遗传算法交叉操作函数
matlab遗传算法求解配送中心选址问题案例讲解

matlab遗传算法求解配送中心选址问题案例讲解遗传算法是一种基于生物进化原理的优化算法,可以用于求解各种复杂的问题,包括配送中心选址问题。
下面是一个使用MATLAB实现遗传算法求解配送中心选址问题的案例讲解。
一、问题描述假设有一组客户和一组候选的配送中心,每个客户都有一个需求量,配送中心有一个最大容量。
目标是选择一些配送中心,使得所有客户的需求量能够被满足,同时总成本最低。
二、算法实现1. 初始化种群在MATLAB中,可以使用rand函数随机生成一组候选配送中心,并使用二进制编码来表示每个配送中心是否被选中。
例如,如果候选配送中心有3个,则可以生成一个长度为3的二进制串来表示每个配送中心的状态,其中1表示被选中,0表示未被选中。
2. 计算适应度值适应度值是评估每个解的质量的指标,可以使用总成本来表示。
总成本包括建设成本、运输成本和库存成本等。
在MATLAB中,可以使用自定义函数来计算适应度值。
3. 选择操作选择操作是根据适应度值的大小选择解的过程。
可以使用轮盘赌选择、锦标赛选择等算法。
在MATLAB中,可以使用rand函数随机选择一些解,并保留适应度值较大的解。
4. 交叉操作交叉操作是将两个解的部分基因进行交换的过程。
可以使用单点交叉、多点交叉等算法。
在MATLAB中,可以使用自定义函数来实现交叉操作。
5. 变异操作变异操作是对解的基因进行随机修改的过程。
可以使用位反转、位变异等算法。
在MATLAB中,可以使用rand函数随机修改解的基因。
6. 终止条件终止条件是判断算法是否结束的条件。
可以使用迭代次数、最优解的变化范围等指标来判断终止条件。
在MATLAB中,可以使用自定义函数来实现终止条件的判断。
三、结果分析运行遗传算法后,可以得到一组最优解。
可以根据最优解的适应度值和总成本进行分析,并确定最终的配送中心选址方案。
同时,也可以使用其他评价指标来评估算法的性能,如收敛速度、鲁棒性等。
遗传算法 例题 详解

遗传算法例题详解遗传算法是一种模拟自然选择和遗传机制的优化方法,它模拟了生物进化的过程,通过模拟种群的遗传变异和适应度选择,寻找最优解。
下面我们以一个简单的例题来详细解释遗传算法的原理和应用。
假设我们要解决一个简单的优化问题,找到函数 f(x) = x^23x + 4 的最小值,其中 x 的取值范围在 [0, 5] 之间。
首先,我们需要定义遗传算法的基本要素:1. 个体表示,在这个例子中,个体可以用一个实数来表示,即x 的取值。
2. 适应度函数,即要优化的目标函数,对于这个例子就是 f(x) = x^2 3x + 4。
3. 遗传操作,包括选择、交叉和变异。
接下来,我们用遗传算法来解决这个优化问题:1. 初始化种群,随机生成一定数量的个体作为初始种群。
2. 评估适应度,计算每个个体的适应度,即计算函数 f(x) 的值。
3. 选择操作,根据个体的适应度来选择父代个体,适应度越高的个体被选中的概率越大。
4. 交叉操作,对选中的父代个体进行交叉操作,生成新的个体。
5. 变异操作,对新生成的个体进行变异操作,引入一定的随机性。
6. 重复步骤2-5,直到满足停止条件(如达到迭代次数或找到满意的解)。
通过不断地迭代选择、交叉和变异操作,种群中的个体将不断进化,最终找到函数的最小值对应的 x 值。
在上述例题中,遗传算法通过模拟自然选择和遗传机制,不断优化种群中个体的适应度,最终找到了函数 f(x) = x^2 3x + 4 的最小值对应的 x 值。
这个例子展示了遗传算法在优化问题中的应用,它能够有效地搜索解空间,找到全局最优解或者接近最优解的解。
遗传算法在实际应用中有着广泛的应用,如工程优化、机器学习、数据挖掘等领域。
遗传算法求函数最小值

遗传算法求函数最小值遗传算法是一种模拟自然界中生物进化过程的计算方法,其基本原理是模拟类比生物的自然选择、交叉和变异过程,以达到求解非线性优化问题的目的。
在本文中,我们将介绍如何使用遗传算法来求解一个简单但典型的非线性函数优化问题。
该函数是 Rosenbrock 函数,它是一个多峰函数,一般用来测试其他优化算法的性能。
