(福州市)-2的相反效是( )A.2B.-2C.D.-5.(杭州市)已知与互为倒数,则满足条件的实数的个数是( ) A.0 B.1 C.2 D.36.(北京市)-5的相反数是( )A、5B、-5C、D、7.(贵阳市)的绝对值等于()(A)(B)(C)(D)8、(济宁市)的相反数是()A. B.5 C. D.9.(海南省)计算2-3的结果是( )A.5 B.-5 C.1 D.-110. (济宁市)能被下列数整除的是()A. 3B.5C.7D.911.(杭州市)( )A.-2 B.0 C.1 D.212.(长春市)计算的值是()(A)1.(B).(C)2.(D).13.(绍兴卷)冬季的一天,室内温度是8℃,室外温度是-2℃,则室内外温度相差( )A、4℃B、6℃C、10℃D、16℃14. (荆门市)点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,则点B所表示的实数是( )(A)3 (B)-1 (C)5 (D)-1或3.15. (仙桃市)吸烟有害健康.5月31日是世界无烟日,今年世界无烟日来临之际,中国国家卫生部公布了我国吸烟的人数约为3.5亿,占世界吸烟人数的.用科学记数法表示全世界吸烟人数约为( )A. B. C. D. 16.(宜昌市)宜昌市。

2021年山东中考数学真题分类汇编之图形的变化

2021年山东中考数学真题分类汇编之图形的变化

2021年山东中考数学真题分类汇编之图形的变化一.选择题(共12小题)1.(2021•淄博)下列几何体中,其俯视图一定是圆的有()A.1个B.2个C.3个D.4个2.(2021•临沂)如图,点A,B都在格点上,若BC=,则AC的长为()A.B.C.2D.33.(2021•淄博)如图,AB,CD相交于点E,且AC∥EF∥DB,点C,F,B在同一条直线上.已知AC=p,EF=r,DB=q,则p,q,r之间满足的数量关系式是()A.+=B.+=C.+=D.+=4.(2021•枣庄)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕交BC于点F.已知EF=,则BC的长是()A.B.3C.3D.35.(2021•东营)如图,在△ABC中,∠C=90°,∠B=42°,BC=8,若用科学计算器求AC的长,则下列按键顺序正确的是()A.B.C.D.6.(2021•东营)已知某几何体的三视图如图所示,则该几何体的侧面展开图圆心角的度数为()A.214°B.215°C.216°D.217°7.(2021•东营)如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B 的横坐标是a,则点B的对应点B′的横坐标是()A.﹣2a+3B.﹣2a+1C.﹣2a+2D.﹣2a﹣28.(2021•菏泽)如图是一个几何体的三视图,根据图中所标数据计算这个几何体的体积为()A.12πB.18πC.24πD.30π9.(2021•枣庄)小明有一个呈等腰三角形的积木盒,现在积木盒中只剩下如图的九个空格,下面有四种积木的搭配,其中不能放入的有()A.搭配①B.搭配②C.搭配③D.搭配④10.(2021•聊城)如图,在直角坐标系中,点A,B的坐标为A(0,2),B(﹣1,0),将△ABO绕点O按顺时针旋转得到△A1B1O,若AB⊥OB1,则点A1的坐标为()A.(,)B.(,)C.(,)D.(,)11.(2021•泰安)如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B 在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:≈1.732)()A.136.6米B.86.7米C.186.7米D.86.6米12.(2021•淄博)如图,在Rt△ABC中,∠ACB=90°,CE是斜边AB上的中线,过点E作EF⊥AB 交AC于点F.若BC=4,△AEF的面积为5,则sin∠CEF的值为()A.B.C.D.二.填空题(共10小题)13.(2021•烟台)《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A 处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为米.14.(2021•枣庄)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P 的坐标为.15.(2021•东营)如图,正方形纸片ABCD的边长为12,点F是AD上一点,将△CDF沿CF折叠,点D落在点G处,连接DG并延长交AB于点E.若AE=5,则GE的长为.16.(2021•聊城)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为.17.(2021•菏泽)如图,在△ABC中,AD⊥BC,垂足为D,AD=5,BC=10,四边形EFGH和四边形HGNM均为正方形,且点E、F、G、N、M都在△ABC的边上,那么△AEM与四边形BCME的面积比为.18.(2021•烟台)数学兴趣小组利用无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,则旗杆的高度约为米.(结果精确到1米,参考数据:≈1.41,≈1.73)19.(2021•烟台)综合实践活动课上,小亮将一张面积为24cm2,其中一边BC为8cm的锐角三角形纸片(如图1),经过两刀裁剪,拼成了一个无缝隙、无重叠的矩形BCDE(如图2),则矩形的周长为cm.20.(2021•东营)如图,正方形ABCB1中,AB=,AB与直线l所夹锐角为60°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4…,依此规律,则线段A2020A2021=.21.(2021•泰安)如图,将矩形纸片ABCD折叠(AD>AB),使AB落在AD上,AE为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将BE边折起,使点B落在AE上的点G处,连接DE,若DE=EF,CE=2,则AD的长为.22.