DC-DC电源元器件及拓扑结构分析

合集下载

DCDC变换器的拓扑结构

DCDC变换器的拓扑结构

摘要:首先阐述了三电平DC/DC变换器拓扑的推导过程,给出了6种非隔离三电平DC/DC变换器和5种隔离三电平DC/DC变换器拓扑结构;分析了三电平DC/DC变换器中,如何设计滤波电路的参数以提高其动态品质;最后以Buck三电平变换器和Buck Boost三电平变换器为例,分析了滑模控制在三电平DC/DC变换器中的应用前景。

关键词:三电平;DC/DC变换器;滑模控制1 引言J.Renes Pinheiro于1992年提出了零电压开关三电平DC/DC变换器[1],该变换器的开关应力为输入直流电压的1/2,非常适合于输入电压高、输出功率大的应用场合。

因此,三电平DC/DC变换器引起了广泛关注,得到了长足发展。

目前,三电平技术在已有的DC/DC 变换器中,均得到了很好的应用。

部分三电平DC/DC变换器在降低开关应力的同时,还大大减小了滤波器的体积,提高了变换器的动态特性。

三电平技术的应用,充分体现了“采用有源控制的方式减小无源元件体积”的学术思想。

2 三电平DC/DC变换器拓扑的推导与发展2.1 三电平两种开关单元文献[2]分析了三电平DC/DC变换器的推导过程:用2只开关管串联代替1只开关管以降低电压应力,并引入1只箝位二极管和箝位电压源(它被均分为两个相等的电压源)确保2只开关管电压应力均衡。

电路中开关管的位置不同,其箝位电压源与箝位二极管的接法也不同。

文中提取出2个三电平开关单元如图1所示。

图1(a)中,箝位二极管的阳极与箝位电压源的中点相连,称之为阳极单元;图1(b)中,箝位二极管的阴极与箝位电压源的中点相连,称之为阴极单元。

2.2 六种非隔离三电平DC/DC变换器三电平DC/DC变换器的推导过程可以总结为以下三个步骤:一是将基本变换器的开关管替换为相互串联的2只开关管;二是寻找或构成箝位电压源;三是从箝位电压源的中点引入1只箝位二极管到相互串联的2只开关管的中点,箝位二极管的放置与2只开关管与箝位电压源联接的地方有关。