Rosenbrock 函数的公式如下:$$f(x,y) = (1-x)^2 + 100(y-x^2)^2$$该函数有一个明显的最小值点 $(1, 1)$,函数值为 0。
我们的目标是使用遗传算法来找到这个最小值点。
以下是遗传算法的基本流程:1. 初始化种群:随机生成一组初始解。
2. 评估适应度:计算种群中每个解的适应度,即 Rosenbrock 函数的值。
适应度越高,表示该解越接近最小值点。
3. 选择育种个体:采用轮盘赌算法从种群中选择一些个体,用于后续的交叉和变异。
4. 交叉:对选择出来的个体进行交叉操作,生成一定数量的新个体。
交叉操作的目的是将两个个体的优良特征互相交换,以产生更好的后代。
5. 变异:对上一步生成的新个体进行变异操作,产生进一步的多样性和探索性。
6. 评估适应度:对新生成的个体进行适应度评估,即 Rosenbrock 函数的值。
7. 替换:选择一部分新生成的个体,替代原来种群中适应度低的个体。
8. 检查停止条件:判断是否满足停止条件,如果是,则输出最优解;否则回到第 3 步。
根据以上基本流程,我们可以逐步开发程序实现。
首先,我们定义一个 Rosenbrock 函数的计算函数:```pythondef rosenbrock(x, y):return (1 - x)**2 + 100*(y - x**2)**2```然后,我们随机生成一组初始解,使用 numpy 库生成随机数,x、y 取值范围在 [-3,3]:```pythonimport numpy as npPOPULATION_SIZE = 100 # 种群大小BOUND_LOW, BOUND_HIGH = -3.0, 3.0 # 取值范围populations = np.random.uniform(low=BOUND_LOW, high=BOUND_HIGH,size=(POPULATION_SIZE, 2))```fitness = [rosenbrock(x, y) for x, y in populations]df = pd.DataFrame({'x': populations[:, 0], 'y': populations[:, 1],'fitness': fitness})```然后,我们编写轮盘赌算法选择育种个体的代码。
遗传算法基础

比例选择法(轮盘赌)
• 基本思想
各个个体被选中的概率与其适应度大小成正比。 设群体大小为 M,个体 i 的适应度大小为F ( xi ) ,则 个体 i 被选中的概率为
Pi =
F ( xi )
∑ F (x )
i =1 i
M
比例选择法(轮盘赌)
• 具体步骤 1)计算各基因适应度值和选择概率 Pi 2)累计所有基因选择概率值,记录中间累 加值S - mid 和最后累加值 sum = ∑ Pi 3)产生一个随机数 N,0〈 N 〈 1 4)选择对应中间累加值S - mid 的基因进 入交换集 5)重复(3)和(4),直到获得足够的基 因。
t i
t i i
n
模式定理
• 选择算子的作用
f (H , t) m( H , t + 1) = m( H , t ) f (t )
若 若
f (H , t) >1,m(H,t)增加 f (t ) f ( H , t ) <1,m(H,t)减少 f (t )
在选择算子的作用下,对于平均适用度高于群体平 在选择算子的作用下, 均适应度的模式,其样本数将增长, 均适应度的模式,其样本数将增长,对于平均适用 度低于群体平均适应度的模式, 度低于群体平均适应度的模式,其样本数将减少
f ( x) f ( x) f ( x) f ( x) f ( x) f ( x)
F(x)
F(x)
F(x)
F(x)=f(x)+C
遗传算法基本要素与实现技术
• 选择算子 • 适应度较高的个体被遗传到下一代群体中 的概率较大,适应度较低的个体被遗传到 下一代群体中的概率较小。 • 选择方法 比例选择法(轮盘赌) 锦标赛选择法
遗传算法matlab程序代码

遗传算法matlab程序代码遗传算法是一种优化算法,用于在给定的搜索空间中寻找最优解。