(2021•威海)如图,先将矩形纸片ABCD沿EF折叠(AB边与DE在CF的异侧),AE交CF于点G;再将纸片折叠,使CG与AE在同一条直线上,折痕为GH.若∠AEF=α,纸片宽AB=2cm,则HE=cm.三.解答题(共8小题)23.(2021•威海)在一次测量物体高度的数学实践活动中,小明从一条笔直公路上选择三盏高度相同的路灯进行测量.如图,他先在点B处安置测倾器,于点A处测得路灯MN顶端的仰角为10°,再沿BN方向前进10米,到达点D处,于点C处测得路灯PQ顶端的仰角为27°.若测倾器的高度为1.2米,每相邻两根灯柱之间的距离相等,求路灯的高度(结果精确到0.1米).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin27°=0.45,cos27°≈0.89,tan27°≈0.51)24.(2021•聊城)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,AE是直径,交BC于点H,点D在上,连接AD,CD过点E作EF∥BC交AD的延长线于点F,延长BC交AF于点G.(1)求证:EF是⊙O的切线;(2)若BC=2,AH=CG=3,求EF和CD的长.25.(2021•菏泽)某天,北海舰队在中国南海例行训练,位于A处的济南舰突然发现北偏西30°方向上的C处有一可疑舰艇,济南舰马上通知位于正东方向200海里B处的西安舰,西安舰测得C处位于其北偏西60°方向上,请问此时两舰距C处的距离分别是多少?26.(2021•临沂)如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来,已知CM=3m,CO=5m,DO=3m,∠AOD=70°,汽车从A处前行多少米才能发现C处的儿童(结果保留整数)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75;sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)27.(2021•枣庄)2020年7月23日,我国首次火星探测“天问一号”探测器,由长征五号遥四运载火箭在中国文昌航天发射场发射成功,正式开启了中国的火星探测之旅.运载火箭从地面O处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.O,C,D在同一直线上,已知C,D两处相距460米,求火箭从A到B处的平均速度.(结果精确到1米,参考数据:≈1.732,≈1.414)28.(2021•聊城)时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口A处向正南方向走300米到达革命纪念碑B处,再从B处向正东方向走到党史纪念馆C处,然后从C处向北偏西37°方向走200米到达人民英雄雕塑D处,最后从D处回到A处.已知人民英雄雕塑在基地门口的南偏东65°方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)29.(2021•济宁)研究立体图形问题的基本思路是把立体图形问题转化为平面图形问题.(1)阅读材料立体图形中既不相交也不平行的两条直线所成的角,就是将直线平移使其相交所成的角.例如,正方体ABCD﹣A′B′C′D′(图1),因为在平面AA′C′C中,CC′∥AA',AA′与AB 相交于点A,所以直线AB与AA′所成的∠BAA′就是既不相交也不平行的两条直线AB与CC′所成的角.解决问题如图1,已知正方体ABCD﹣A′B′C′D',求既不相交也不平行的两直线BA′与AC所成角的大小.(2)如图2,M,N是正方体相邻两个面上的点;①下列甲、乙、丙三个图形中,只有一个图形可以作为图2的展开图,这个图形是;②在所选正确展开图中,若点M到AB,BC的距离分别是2和5,点N到BD,BC的距离分别是4和3,P是AB上一动点,求PM+PN的最小值.30.(2021•东营)已知点O是线段AB的中点,点P是直线l上的任意一点,分别过点A和点B作直线l的垂线,垂足分别为点C和点D.我们定义垂足与中点之间的距离为“足中距”.(1)[猜想验证]如图1,当点P与点O重合时,请你猜想、验证后直接写出“足中距”OC和OD 的数量关系是.(2)[探究证明]如图2,当点P是线段AB上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由.(3)[拓展延伸]如图3,①当点P是线段BA延长线上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由;②若∠COD=60°,请直接写出线段AC、BD、OC之间的数量关系.2021年山东中考数学真题分类汇编之图形的变化参考答案与试题解析一.选择题(共12小题)1.(2021•淄博)下列几何体中,其俯视图一定是圆的有()A.1个B.2个C.3个D.4个【考点】简单几何体的三视图.【专题】投影与视图;空间观念.【分析】根据视图的意义,从上面看该几何体,所得到的图形进行判断即可.【解答】解:其俯视图一定是圆的有:球,圆柱,共2个.故选:B.【点评】本题考查简几何体的三视图,理解视图的意义,掌握俯视图的画法是正确判断的前提.2.(2021•临沂)如图,点A,B都在格点上,若BC=,则AC的长为()A.B.C.2D.3【考点】相似三角形的应用.【专题】等腰三角形与直角三角形;图形的相似;运算能力;应用意识.【分析】根据相似三角形的判定和性质可以得到AB的长,然后由图可知AC=AB﹣BC,然后代入数据计算即可.【解答】解:作CD⊥BD于点D,作AE⊥BD于点E,如右图所示,则CD∥AE,∴△BDC∽△BEA,∴,∴=,解得BA=2,∴AC=BA﹣BC=2﹣=,故选:B.【点评】本题考查相似三角形的应用,解答本题的关键是求出AB的长,利用数形结合的思想解答.3.(2021•淄博)如图,AB,CD相交于点E,且AC∥EF∥DB,点C,F,B在同一条直线上.