DCDC电源芯片内部结构全解

DCDC电源芯片内部结构全解

DCDC电源芯片内部结构全解DC-DC电源芯片是一种特殊的集成电路,用于将直流电(DC)转换为所需的不同电压的直流电。

它通常由许多不同的部分组成,每个部分都具有特定的功能,可以实现高效的电能转换。

接下来,我将对DC-DC电源芯片的内部结构进行详细解释。

1.输入滤波器:电源芯片的第一个部分是输入滤波器,用于过滤输入电源的干扰和噪声,确保输入电源干净稳定,以提供可靠的工作电压。

2.整流桥:在输入电压经过滤波器后,进入整流桥。

整流桥由四个二极管组成,可以将交流电(AC)转换为直流电(DC),以供后续电路使用。

3.拉电感器:拉电感器是一种具有高电感值的元件,用于存储电能并滤波电流。

拉电感器通过存储能量,使电源芯片能够提供稳定的输出电流。

4.开关管/开关MOS管:开关管是DC-DC电源芯片的核心部分之一、它负责控制电源的开关周期,调整输出电压。

开关管通常是MOSFET管,其具有低导通电阻和快速开关速度,以提供高效的能量转换。

5.控制电路:控制电路是DC-DC电源芯片的另一个重要组成部分,负责监测并控制输出电压。

它包括一个反馈回路,用于调整开关管的开关频率和占空比,以确保输出电压达到预期值。

控制电路还可以包括一些保护功能,如过压保护和过载保护,以防止电源芯片受到损害。

6.输出滤波器:输出滤波器用于滤波输出电压,去除可能存在的高频噪声,并提供干净稳定的输出电压。

输出滤波器通常由电容器和电感器组成,能够平滑输出电压并减少纹波。

除了上述主要部分外,DC-DC电源芯片还可能包括其他辅助功能,如温度保护、短路保护和过流保护等。

这些保护功能能够保护电源芯片不受外部故障和不恰当使用的影响。

总之,DC-DC电源芯片内部结构的主要组成部分包括输入滤波器、整流桥、拉电感器、开关管、控制电路和输出滤波器。

这些部分通过协同工作实现电源的高效转换和稳定的输出电压。

同时,电源芯片可能还包括一些辅助功能,如保护功能,以确保电源芯片的安全运行。

低压大电流DCDC变换器拓扑分析

低压大电流DCDC变换器拓扑分析

低压大电流DC/DC变换器拓扑分析摘要:目前对低压大电流DC/ DC 变换器的研究方兴未艾。

如何选择合适的拓扑电路是其首要任务。

从拓扑、应用方面系统地论述了低压大电流技术近期的发展,阐述了各种拓扑电路的特点及用途并进行了分析比较。

同时,详细地介绍了其关键的同步整流技术及其各种驱动方法。

1 引言随着电子技术的迅速发展,以及各种微处理器、IC 芯片和数字信号处理器的普及应用,对低压大电流输出的低压变换器的研究与应用成为日益重要的课题。

在低电压输出的情况下,一般的二极管整流很难达到较高效率,需采用同步整流技术,这就使得同步整流成为低压大电流技术中的关键技术。

另外,如何选择合适的拓扑,使变换器的性能最优化,也是一个极其重要的问题。

首先分别从变压器的初级和次级对各种基本拓扑进行分析比较,分别得出初级和次级适合于低压大电流的优化拓扑,然后进行组合,列举了3 种典型的拓扑,最后对优化的组合作进一步的比较分析。

2 基本拓扑及其优缺点分析以变压器为界,此类变换器的初级拓扑可从其所能传送的功率以及拓扑结构的复杂程度等方面进行分析。

在提高低压大电流变换器的效率中显得尤为重要的是其次级的拓扑。

本文首先从提高效率的角度对其进行分析,然后综合考虑其结构复杂性和驱动方式等的问题。

2. 1 变压器初级拓扑的优选相对于升压型变换器来说,降压型变换器更加适用于低压大电流变换器。

其变压器初级的基本拓扑主要可用正激式、反激式、推挽式、半桥式和全桥式等5 种。

但是,其中的反激式变换器显然不适合低压大电流的要求,因为它的输出纹波较大,变压器漏感引起较大的电压尖峰,功率不大(150W 以下),变换器效率不高,因而只能在电压和负载调整率要求不高的场合使用。

2. 2 变压器次级拓扑的优选2. 2. 1 同步整流技术基本原理同步整流技术旨在实现同步整流管栅极和源极之间的驱动信号与同步整流管漏极和源极之间开关同步。

理想的同步整流技术可使同步整流管起到和整流二极管同样的作用,即正向电压导通,反向电压关断。

5V-80A高功率密度DC-DC模块电源

5V-80A高功率密度DC-DC模块电源

T
3.电路工作原理与元件参数设计
第二级50%占空比全桥电路
Q1
D1
C1
Q2
D2 Lr
ip
C2
T
L1
L2
if C
R
Vg
Q3
D3
C3
Q4
D4
C4
Q5
C5
D5
Q6
C6
D6
ZVS
每个桥臂4管并联且 为自驱动方式
4.封装与结构
开关元件封装
小体积、大电流 寄生电感小 管芯与引脚连接电阻小 双面散热 4种封装体积比较
Cdc
Q5
C5Q6
C6
Q7
C 7 Q8
C8
D8
D5
D6
D7
IR6635 耐压30V IR6648 耐压60V IR6668 耐压80V
Q1
D1
C1
Q2
D2
C2
L1
T
L2
FB
Vg
C
R
Q3
D3
C3
Q4
C4
D4
Q5
D5
C5
Q6
D6
C6
2.拓扑选择与损耗分析
上表中:
Po—输出功率; Po = 80% × Pin Pin—输入功率;
Synqor
Buck+ 全桥(硬开关) 零电流准谐振 +同步整流 双组交互正激 移相全桥 有源钳位正激 +同步整流 Buck+全桥
Vicor
Buck-boost +全桥
N S
48V输入,低 压大电流输 出
24V输入,5V/90A输出
2.拓扑选择与损耗分析
输入18~36V,输出5V/90A. 导通损耗占主体 单级电路:全桥+倍流整流