在Matlab中,可以通过以下代码编写一个基本的遗传算法:% 初始种群大小Npop = 100;% 搜索空间维度ndim = 2;% 最大迭代次数imax = 100;% 初始化种群pop = rand(Npop, ndim);% 最小化目标函数fun = @(x) sum(x.^2);for i = 1:imax% 计算适应度函数fit = 1./fun(pop);% 选择操作[fitSort, fitIndex] = sort(fit, 'descend');pop = pop(fitIndex(1:Npop), :);% 染色体交叉操作popNew = zeros(Npop, ndim);for j = 1:Npopparent1Index = randi([1, Npop]);parent2Index = randi([1, Npop]);parent1 = pop(parent1Index, :);parent2 = pop(parent2Index, :);crossIndex = randi([1, ndim-1]);popNew(j,:) = [parent1(1:crossIndex),parent2(crossIndex+1:end)];end% 染色体突变操作for j = 1:NpopmutIndex = randi([1, ndim]);mutScale = randn();popNew(j, mutIndex) = popNew(j, mutIndex) + mutScale;end% 更新种群pop = [pop; popNew];end% 返回最优解[resultFit, resultIndex] = max(fit);result = pop(resultIndex, :);以上代码实现了一个简单的遗传算法,用于最小化目标函数x1^2 + x2^2。
遗传算法函数

种群表示和初始化函数bs2rv: 二进制串到实值的转换Phen=bs2rv(Chrom,FieldD)FieldD=[len, lb, ub, code, scale, lbin, ubin]code(i)=1为标准的二进制编码,code(i)=0为格雷编码scale(i)=0为算术刻度,scale(i)=1为对数刻度函数crtbp: 创建初始种群[Chrom,Lind,BaseV]=crtbp(Nind,Lind)[Chrom,Lind,BaseV]=crtbp(Nind,BaseV)[Chrom,Lind,BaseV]=crtbp(Nind,Lind,BaseV)Nind指定种群中个体的数量,Lind指定个体的长度函数crtrp: 创建实值原始种群Chrom=crtrp(Nind,FieldDR)适应度计算函数ranking: 基于排序的适应度分配(此函数是从最小化方向对个体进行排序的)FitV=ranking(ObjV)FitV=ranking(ObjV, RFun)FitV=ranking(ObjV, RFun, SUBPOP)Rfun(1)线性排序标量在[1 2]间为,非线性排序在[1 length(ObjV)-2]Rfun(2)指定排序方法,0为线性排序,1为非线性排序SUBPOP指明ObjV中子种群的数量,默认为1选择高级函数select: 从种群中选择个体SelCh=select(SEL_F, Chrom, FitnV)SelCh=select(SEL_F, Chrom, FitnV, GGAP)SelCh=select(SEL_F, Chrom, FitnV, GGAP, SUBPOP)SEL_F是一字符串,为一低级选择函数名,如rws或susGGAP指出了代沟,默认为1;也可大于1,允许子代数多于父代的数量rws: 轮盘赌选择NewChrIx=rws(FitnV, Nsel) 使用轮盘赌选择从一个种群中选择Nsel个个体NewChrIx 是为育种选择的个体的索引值sus: 随机遍历抽样NewChrIx=sus(FitnV, Nsel)交叉高级函数recombin: 重组个体NewChrom=recombin(REC_F, Chrom)NewChrom=recombin(REC_F, Chrom, RecOpt)NewChrom=recombin(REC_F, Chrom, RecOpt, SUBPOP)REC_F是包含低级重组函数名的字符串,例如recdis,recint,reclin,xovdp, xovdprs, xovmp, xovsh, xovshrs, xovsp, xovsprsrecdis: 