已知AC=p,EF=r,DB=q,则p,q,r之间满足的数量关系式是()A.+=B.+=C.+=D.+=【考点】平行线分线段成比例.【专题】图形的相似;推理能力.【分析】根据平行线分线段成比例,可证得,,两式相加即可得出结论.【解答】解:∵AC∥EF,∴,∵EF∥DB,∴,∴=+===1,即=1,∴.故选:C.【点评】本题主要考查了平行线分线段成比例定理的运用,通过平行线分线段成比例定理得出线段的比是解题的关键.4.(2021•枣庄)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕交BC于点F.已知EF=,则BC的长是()A.B.3C.3D.3【考点】等腰直角三角形;翻折变换(折叠问题).【专题】等腰三角形与直角三角形;推理能力.【分析】由题意可得点F是BC的中点,△ABF是等腰直角三角形,再根据EF的长度,可求出BF 的长度,进而得出结论.【解答】解:在△ABC中,∠BAC=90°,AB=AC,∴∠B=∠C=45°,由折叠可知,EF⊥AB,BE=AE,AF=BF,∴∠B=∠BAF=45°,∴∠AFB=90°,即AF⊥BC,∴点F是BC的中点,∴BC=2BF,在△ABF中,∠AFB=90°,BE=AE,∴BE=EF=,∴BF=,∴BC=3.故选:C.【点评】本题主要考查折叠的性质,等腰直角三角形的性质与判定,得出△ABF是等腰直角三角形是解题关键.5.(2021•东营)如图,在△ABC中,∠C=90°,∠B=42°,BC=8,若用科学计算器求AC的长,则下列按键顺序正确的是()A.B.C.D.【考点】计算器—三角函数.【专题】解直角三角形及其应用;几何直观;运算能力.【分析】根据正切函数的定义,可得tan∠B=,根据计算器的应用,可得答案.【解答】解:在△ABC中,因为∠C=90°,所以tan∠B=,因为∠B=42°,BC=8,所以AC=BC•tan B=8×tan42°.故选:D.【点评】本题考查了计算器.能够正确利用锐角三角函数进行计算,熟练运用计算器是解题的关键.6.(2021•东营)已知某几何体的三视图如图所示,则该几何体的侧面展开图圆心角的度数为()A.214°B.215°C.216°D.217°【考点】几何体的展开图;圆心角、弧、弦的关系;由三视图判断几何体.【专题】投影与视图;空间观念.【分析】由常见几何体的三视图可得该几何体为圆锥,根据三视图知圆锥的底面圆的直径为6、半径为3,高为4,得出母线长为5,再根据扇形的弧长公式可得答案.【解答】解:由三视图可知,该几何体为圆锥;由三视图数据知圆锥的底面圆的直径为6、半径为3,高为4,则母线长为=5,所以则该几何体的侧面展开图圆心角的度数为π×6÷(π×5×2)×360°=216°.故选:C.【点评】本题主要考查由三视图判断几何体,解题的关键是掌握常见几何体的三视图及扇形的弧长计算.7.(2021•东营)如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B 的横坐标是a,则点B的对应点B′的横坐标是()A.﹣2a+3B.﹣2a+1C.﹣2a+2D.﹣2a﹣2【考点】坐标与图形性质;位似变换.【专题】图形的相似;推理能力.【分析】设点B′的横坐标为x,根据数轴表示出BC、B′C的水平的距离,再根据位似比列式计算即可.【解答】解:设点B′的横坐标为x,则B、C间的水平距离为a﹣1,B′、C间的水平距离为﹣x+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(a﹣1)=﹣x+1,解得:x=﹣2a+3,故选:A.【点评】本题考查的是位似变换、坐标与图形的性质,根据位似比的定义,利用两点间的水平距离等于对应边的比列出方程是解题的关键.8.(2021•菏泽)如图是一个几何体的三视图,根据图中所标数据计算这个几何体的体积为()A.12πB.18πC.24πD.30π【考点】由三视图判断几何体.【专题】投影与视图;几何直观.【分析】直接利用三视图得出几何体的形状,再利用圆柱体积求法得出答案.【解答】解:由三视图可得,几何体是空心圆柱,其小圆半径是1,大圆半径是2,则大圆面积为:π×22=4π,小圆面积为:π×12=π,故这个几何体的体积为:6×4π﹣6×π=24π﹣6π=18π.故选:B.【点评】此题主要考查了由三视图判断几何体,正确判断出几何体的形状是解题关键.9.(2021•枣庄)小明有一个呈等腰三角形的积木盒,现在积木盒中只剩下如图的九个空格,下面有四种积木的搭配,其中不能放入的有()A.搭配①B.搭配②C.搭配③D.搭配④【考点】图形的剪拼.【专题】几何图形;应用意识.【分析】把这四种搭配进行组合,可得出如图的九个空格的形状,即为本题的选项.【解答】解:搭配④中,有10个小正方形,显然不符合9个小正方形的条件,故选:D.【点评】本题考查图形的拼剪,解题的关键是理解题意,灵活运用所学知识解决问题.10.(2021•聊城)如图,在直角坐标系中,点A,B的坐标为A(0,2),B(﹣1,0),将△ABO绕点O按顺时针旋转得到△A1B1O,若AB⊥OB1,则点A1的坐标为()A.(,)B.(,)C.(,)D.(,)【考点】勾股定理;坐标与图形变化﹣旋转.【专题】平面直角坐标系;平移、旋转与对称;推理能力.【分析】如图,设AB交OB1于T,过点A1作A1R⊥x轴于R.解直角三角形求出OT,AT,再利用相似三角形的性质求出OR,RA1即可.【解答】解:如图,设AB交OB1于T,过点A1作A1R⊥x轴于R.∵A(0,2),B(﹣1,0),∴OB=1,OA=2,∴AB===,∵•OB•OA=•AB•OT,∴OT==,∴AT===,∵∠AOR=∠A OB=90°,∴∠AOT=∠A1OR,∵∠ATO=∠A1RO=90°,∴△ATO∽△A1RO,∴==,∴1==,∴OR=,RA1=,∴A1(,),故选:A.【点评】本题考查坐标与图形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.11.