DC-DC电源详解

DC-DC电源详解

T 1-D Vin -Vo
S1 Vin
D
S2
根据L的伏秒平衡原则:
IL
∆I
o
Vin*DT=(Vo+2Vd)*(1-D)T Vo=Vin *D/(1-D)-2Vd
根据L在(1-D)T时间的基本方程:
Vds1 Vin
Io
L*
Io=(Vo-2Vd)(1- D)T
Vds2
Io=(Vo-2Vd)(1-D)T/L
BOOST电路的输入输出关系
Vo/Vin =1/(1-D)
10 10 9 8 7 6 Vo ( D ) 5 4 3 2 1 1 0 0 0 0.1 0.2 0.3 0.4 0.5 D 0.6 0.7 0.8 0.9 1 1
BUCK-BOOST电路的工作原理分析
D
L
Vo Io S1 S2 UL D
开关电源小结
开关电源功率电路的五个基本元件:开关, 二极管, 电容, 电感, 变压器
开关电源功率电路分析要点
1. 2. 3. 4. 5. 电容的电压不能突变, 电感的电流不能突变 流经电容的电流平均值为零, 电感两端电压的平均值为零 理想变压器电压与匝数成比且同名同极性, 电流与匝数成反比且点进点出 电容恒流充电的公式为C * ∆ U = I * T , 电感恒压储能的公式为 L * ∆ I = U * T 变压器与电感的伏秒积必须平衡
Is
当开关断开时,由于电感上的电流不能突变,电感电流就通 过二极管D续流,该二极管称为续流二极管,这样就实现了对原先 流过开关管电流的续流,同时电感中存储的一部份能量向负载释 放。续流电流环包括:二极管,电感,负载。在这阶段流过电感 上的电流用下式描述: IL(off)=Ipk-(VoutToff/Lo) 在这阶段,电流波形是一条斜率为负的斜线,斜率为-Vout/Lo。 当开关再次导通时,二极管迅速关断,电流从输入电源和开关管 流过。在开关导通前瞬间,电感上的电流Imin就是开关管通过的 初始电流。

DCDc模块常见电路拓扑

DCDc模块常见电路拓扑

Vds
Ip Lk
Cr
D
G S
[t3, t4]
Ip Im
t0 t1 t2 t3 t4 t5
IL
ΔIL
Io
t4 t1 LmCr
Lm,Cr的选取原则:
Lm*Cr

1 2
(1
Dm a x) 2 T
2
Vin/n-Vo VL
-Vo
谐振复位正激变换器(Resonant Reset Forward):
Ip Im
t0 t1 t2 t3 t4 t5 t6=t0
IL
ΔIL
Io
激磁电流对主开关的输出
电容放电。
VT
Vin/n
-Vc/n
有源钳位正激变换器(Active Clamped Forward):
td1
td 2
Sa
D
Vin
Lm n:1
Lo
Vo
S1
1-D
-
Io
Vc
+
IL
+
VT
-
Vds
Vin
Sa
Ip Lk
Vin
n:1
L
Vo
T
Vgs
D 1-D
Io
Lm
IL
Vin
Vds
Ip Lk
Cr
D
G S
[t4, t5]
Ip Im
t0 t1 t2 t3 t4 t5
IL
ΔIL
Io
根据电感的伏秒平衡:
VL
(Vin/n-Vo)DT=Vo(1-D)T
Vo=VinD/n
Vin/n-Vo -Vo
谐振复位正激变换器(Resonant Reset Forward)特征:

