抽水蓄能电站的工作原理
抽水蓄能电站

多级二机可逆式
3.按水库调节性能分
(1)日调节抽水蓄能 电站:其运行周期呈 日循环规律。蓄能机 组每天顶一次(晚间) 或两次(白天和晚上) 尖峰负荷,晚峰过后 上水库放空、下水库 蓄满;继而利用午夜 负荷低谷时系统的多 余电能抽水,至次日 清晨上水库蓄满、下 水库被抽空。纯抽水 蓄能电站大多为日设 计蓄能电站。
事故备用。
抽水蓄பைடு நூலகம்电站
提高水、火、核电站 的综合利用率。
黑启用等。
(2)周调节抽水蓄能
电站:运行周期呈周循 环规律。在一周的5个 工作日中,蓄能机组如 同日调节蓄能电站一样 工作。但每天的发电用 水量大于蓄水量,在工 作日结束时上水库放空, 在双休日期间由于系统 负荷降低,利用多余电 能进行大量蓄水,至周 一早上上水库蓄满。我 国第一个周调节抽水蓄 能电站为福建仙游抽水 蓄能电站。
2.按站内安装的抽水蓄能机组类型分
(1)四机分置式:这种类型的水泵和水轮机分别配有电动机和发电机,形成两套机组。效率高,但占地 大和投资大,所以很少用 (2)三机串联式:其水泵、水轮机和发电电动机三者通过联轴器连接在同一轴上。三机串联式有横轴和 竖轴两种布置方式。
卧式
立式
(3)二机可逆式: 其机组由可逆水泵 水轮机和发电电动 机二者组成。这种 结构为主流结构。
(3)季调节抽水蓄 能电站:每年汛期, 利用水电站的季节性 电能作为抽水能源, 将水电站必须溢弃的 多余水量,抽到上水 库蓄存起来,在枯水 季内放水发电,以增 补天然径流的不足。 这样将原来是汛期的 季节性电能转化成了 枯水期的保证电能。 这类电站绝大多数为 混合式抽水蓄能电站。
调峰填谷、调频调相。
【一】概念与基本原理
【二】类型与工作原理
抽水蓄能电站的作用和效益

抽水蓄能电站的作用和效益摘要:本文简要介绍了抽水蓄能电站的工作原理,在电力系统中的作用以及相应的静态效益与动态效益。
关键词:抽水蓄能电站;作用;静态效益;动态效益1前言我国的电力建设经过几十年的努力,已基本上达到了电量充足,限制用电的情况已大体消除的程度。
但是,大部分电力系统的调峰能力还很差,为此,许多火电厂被迫使用中型热力机组来调峰。
如此以来,既耗费了燃料,又损伤设备,得不偿失。
因此,发展既能够提高供电质量,又能提高电力系统本身经济性的技术就非常必要,而抽水蓄能电站满足了这一要求。
2抽水蓄能电站的工作原理及作用抽水蓄能电站的工作原理即利用可以兼具水泵和水轮机两种工作方式的蓄能机组,在电力负荷出现低谷时(夜间)做水泵运行,利用基荷火电机组发出的多余电能将下游水库的水抽到上游水库储存起来,在电力负荷出现高峰时(下午及晚上)作水轮机运行,将储存的水泄下来发电。
由此可见,抽水蓄能电站是一种特殊的电源,它具有两大特性:(1)既是发电厂,又是用户,其调峰填谷的功能是其他任何类型发电厂所不具备的;(2)机组启动迅速,运行灵活、可靠,对负荷的急剧变化可以作出快速反应,除调峰填谷外,还适合承担调频、调相、事故备用等任务。
2.1调峰填谷抽水蓄能电站在用电高峰期间发电,在用电低谷期间抽水填谷,可以改善燃煤火电机组和核电机组的运行条件,保证电网稳定运行。
比如十三陵抽水蓄能电站,由于担当了调峰发电、抽水填谷等任务,降低了电网的峰谷差率,减轻了燃煤火电调峰机组的调峰任务,不但为电力系统节约了固定运行费用和燃料费用,而且对电网的稳定运行起到了十分重要的作用。
2.2调频为了保证稳定运行,电网需要具备随时调整发电出力的能力,以适应用户负荷的变化,因此,电网所选择的调频机组必须快速灵敏,随负荷瞬时变化而调整出力。
抽水蓄能电站机组具有迅速而灵敏的开、停机性能,特别适宜于调整出力,因此,能很好地满足电网负荷急剧变化的要求。
2.3紧急事故备用在电网发生故障和负荷快速增长时,要求有发电站能起到紧急事故备用和负荷调整的作用,由于抽水蓄能电站快速灵活的运行特点,很容易实现这一功能。
抽水蓄能电站演示课件