(2021•泰安)如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B 在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:≈1.732)()A.136.6米B.86.7米C.186.7米D.86.6米【考点】解直角三角形的应用﹣坡度坡角问题;解直角三角形的应用﹣仰角俯角问题.【专题】解直角三角形及其应用;运算能力.【分析】作DH⊥AB于H,延长DE交BC于F.则四边形DHBF是矩形,在Rt△ADH中求出DH,再在Rt△EFB中求出EF,在Rt△EFC中求出CF即可解决问题.【解答】解:如图作DH⊥AB于H,延长DE交BC于F.在Rt△ADH中,AD=130米,DH:AH=1:2.4,∴DH=50(米),∵四边形DHBF是矩形,∴BF=DH=50(米),在Rt△EFB中,∠BEF=45°,∴EF=BF=50(米),在Rt△EFC中,FC=EF•tan60°,∴CF=50×≈86.6(米),∴BC=BF+CF=136.6(米).故选:A.【点评】本题考查了解直角三角形,坡度,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.12.(2021•淄博)如图,在Rt△ABC中,∠ACB=90°,CE是斜边AB上的中线,过点E作EF⊥AB 交AC于点F.若BC=4,△AEF的面积为5,则sin∠CEF的值为()A.B.C.D.【考点】三角形的面积;直角三角形斜边上的中线;解直角三角形.【专题】图形的相似;解直角三角形及其应用;运算能力;推理能力.【分析】根据直角三角形的斜边中线等于斜边一半可得CE=AE=BE=AB,进而得到∠BEC=2∠A=∠BFC,从而有∠CEF=∠CBF,根据三角形的面积公式求出AF,由勾股定理,在Rt△BCF 中,求出CF,再根据锐角三角函数的定义求解即可.【解答】解:连接BF,∵CE是斜边AB上的中线,EF⊥AB,∴EF是AB的垂直平分线,∴S△AFE=S△BFE=5,∠FBA=∠A,∴S△AFB=10=AF•BC,∵BC=4,∴AF=5=BF,在Rt△BCF中,BC=4,BF=5,∴CF==3,∵CE=AE=BE=AB,∴∠A=∠FBA=∠ACE,又∵∠BCA=90°=∠BEF,∴∠CBF=90°﹣∠BFC=90°﹣2∠A,∠CEF=90°﹣∠BEC=90°﹣2∠A,∴∠CEF=∠FBC,∴sin∠CEF=sin∠FBC==,故选:A.【点评】本题考查折叠轴对称的性质,直角三角形的边角关系,掌握直角三角形的边角关系是解决问题的关键.二.填空题(共10小题)13.(2021•烟台)《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A 处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为3米.【考点】相似三角形的判定与性质.【专题】图形的相似;推理能力.【分析】由题意知:△ABE∽△CDE,得出对应边成比例即可得出CD.【解答】解:由题意知:AB∥CD,则∠BAE=∠C,∠B=∠CDE,∴△ABE∽△CDE,∴,∴,∴CD=3米,故答案为:3.【点评】本题考查了相似三角形的判定与性质,根据题意得出△ABE∽△CDE是解决问题的关键.14.(2021•枣庄)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P 的坐标为(1,﹣1).【考点】坐标与图形变化﹣旋转.【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,∴,∴直线CC′为y=x+,∵直线EF⊥CC′,经过CC′中点(,),∴直线EF为y=﹣3x+2,由得,∴P(1,﹣1).故答案为(1,﹣1).【点评】本题考查旋转的性质,掌握对应点连线段的垂直平分线的交点就是旋转中心,是解题的关键.15.(2021•东营)如图,正方形纸片ABCD的边长为12,点F是AD上一点,将△CDF沿CF折叠,点D落在点G处,连接DG并延长交AB于点E.若AE=5,则GE的长为.【考点】正方形的性质;翻折变换(折叠问题).【专题】图形的全等;矩形菱形正方形;平移、旋转与对称;解直角三角形及其应用;推理能力.【分析】由“ASA”可证△ADE≌△DCF,可得AE=DF=5,由锐角三角函数可求DO的长,即可求解.【解答】解:设CF与DE交于点O,∵将△CDF沿CF折叠,点D落在点G处,∴GO=DO,CF⊥DG,∵四边形ABCD是正方形,∴AD=CD,∠A=∠ADC=90°=∠FOD,∴∠CFD+∠FCD=90°=∠CFD+∠ADE,∴∠ADE=∠FCD,在△ADE和△DCF中,,∴△ADE≌△DCF(ASA),∴AE=DF=5,∵AE=5,AD=12,∴DE===13,∵cos∠ADE=,∴,∴DO==GO,∴EG=13﹣2×=,故答案为:.【点评】本题考查了翻折变换,正方形的性质,全等三角形的判定和性质,锐角三角函数等知识,证明△ADE≌△DCF是解题的关键.16.(2021•聊城)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为(﹣,0).【考点】坐标与图形性质;矩形的性质;轴对称﹣最短路线问题.【专题】一次函数及其应用;矩形菱形正方形;平移、旋转与对称;推理能力.【分析】在BC上截取BH=3,可证四边形BHEF是平行四边形,可得BF=EH,由对称性可得DE =D'E,则四边形BDEF的周长=EH+ED'+BD+EF,由EF和BD是定值,则当EH+D'E有最小值时,四边形BDEF的周长有最小值,即当点E,点H,点D'共线时,EH+D'E有最小值,利用待定系数法可求HD'解析式,即可求解.