离散重组NewChrom=recdis(OldChorm)recint: 中间重组NewChrom=recint(OldChorm)reclin: 线性重组NewChrom=reclin(OldChorm)xovdp: 两点交叉NewChrom=xovdp(OldChrom, XOVR)XOVR为交叉概率,默认为0.7Xovdprs: 减少代理的两点交叉NewChrom=xovdprs(OldChrom, XOVR)Xovmp: 多点交叉NewChrom=xovmp(OldChrom, XOVR, Npt, Rs)Npt指明交叉点数,0 洗牌交叉;1 单点交叉;2 两点交叉;默认为0 Rs指明使用减少代理,0 不减少代理;1 减少代理;默认为0 Xovsh: 洗牌交叉NewChrom=xovsh(OldChrom, XOVR)Xovshrs: 减少代理的洗牌交叉NewChrom=xovshrs(OldChrom, XOVR)Xovsp: 单点交叉NewChrom=xovsp(OldChrom, XOVR)Xovsprs: 减少代理的单点交叉NewChrom=xovsprs(OldChrom, XOVR)变异高级函数mutate: 个体的变异NewChorm=mutate(MUT_F, OldChorm, FieldDR) NewChorm=mutate(MUT_F, OldChorm, FieldDR, MutOpt)NewChorm=mutate(MUT_F, OldChorm, FieldDR, MutOpt, SUBPOP)MUT_F为包含低级变异函数的字符串,例如mut, mutbga, recmutmut: 离散变异算子NewChrom=mut(OldChorm, Pm)NewChrom=mut(OldChorm, Pm, BaseV)Pm为变异概率,默认为Pm=0.7/Lindmutbga: 实值种群的变异(遗传算法育种器的变异算子)NewChrom=mutbga(OldChorm, FieldDR)NewChrom=mubga(OldChorm, FieidDR, MutOpt)MutOpt(1)是在[ 0 1]间的重组概率的标量,默认为1MutOpt(2)是在[0 1]间的压缩重组范围的标量,默认为1(不压缩)recmut: 具有突变特征的线性重组NewChrom=recmut(OldChorm, FieldDR)NewChrom=recmut(OldChorm, FieidDR, MutOpt)重插入函数reins: 重插入子群到种群Chorm=reins(Chorm, SelCh)Chorm=reins(Chorm, SelCh, SUBPOP)Chorm=reins(Chorm, SelCh, SUBPOP, InsOpt, ObjVch)[Chorm, ObjVch]=reins(Chorm, SelCh, SUBPOP, InsOpt, ObjVch, ObjVSel)InsOpt(1)指明用子代代替父代的选择方法,0为均匀选择,1为基于适应度的选择,默认为0InsOpt(2)指明在[0 1]间每个子种群中重插入的子代个体在整个子种群的中个体的比率,默认为1 ObjVch包含Chorm中个体的目标值,对基于适应度的重插入是必需的ObjVSel包含Selch中个体的目标值,如子代数量大于重插入种群的子代数量是必需的其他函数矩阵复试函数rep: MatOut=rep(MatIn, REPN) REPN为复制次数。
遗传算法 算法原理
遗传算法算法原理(原创实用版)目录1.遗传算法的概述2.遗传算法的原理3.遗传算法的应用正文一、遗传算法的概述遗传算法(Genetic Algorithm,简称 GA)是一种模拟自然界生物进化过程的优化算法。
其核心思想是基于自然选择、遗传和突变等生物学原理,通过群体中的个体在不断迭代中进行优胜劣汰,达到解决问题和优化目标的效果。
遗传算法在解决复杂问题、非线性问题和全局最优解问题等方面具有较强的优势,广泛应用于各个领域。