光伏逆变器的dcdc拓扑

光伏逆变器的dcdc拓扑1.引言1.1 概述光伏逆变器是将光伏电池发出的直流电能转换为交流电能的装置。

其核心部分是DC-DC拓扑,它能够实现对直流电压进行有效的调整和转换,以满足逆变器和光伏电池的工作要求。

DC-DC拓扑是指将一个直流电源的电压转换到另一个电压水平的电路结构。

它是光伏逆变器中的关键组成部分,用于将光伏电池发出的直流电能转换为适合于输送到电网的交流电能。

因此,DC-DC拓扑在光伏逆变器中发挥着至关重要的作用。

光伏逆变器的DC-DC拓扑应用有许多种。

其中比较常见的有升压拓扑、降压拓扑和升降压拓扑。

升压拓扑适用于光伏电池电压较低的情况,能够将低电压的直流电能转换为高电压的直流电能。

降压拓扑适用于光伏电池电压较高的情况,能够将高电压的直流电能转换为低电压的直流电能。

而升降压拓扑则是一种能够实现对直流电压进行升压或降压的多功能拓扑。

总之,光伏逆变器的DC-DC拓扑是光伏电池转换为交流电的核心环节。

它通过有效的电压调整和转换,实现了光伏逆变器和光伏电池之间的协同工作。

掌握不同拓扑的应用特点和优势,对于光伏逆变器的设计和性能提升具有重要意义。

1.2文章结构文章结构部分的内容可以包括以下内容:文章结构部分旨在介绍本文的结构框架,帮助读者了解全文的组织结构和内容安排。

本文分为引言、正文和结论三个部分。

其中引言部分包括概述、文章结构和目的三个小节;正文部分包括DC-DC拓扑概述和光伏逆变器的DC-DC拓扑应用两个小节;结论部分包括总结和展望两个小节。

引言部分首先对光伏逆变器的DC-DC拓扑进行简要概述,介绍其基本概念和作用。

接着,介绍了本文的结构框架,即引言、正文和结论三个部分的内容。

最后,明确了本文的目的,即通过对光伏逆变器的DC-DC 拓扑进行深入研究,揭示其应用领域和重要性。

正文部分首先对DC-DC拓扑进行了全面的概述,包括定义、分类和基本特点等方面的内容。

进一步,详细讨论了光伏逆变器的DC-DC拓扑应用,重点介绍了其在光伏发电系统中的作用和优势。

DCDc模块常见电路拓扑


td1
td 2
Sa
D
Vin
Lm n:1
Lo Vo
S1
1-D
-
Io
Vc
+
IL
+
VT
-
Vd
Vin
Sa
Ip Lk
s
S1
D
Ip Im
G
S
根据变压器的伏秒平衡:
t0 t1 t2 t3 t4 t5t6=t0
IL
ΔIL
Io
VinDT=Vc(1-D)T
Vc=VinD/(1-D)
Vds=Vc+Vin
根据电感的伏秒平衡:
Vin
IL
?Im ?
(Vin/n-Vo)DT=Vo(1-D)T
Vds=Vin/(1-D)
VT
Vo=VinD/n
Vin/n -Vc/n
有源钳位正激变换器(Active Clamped Forward) :
Vc=VinD/(1-D)
Vin
Vds=Vin/(1-D)
10
9
8
7
6 Vc( D)
5 Vds( D)
4
3
2
1
0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 D
有源钳位正激变换器(Active Clamped Forward) :
T
Sa
D
Vin
n:1
Lo Vo
S1
1-D
Cr Lm
Io
+
IL
VT
Vin
-
Vd
Sa
Ip Lk
s
S1
D
Ip Im

常见DC/DC电源变换器的拓扑类型

DC/DC电源变换器的拓扑类型0 引言本文的第一部分为“DC/DC电源变换器拓扑的分类”,第二部分是在参考美国TI公司资料的基础上撰写而成的,新增加了各种DC/DC电源变换器的主要特点及PWM控制器的典型产品,另外还按照目标对电路结构、波形参数和汁算公式中的物理量作了统一。