【解答】解:在BC上截取BH=3,作点D关于x轴的对称点D',连接D'H交AO于点E,∴BH=EF=3,BC∥AO,∴四边形BHEF是平行四边形,∴BF=EH,∵点D与点D'关于x轴对称,∴DE=D'E,点D'坐标为(0,﹣4),∵四边形BDEF的周长=EF+BF+BD+DE,∴四边形BDEF的周长=EH+ED'+BD+EF,∵EF和BD是定值,∴当EH+D'E有最小值时,四边形BDEF的周长有最小值,∴当点E,点H,点D'共线时,EH+D'E有最小值,∵点B(﹣4,6),∴点H(﹣1,6),设直线D'H的解析式为y=kx+b,则,解得:,∴直线D'H的解析式为y=﹣10x﹣4,∴当y=0时,x=﹣,∴点E(﹣,0),故答案为:(﹣,0).【点评】本题考查了轴对称﹣最短路线问题,坐标与图形,平行四边形的判定和性质,一次函数的性质等知识,确定点E的位置是解题的关键.17.(2021•菏泽)如图,在△ABC中,AD⊥BC,垂足为D,AD=5,BC=10,四边形EFGH和四边形HGNM均为正方形,且点E、F、G、N、M都在△ABC的边上,那么△AEM与四边形BCME的面积比为1:3.【考点】正方形的性质;相似三角形的判定与性质.【专题】矩形菱形正方形;图形的相似;推理能力.【分析】通过证明△AEM∽△ABC,可得,可求EF的长,由相似三角形的性质可得=()2=,即可求解.【解答】解:∵四边形EFGH和四边形HGNM均为正方形,∴EF=EH=HM,EM∥BC,∴△AEM∽△ABC,∴,∴,∴EF=,∴EM=5,∵△AEM∽△ABC,∴=()2=,∴S四边形BCME=S△ABC﹣S△AEM=3S△AEM,∴△AEM与四边形BCME的面积比为1:3,故答案为:1:3.【点评】本题考查了相似三角形的判定和性质,正方形的性质,利用相似三角形的性质求出EF的长是解题的关键.18.(2021•烟台)数学兴趣小组利用无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,则旗杆的高度约为14米.(结果精确到1米,参考数据:≈1.41,≈1.73)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】解直角三角形及其应用;几何直观.【分析】过O点作OC⊥AB于C点,利用直角三角形的解法得出OC,进而解答即可.【解答】解:过O点作OC⊥AB于C点,∵当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,∴AC=45米,∠CAO=30°,∴OC=AC•tan30°=(米),∴旗杆的高度=40﹣15≈14(米),故答案为:14.【点评】本题考查解直角三角形的应用﹣仰角、俯角的问题,以及解直角三角形方法,解题的关键是从实际问题中构造出直角三角形,难度不大.19.(2021•烟台)综合实践活动课上,小亮将一张面积为24cm2,其中一边BC为8cm的锐角三角形纸片(如图1),经过两刀裁剪,拼成了一个无缝隙、无重叠的矩形BCDE(如图2),则矩形的周长为22cm.【考点】矩形的性质;图形的剪拼.【专题】作图题;矩形菱形正方形;推理能力.【分析】延长AT交BC于点P,利用三角形的面积公式求出AP,求出BE,CD,DE,可得结论.【解答】解:延长AT交BC于点P,∵AP⊥BC,∴•BC•AP=24,∴×8×AP=24,∴AP=6(cm),由题意,AT=PT=3(cm),∴BE=CD=PT=3(cm),∵DE=BC=8cm,∴矩形BCDE的周长为8+8+3+3=22(cm).故答案为:22.【点评】本题考查图形的拼剪,矩形的性质,解题的关键是读懂图象信息,属于中考常考题型.20.(2021•东营)如图,正方形ABCB1中,AB=,AB与直线l所夹锐角为60°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4…,依此规律,则线段A2020A2021=2×()2020.【考点】规律型:图形的变化类;相似三角形的判定与性质.【专题】推理填空题;推理能力.【分析】根据题意可知图中斜边在直线l上的直角三角形都是含30度角的直角三角形,根据其性质得出三边的长度,以此类推可找到规律:A n B n=()n﹣1,A n﹣1A n=2A n B n=2×()n﹣1.【解答】解:根据题意可知AB1=AB=,∠B1AA1=90°﹣60°=30°,∴tan∠B1AA1==,∴A1B1=AB1×=×=1,AA1=2A1B1=2,A2B2=A1B2×=A1B1×=,A1A2=2A2B2=2×,A3B3=A2B3×=A2B2×=×=()2,A2A3=2A3B3=2×()2,∴A2021B2021=A2020B2021×=()2020,A2020A2021=2A2021B2021=2×()2020,故答案为:2×()2020.【点评】本题考查相似三角形的判定与性质及规律型中图形的变化类,要根据题意寻找三角形各条边分别的规律,从而求解.21.(2021•泰安)如图,将矩形纸片ABCD折叠(AD>AB),使AB落在AD上,AE为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将BE边折起,使点B落在AE上的点G处,连接DE,若DE=EF,CE=2,则AD的长为4+2.【考点】矩形的性质;翻折变换(折叠问题).【专题】平移、旋转与对称;解直角三角形及其应用;推理能力.【分析】证明Rt△EBF≌Rt△EB′D(HL),推出BF=DB′,再证明DB′=EC=BF=2,想办法求出AB′,可得结论.【解答】解:由翻折的性质可知,EB=EB′,∠B=∠AB′E=∠EB′D=90°,在Rt△EBF和Rt△EB′D中,,∴Rt△EBF≌Rt△EB′D(HL),∴BF=DB′,∵四边形ABCD是矩形,∴∠C=∠CDB′=∠EB′D=90°,∴四边形ECDB′是矩形,∴DB′=EC=2,∴BF=EC=2,由翻折的性质可知,BF=FG=2,∠F AG=45°,∠EGF=∠B=∠AGF=90°,∴AG=FG=2,∴AF=2.∴AB=AB′=2+2,∴AD=AB′+DB′=4+2,故答案为:4+2.【点评】本题考查翻折变换,矩形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22.(2021•威海)如图,先将矩形纸片ABCD沿EF折叠(AB边与DE在CF的异侧),AE交CF于点G;再将纸片折叠,使CG与AE在同一条直线上,折痕为GH.