二、遗传算法的原理1.遗传操作遗传算法的基本操作包括选择、交叉和变异。
选择操作是根据适应度函数对当前群体中的个体进行评估,选择优秀个体进行繁殖。
交叉操作是将选中的优秀个体进行染色体互换,产生新的后代。
变异操作是在后代中随机选择某个位点进行变异,以一定的概率产生新的特性。
2.适应度函数适应度函数是遗传算法中的重要概念,用于评估每个个体的优劣程度。
适应度函数的取值范围为 [0, 1],其中 1 表示最优解,0 表示最劣解。
在遗传算法中,适应度函数的取值会直接影响到个体的选择和淘汰。
3.遗传算法的基本流程遗传算法的基本流程如下:(1)初始化种群:创建一个初始种群,包括多个随机生成的个体,每个个体表示一个解。
(2)评估适应度:计算种群中每个个体的适应度值。
(3)选择操作:根据适应度值对种群进行选择,选择一定数量的优秀个体进行繁殖。
(4)交叉操作:对选中的优秀个体进行染色体互换,生成新的后代。
(5)变异操作:在后代中随机选择某个位点进行变异,以一定的概率产生新的特性。
(6)更新种群:将新产生的后代替换掉原种群中一些适应度较低的个体,形成新的种群。
(7)重复步骤 2-6,直至满足停止条件。
三、遗传算法的应用遗传算法在许多领域都取得了显著的应用成果,如机器学习、控制系统、信号处理、图像处理、运筹学等。
遗传算法优化svm参数
遗传算法优化svm参数遗传算法是一种基于自然选择和进化理论的优化算法,适用于求解复杂的非线性优化问题。
由于支持向量机(SupportVector Machine,SVM)在机器学习中被广泛应用于分类和回归问题,因此使用遗传算法来优化SVM的参数是一个常见的研究方向。
SVM是一种二分类模型,通过在特征空间中寻找最佳的超平面对数据进行分类。
根据问题的不同,SVM具有多个参数需要进行调优,包括C(正则化常数)和核函数中的参数等。
使用遗传算法来优化这些参数可以通过以下步骤实现:1. 确定问题的适应度函数:在遗传算法中,适应度函数用于评估每个个体的性能。
对于SVM参数优化问题,可以选择采用交叉验证准确率或分类精度作为适应度函数。
2. 初始化种群:在遗传算法中,初始化种群是一个重要的步骤。
对于SVM参数优化问题,可以随机生成一组初始参数作为种群的起始点。
3. 选择操作:选择操作是根据适应度函数的结果选择优秀的个体。
常用的选择算法有轮盘赌选择和锦标赛选择等。
4. 交叉操作:交叉操作是从选择的个体中随机选择两个或多个个体,通过某种方式进行交叉生成新的个体。
在SVM参数优化问题中,可以选择单点交叉、多点交叉或均匀交叉等策略。
5. 变异操作:变异操作是为了确保种群具有一定的多样性,防止算法陷入局部最优解。
在SVM参数优化中,可以通过改变个体的某个或多个参数的值来进行变异。
6. 评价和重复:每次进行选择、交叉和变异操作后,都需要对生成的新个体进行评价并计算适应度值。
重复上述步骤直到满足终止条件为止,比如达到最大迭代次数或适应度达到某个阈值。
在进行SVM参数优化时,有几个问题需要考虑:1. 参数范围:对于每个参数,需要明确其可能的取值范围。
例如,正则化常数C通常取值为0到无穷大之间的正实数。
2. 交叉验证:在SVM参数优化中,使用交叉验证是常见的一种方式。
通过将数据集划分为训练集和验证集,可以评估不同参数组合的性能。
常用的交叉验证方法有k折交叉验证和留一验证等。
多目标遗传算法原理
多目标遗传算法原理一、引言多目标优化问题是现实生活中常见的问题,它们通常涉及到多个目标,而这些目标之间往往存在着相互制约和矛盾的关系,因此单纯的优化方法难以处理这类问题。
为了解决这一问题,多目标遗传算法应运而生。
本文将介绍多目标遗传算法的原理。
二、遗传算法基础在介绍多目标遗传算法之前,我们需要先了解一下遗传算法的基础知识。
1.个体编码在遗传算法中,每个个体都需要被编码成一个染色体。
染色体可以是二进制串、实数向量等形式。
2.适应度函数适应度函数用来评价每个个体在当前环境下的适应程度。
在优化过程中,我们希望适应度函数越大的个体越有可能被选择。
3.选择操作选择操作是指根据适应度函数来选择优秀的个体作为下一代的父母。
常见的选择方法有轮盘赌选择、锦标赛选择等。