本文的特点足以表格形式归纳了常见DC/DC电源变换器的拓扑结构.这对电源专业的广大技术人员是一份不可多得的技术资料。

1 DC/DC电源变换器拓扑结构的分类DC/DC电源变换器的拓扑类型主要有以下13种:(1)Buck Converter降压式变换器;(2)Boost Conyerter升压式变换器;(3)Buck—Boost Converter降压/升压式变换器,含极性反转(Inverting)式变换器;(4)Cuk Converter升压,升压串联式变换器;(5)SEPIC(Single EndcdPdimary Inductor Converter)单端一次侧电感式变换器;(6)F1yback Converter反激式(亦称回扫式)变换器;(7)Forward Converter正激式变换器:(8)Double Switches Forward Converter双开关正激式变换器;(9)Active Clamp Forward Converter有源箝位(0)Half Bridge Converter半桥式变换器;(11)Full Bridge Converter全桥式变换器;(12)Push pull Convener推挽式变换器:(13)Phase Shift Switching ZVT(Phase Shift Switching Zero Voltage Transition)移相式零电压开关变换器。

2 常见DC/DC电源变换器的拓扑类型常见DC/DC电源变换器的拓扑类型见表1~表3所列。

表中给出不同的电路结构,同时也给出相应的电压及电流波形(设相关的电感电流为连续工作方式)。

DCDC 电源芯片内部结构全解

作为一名电源研发工程师,自然经常与各种芯片打交道,可能有的工程师对芯片的内部并不是很了解,不少同学在应用新的芯片时直接翻到Datasheet 的应用页面,按照推荐设计搭建外围完事。

如此一来即使应用没有问题,却也忽略了更多的技术细节,对于自身的技术成长并没有积累到更好的经验。

今天以一颗DC/DC 降压电源芯片LM2675 为例,尽量详细讲解下一颗芯片的内部设计原理和结构,IC 行业的同学随便看看就好,欢迎指教!LM2675-5.0 的典型应用电路打开LM2675 的DataSheet,首先看看框图这个图包含了电源芯片的内部全部单元模块,BUCK 结构我们已经很理解了,这个芯片的主要功能是实现对MOS 管的驱动,并通过FB 脚检测输出状态来形成环路控制PWM 驱动功率MOS 管,实现稳压或者恒流输出。

这是一个非同步模式电源,即续流器件为外部二极管,而不是内部MOS 管。

下面咱们一起来分析各个功能是怎么实现的一、基准电压类似于板级电路设计的基准电源,芯片内部基准电压为芯片其他电路提供稳定的参考电压。

这个基准电压要求高精度、稳定性好、温漂小。

芯片内部的参考电压又被称为带隙基准电压,因为这个电压值和硅的带隙电压相近,因此被称为带隙基准。

这个值为1.2V 左右,如下图的一种结构:这里要回到课本讲公式,PN 结的电流和电压公式:可以看出是指数关系,Is 是反向饱和漏电流(即PN 结因为少子漂移造成的漏电流)。

这个电流和PN 结的面积成正比!即Is-》S。

如此就可以推导出Vbe=VT*ln(Ic/Is)!回到上图,由运放分析VX=VY,那么就是I1*R1+Vbe1=Vbe2,这样可得:I1=△Vbe/R1,而且因为M3 和M4 的栅极电压相同,因此电流I1=I2,所以推导出公式:I1=I2=VT*ln(N/R1)N 是Q1 Q2 的PN 结面积之比!回到上图,由运放分析VX=VY,那么就是I1*R1+Vbe1=Vbe2,这样可得:I1=△Vbe/R1,而且因为M3 和M4 的栅极电压相同,因此电流I1=I2,所以推导出公式:I1=I2=VT*ln(N/R1)N 是Q1 Q2 的PN 结面积之比!这样我们最后得到基准Vref=I2*R2+Vbe2,关键点:I1 是正温度系数的,而Vbe 是负温度系数的,再通过N 值调节一下,可是实现很好的温度补偿!得到稳定的基准电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档