若∠AEF=α,纸片宽AB=2cm,则HE=cm.【考点】矩形的性质;翻折变换(折叠问题).【专题】多边形与平行四边形;矩形菱形正方形;平移、旋转与对称;推理能力;应用意识.【分析】根据题意,先证明四边形GHEF为平行四边形,运用∠AEF的正弦和余弦的关系以及等腰三角形的性质,求出HE,【解答】解:如图,分别过G、E作GM⊥HE于M,EN⊥GH于N,延长GF、延长HE至点P,则GM=AB=2cm,由题意,∠AEF=α,由折叠性质可得∠PEF=∠AEF=α,∵四边形ABCD为矩形,∴GF∥HE,∴∠GFE=∠PEF=α,∴GE=GF.同理可得:GE=HE.∴HE=GF,∴四边形GHEF为平行四边形.∴∠GFE=∠GHE=α,∵EN⊥GH于N,HE=GE,∴由等腰三角形三线合一性质可得:HN=GN=,∵sin∠GHE=sinα==,∴HG=,在Rt△HEN中,cos∠GHE=cosα=,∴HE====.故答案为:.【点评】本题考查了轴对称的性质,平行四边形的判定与性质,矩形的性质,锐角三角函数,理解题意并作出辅助线是解题关键.三.解答题(共8小题)23.(2021•威海)在一次测量物体高度的数学实践活动中,小明从一条笔直公路上选择三盏高度相同的路灯进行测量.如图,他先在点B处安置测倾器,于点A处测得路灯MN顶端的仰角为10°,再沿BN方向前进10米,到达点D处,于点C处测得路灯PQ顶端的仰角为27°.若测倾器的高度为1.2米,每相邻两根灯柱之间的距离相等,求路灯的高度(结果精确到0.1米).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin27°=0.45,cos27°≈0.89,tan27°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

其他一、选择题1.(2021模拟年内蒙古包头)已知下列命题:①若00,,则0a b+>;>>a b②若a b≠,则22≠;a b③角的平分线上的点到角的两边的距离相等;④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个【答案】B2.(2021模拟陕西省太原市)在二行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点),在每一种翻动方式中,骰子不能后退.开始时骰子如图(1)那样摆放,朝上的点数是2;最后翻动到如图(2)所示的位置,此时骰子朝上的点数不可能是下列数中的()图(1)图(2)A.5 B.4 C.3 D.1【答案】D3.(2021模拟年贵州黔东南州)下列图形中,面积最大的是()学科网A 、对角线长为6和8的菱形;B 、边长为6的正三角形;学科网C 、半径为3的圆;D 、边长分别为6、8、10的三角形; 【答案】A4.(2021模拟年贵州黔东南州)方程0|84|=--+-m y x x ,当0>y 时,m 的取值范围是( )A 、10<<mB 、2≥mC 、2<mD 、2≤m【答案】C5.(2021模拟年杭州市)某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点)(k k k y x P ,处,其中11=x ,11=y ,当2k ≥时,⎪⎪⎩⎪⎪⎨⎧---+=----+=--]52[]51[])52[]51([5111k k y y k k x x k k k k ,[a ]表示非负实数a 的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2021模拟棵树种植点的坐标为( )A .(5,2021模拟)B .(6,2010)C .(3,401)D (4,402) 【答案】D6.(2021模拟年娄底)下列命题,正确的是A.如果|a|=|b|,那么a=bB .等腰梯形的对角线互相垂直C .顺次连结四边形各边中点所得到的四边形是平行四边形D.相等的圆周角所对的弧相等【关键词】绝对值的概念、等腰梯形的性质、四边形的判定、等角对等弧【答案】C7.(2021模拟丽水市)如图,已知圆锥的底面半径为3,母线长为4,则它的侧面积是()A. π24B.π12C.π6D. 12·【答案】B8.(2021模拟烟台)视力表对我们来说并不陌生。

如图是视力表的一部分,其中开口向上的两个“E”之间的变化是()A.平移B.旋转C.对称D.位似【答案】D9.(2021模拟年山东省日照市)在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是 (A )点A (B )点B (C )点C (D )点D【答案】B10.(2021模拟年包头)将一个正方体沿某些棱展开后,能够得到的平面图形是( C )A . B. C.D . AB CD MPP 1 11(第7题图)11.(2021模拟年包头)已知下列命题: ①若00a b >>,,则0a b +>; ②若a b ≠,则22a b ≠;③角的平分线上的点到角的两边的距离相等; ④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是( B ) A .1个B .2个C .3个D .4个12.(2021模拟年湖州)已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81个格点中的多少个?( ) A .6B .7C .8D .9【答案】C13.(2021模拟年中山)方程组223010x y x y +=⎧⎨+=⎩的解是( )A .1113x y =⎧⎨=⎩2213x y =-⎧⎨=-⎩ B .12123311x x y y ==-⎧⎧⎨⎨=-=⎩⎩ C . 12123311x x y y ==-⎧⎧⎨⎨==-⎩⎩ D.12121133x x y y ==-⎧⎧⎨⎨=-=⎩⎩【答案】D .14.(2021模拟年茂名市)8.分析下列命题: ①四边形的地砖能镶嵌(密铺)地面;②不同时刻的太阳光照射同一物体,则其影长都是相等的; ③若在正方形纸片四个角剪去的小正方形边长越大,则所制作的无盖长方体形盒子的容积越大. 