4.交叉操作交叉操作是指将两个父母染色体中的部分基因进行交换,生成新的子代染色体。
5.变异操作变异操作是指在染色体中随机改变一个或多个基因的值,以增加种群的多样性。
6.种群更新通过选择、交叉、变异等操作,生成新的子代染色体,并用新的子代染色体来替换原来的父代染色体,从而实现种群更新。
三、多目标遗传算法介绍多目标遗传算法是遗传算法在解决多目标优化问题时的扩展。
在多目标优化问题中,我们需要同时优化多个目标函数。
这些目标函数之间往往存在着相互制约和矛盾的关系,因此单纯的优化方法难以处理这类问题。
以下将介绍多目标遗传算法的基本流程。
1.个体编码与单目标遗传算法类似,每个个体都需要被编码成一个染色体。
不同之处在于,在多目标遗传算法中,每个染色体需要同时包含所有要优化的目标函数值。
2.适应度函数在单目标遗传算法中,适应度函数只需要考虑一个目标函数即可。
而在多目标遗传算法中,我们需要设计一种适应度函数来评价每个个体在所有要优化的目标函数下的综合表现。
常见的做法是使用帕累托前沿(Pareto front)来评价每个个体的适应度。
帕累托前沿是指在多目标优化问题中,所有最优解所组成的集合。
遗传算法求函数极值
遗传算法求函数极值遗传算法是一种基于模拟生物进化过程的优化算法,它通过模拟生物的进化过程中的遗传、交叉和变异等操作,对问题的解空间进行,并到满足最优条件的解。
它被广泛应用于求解各种复杂问题,包括函数极值问题。
在使用遗传算法求函数极值的过程中,首先需要明确问题的目标函数。
目标函数是一个将自变量映射到一个实数值的函数,它描述了问题的优化目标。
例如,我们可以考虑一个简单的目标函数f(x),其中x表示自变量,f(x)表示因变量。
遗传算法的基本流程如下:1.初始化种群:随机生成一组初始解,也就是种群。
种群中的每个个体都是一个可能的问题解,而个体中的染色体则表示了问题解的具体数值。
2.适应度评估:对于种群中的每个个体,通过计算目标函数的值,评估每个个体的适应度。
适应度越高的个体,越有可能成为下一代个体的基因。
3.选择操作:根据个体的适应度,选择一些个体作为下一代遗传操作的基因。
4.交叉操作:从选择出的个体中随机选择一对个体,进行交叉操作。
交叉操作通过交换两个个体的染色体信息,产生新的个体。
5.变异操作:对交叉操作生成的新个体进行变异操作。
变异操作通过改变个体染色体中的部分基因,引入新的解,以增加问题解的多样性。
6.新种群产生:基于交叉和变异操作,生成新的种群。
7.终止条件判断:如果满足终止条件(例如达到最大迭代次数、找到了满足要求的解等),则停止算法;否则,返回第2步。
通过以上步骤的循环迭代,遗传算法可以到问题的最优解,即函数的极值。
由于遗传算法充分利用了进化算法的生物特点,具有全局能力和自适应优化能力,因此在函数极值求解中得到了广泛的应用。
遗传算法的关键在于如何进行适应度评估、选择操作、交叉操作和变异操作。
适应度评估是指根据目标函数计算个体的适应度值,一般情况下适应度越高的个体越有可能成为下一代的基因。
选择操作可以采用轮盘赌选择、最优选择等方式,根据个体的适应度选择一定数量的个体进行交叉和变异。
交叉操作通过交换染色体信息,产生新的个体;变异操作通过改变个体染色体中的部分基因,引入新的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遗传算法交叉操作函数
%%%%%%%%交叉操作函数%%%%%%%%%%%%%%%%%%%%
function [A,B]=cross(A,B)
L=length(A);
if L<10
W=L;
elseif ((L/10)-floor(L/10))>=rand&&L>10
W=ceil(L/10)+8;
else
W=floor(L/10)+8;
end
p=unidrnd(L-W+1);
fprintf('p=%d ',p);
for i=1:W
x=find(A==B(1,p+i-1));
y=find(B==A(1,p+i-1));
[A(1,p+i-1),B(1,p+i-1)]=exchange(A(1,p+i-1),B(1,p+i-1));
[A(1,x),B(1,y)]=exchange(A(1,x),B(1,y));
end
end