其中真命题的个数是( ) A .3 B .2 C .1 D .0【答案】15.(2021模拟年崇左)已知点A 的坐标为()a b ,,O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转90°得1OA ,则点1A 的坐标为( ).A .()a b -,B .()a b -,C .()b a -,D .()b a -, 【答案】C16.(2021模拟年长沙)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( )答案:C A .4cm B .5cm C .6cm D .13cm17.(2021模拟年长沙)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是( )答案:DA .甲B .乙C .丙D .丁18.(2021模拟呼和浩特)下列命题中,正确命题的个数为( ) (1)若样本数据3、6、a 、4、2的平均数是4,则其方差为2 (2)“相等的角是对顶角”的逆命题 (3)对角线互相垂直的四边形是菱形(4)若二次函数23(1)y x k =-+图象上有三个点1)y ,(22y ,),1()y ,则321y y y >>A .1个B .3个C .2个D .4个二、填空题1.(2021模拟年上海市)15.如图2,在ABC △中,AD 是边BC 上的中线,设向量AB a =,BC b =,如果用向量a ,b 表示向量AD ,那么AD =.【答案】a +21b2.(2021模拟年重庆市江津区)如图,在10×6的网格图中(每个小正方形的边长均为1个单位长)。

⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移个单位长.【答案】2或4图2ACD B(第15题图)3.(2021模拟年湖北荆州)12.定义新运算“*”,规则:()()a ab a b b a b ≥⎧*=⎨<⎩,如122*=,(=210x x +-=的两根为12,x x ,则12x x *=. 【答案】4.(2021模拟年茂名市)15.我们常用的数是十进制数,而计算机程序处理数据使用的只有数码0和1的二进制数,这二者可以相互换算,如将二进制数1011换算成十进制数应为:32101202121211⨯+⨯+⨯+⨯=.按此方式,则将十进制数6换算成二进制数应为. 【答案】5.(2021模拟年包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值 是cm2.答案:252或12.56.(2021模拟年包头)如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E在AB边上,AC交DE于点G,则线段FG的长为cm(保留根号).7.(2021模拟呼和浩特)10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报3的人心里想的数是.三、解答题1.(2021模拟年郴州市)如图6,在下面的方格图中,将△ABC先向右平移四个单位得到△A1B1C1,再将△A1B1C1绕点A1逆时针旋转90得到A1B2C2,请依次作出△A1B1C1和△A1B2C2。

AEC (F)B图(1)E AGBC (F) D图(2)【答案】正确作出图形即可,图略.平移、旋转2.(2021模拟年湘西自治州)24.如图,等腰直角△ABC 腰长为a ,现分别按图1、图2方式在△ABC 内内接一个正方形ADFE 和正方形PMNQ .设△ABC 的面积为S ,正方形ADFE 的面积为S1,正方形PMNQ 的面积为S2,(1) 在图1 中,求AD ∶AB 的值;在图2中,求AP ∶AB 的值; (2) 比较S1+S2与S 的大小.图ABC图1图2AECF BDAQCM BNP【答案】24.解(1)1∶3 (2)S1+S2<S3.(2021模拟年湘西自治州)25.在直角坐标系xoy中,抛物线2y x bx c=++与x轴交于两点A、B,与y轴交于点C,其中A在B的左侧,B的坐标是(3,0).将直线y kx=沿y轴向上平移3个单位长度后恰好经过点B、C.(1)求k的值;(2)求直线BC和抛物线的解析式;(3)求△ABC的面积;(4)设抛物线顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标.【答案】25.解(1)1k=-(2)由(1),直线BC的方程为3=-+,抛物线方程为243y x=-+y x x (3)3平方单位(4)点P的坐标为(2,2)或(2,2-)(x轴上、下方各一个)4.(2021模拟白银市)21.如图9,随机闭合开关S1、S2、S3中的两个,求能让灯泡⊗发光的概率..【答案】21.解:能让灯泡发光的概率为23图95.(2021模拟年重庆市江津区)已知三条线段a、b、c,用尺规作出△ABC,使BC = a, AC = b、AB = c, (不写作法,保留作图痕迹).c【答案】略模拟年广东省)小明用下面的方法求出方程30=的6.(2021 Array解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.7.(2021模拟年山东青岛市)用圆规、直尺作图,不写作法,但要保留作图痕迹. 为美化校园,学校准备在如图所示的三角形(ABC △)空地上修建一个面积最大的圆形花坛,请在图中画出这个圆形花坛.解: 结论:【答案】正确画出两条角平分线,确定圆心;确定半径;正确画出图并写出结论.8..如图,已知线段()20AB a a M =>,是AB 的中点,直线1l AB ⊥于点A ,直线2l AB ⊥于点M ,点P 是1l 左侧一点,P 到1l 的距离为()2b a b a <<. (1)作出点P 关于1l 的对称点1P ,并在1PP 上取一点2P ,使点2P 、1P 关于2l 对称;(2)2PP 与AB 有何位置关系和数量关系?请说明理由.ABCP(第22题)【答案】解:(1)如图, 3分(2)2PP 与AB 平行且相等.9.(2021模拟年牡丹江)已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°, EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.AE CF BD图1图3ADFEC BADBCE 图2F【答案】解:图2成立;12DEF CEF ABC S S S ∴+=△△△ 图3不成立,DEF CEF ABC S S S △△△、、的关系是:12DEF CEF ABC S S S -=△△△10.(2021模拟辽宁朝阳)如图①,在梯形ABCD 中,CD AB ∥,90ABC ∠=°,60DAB ∠=°,2AD =,4CD =.另有一直角三角形EFG ,90EFG ∠=°,点G 与点D 重合,点E 与点A 重合,点F 在AB 上,让EFG △的边EF 在AB 上,点G 在DC 上,以每秒1个单位的速度沿着AB 方向向右运动,如图②,点F 与点B 重合时停止运动,设运动时间为t 秒. (1)在上述运动过程中,请分别写出当四边形FBCG 为正方形和四边形AEGD 为平行四边形时对应时刻t 的值或范围;(2)以点A 为原点,以AB 所在直线为x 轴,过点A 垂直于AB 的直线为y 轴,建立如图③所示的坐标系.求过A D C ,,三点的抛物线的解析式;(3)探究:延长EG 交(2)中的抛物线于点Q ,是否存在这样的时刻t 使得ABQ △的面积与梯形ABCD 的面积相等?若存在,求出t 的值;若不存在,请说明理由. 【答案】(1)当43t =-时,四边形FBCG 为正方形. 当0t <≤4时,四边形AEGD 为平行四边形. (2)抛物线的解析式为236355y x x =-+ (3)存在这样的时刻t ,当65t =秒时,AQB △的面积与梯形ABCD 的面积相等.11.(2021模拟年湖北十堰市)如图①,四边形ABCD 是正方形, 点G 是BC 上任意一点,DE ⊥AG 于点E ,BF ⊥AG 于点F. (1) 求证:DE -BF = EF .(2) 当点G 为BC 边中点时, 试探究线段EF 与GF 之间的数量关系, 并说明理由.(3) 若点G 为CB 延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE 、BF 、EF 之间的数量关系(不需要证明).D (G ) CBFA (E ) 图①DCB F A EG图②DCB F O (A )E Gxy图③(第25题图)【答案】(1) 略(2)EF = 2FG(3) DE + BF = EF说明:第(2)问不先下结论,只要解答正确,给满分.若只有正确结论,给1分.12.(2021模拟年湖北十堰市)如图①,已知抛物线32+axy=bx+(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1) 求抛物线的解析式;(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.【答案】解: (1) 所求抛物线解析式为: 322+yx-=x-(2) 存在符合条件的点P, 其坐标为P (-1, 10)或P(-1,-10)或P (-1, 6) 或P (-1, 35) (3)S 四边形BOCE 最大, 且最大值为863.点E 坐标为 (-23,415)13.(2021模拟年莆田)已知:如图在ABCD 中,过对角线BD 的中点O 作直线EF 分别交DA 的延长线、AB DC BC 、、的延长线于点E M N F 、、、.(1)观察图形并找出一对全等三角形:△________≌△____________,请加以证明;(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到? 【关键词】四边形、全等三角形、变换 (1)DOE BOF ①△≌△;(2)绕点O 旋转180°后得到或以点O 为中心作对称变换得到.14.(2021模拟年长沙)如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结AC BC A C 、,、两E BMOD N FC A E B MOD N F C A点的坐标分别为(30)A -,、(0C ,且当4x =-和2x =时二次函数的函数值y 相等.(1)求实数a b c ,,的值;(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.【关键词】二次函数、运动变化、相似、存在性15.(2021模拟年包头)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与△是否全等,请说明理由;CQP②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与CQP△全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC△三边运动,求经过多长时间点P与点Q第一次在ABC△的哪条边上相遇?16.(2021模拟年包头)已知二次函数2y ax bx c=++(0a≠)的图象经过点(10)m>)与x轴交于点D.C-,,直线x m=(2A,,(20)B,,(02)(1)求二次函数的解析式;(2)在直线x m=(2、、m>)上有一点E(点E在第四象限),使得E D B 为顶点的三角形与以A O C、、为顶点的三角形相似,求E点坐标(用含m的代数式表示);(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形?若存在,请求出m的值及四边形ABEF的面积;若不存在,请说明理由.17.(2021模拟年福建省泉州市)如图,△ABC 与△ADE 都是等腰直角三角形,∠ACB 和∠E 都是直角,点C 在AD 上,把△ABC 绕点A 按顺时针方向旋转n 度后恰好与△ADE 重合.(1)请直接写出n 的值;(2)若BC=2,试求线段BC 在上述旋转过程中所扫过部分的面积.yxO。

相关文档
最新文档