• 抽水蓄能电站概述 • 抽水蓄能电站的关键技术 • 抽水蓄能电站的运行与维护 • 抽水蓄能电站的发展前景与挑战
CATALOGUE
抽水蓄能电站概述
抽水蓄能电站的定义与工作原理
定义
工作原理
在电力负荷低谷期,利用多余电能将 下水库的水抽到上水库储存;在电力 负荷高峰期,将上水库的水放下,通 过发电机组转换成电能输出。
提高能源储存和调度能力。
技术创新
新的技术不断涌现,如变速抽水 蓄能、高效水泵和涡轮机等,将 提高抽水蓄能电站的效率和灵活
性。
多元化应用
抽水蓄能电站不仅用于电力系统 调峰填谷,还可应用于可再生能 源并网、电网调频等领域,发挥
其多元化的优势。
抽水蓄能电站面临的挑战
资源限制
1
环境影响
2
市场竞争
3
抽水蓄能电站的未来展望
抽水蓄能电站的设备维护
水轮发电机组的维护 泵站的维护 电气设备的维护
抽水蓄能电站的安全管理
安全制度建设
。
安全检查与隐患排查
应急预案与演练 安全培训与宣传
CATALOGUE
抽水蓄能电站的发展前景与挑战
抽水蓄能电站的发展趋势
规模化发展
随着能源需求的增长和可再生能 源的大规模开发,抽水蓄能电站 正朝着更大规模的方向发展,以
抽水蓄能电站的运行与维护
抽水蓄能电站的运行模式
常规运行模式
抽水蓄能电站在常规运行模式下,利用电力系统的低谷电能将下水库的水抽到上 水库储存,待电力系统高峰时段再放水发电,以满足高峰时段的电力需求。
调度运行模式
在调度运行模式下,抽水蓄能电站根据电力系统的实时调度需求,灵活调整抽水 和发电的时段及功率,以优化电力系统的运行稳定性和经济性。
抽水蓄能电站及地下厂房概述

抽水蓄能电站及地下厂房概述抽水蓄能电站是一种利用地势高差差异储存和释放能量的电力储能系统。
其基本原理是将能源转化为电能,通过抽水将低处的水储存起来,待需要释放能量时,将储存的水释放下来,通过水力发电机转化为电能。
地下厂房则是指将抽水蓄能电站的发电设备和相关设备安置在地下,使其更加隐蔽安全。
抽水蓄能电站通常由上水池、下水池和发电机组三部分组成。
上水池位于较高的地方,下水池位于较低的地方。
当电网需求电能较低时,电站利用多余的电能将下水池里的水提升到上水池中,储存起来;当电网需要电能较高时,电站则将上水池中的水放下来,通过水流驱动水轮发电机发电。
与传统的抽水蓄能电站相比,地下厂房有诸多优势。
首先,它们通过将设备安置在地下,使之相对于地面厂房更加安全。
地下厂房可以有效地防范自然灾害,如地震、洪水等,降低设备损坏的风险。
其次,地下厂房对环境的影响较小。
地下厂房无须占用地面空间,减少了对生态环境的破坏。
此外,地下厂房的工作温度更加稳定,有利于设备的运行和维护。
最后,地下厂房具备隐蔽性,做到对外界的观察和威胁最小化,增加了电站的安全性。
然而,地下厂房也面临一些挑战。
首先,地下厂房的建设成本较高。
由于地下厂房需要采用特殊的工程技术和材料,使得建设成本较传统的地面厂房要高。
其次,地下厂房的建设周期较长。
由于地下厂房需要进行较为复杂的施工工艺,建设周期相对较长,增加了工程的难度和时间成本。
此外,地下厂房的日常运维也相对较为困难,需要增加设备运行的定期检修和维护的难度。
在应对这些挑战的同时,地下厂房仍具有广阔的发展前景。
随着能源需求的增加和环境保护的要求不断提高,抽水蓄能电站作为一种环保、可再生的能源储存和利用方式,其发展前景广阔。
地下厂房作为抽水蓄能电站的一种新型形式,可以进一步提高电站的安全性和环境友好性,有望成为未来能源储备和发电的重要选择。
总之,抽水蓄能电站及地下厂房作为一种可再生的能源储存和利用方式,具有很高的应用前景。
抽水蓄能简介演示

抽水蓄能电站可以在电 网负荷低谷时,通过抽 水将下游的水抽到上游 ,以储存能量。在电网 负荷高峰时,放水发电 ,补充电力系统的不足 。
抽水蓄能电站的运行相 对稳定,可以提供可靠 的电力供应,有助于减 少电网的波动。
相比传统的火力发电站 ,抽水蓄能电站的能源 转换效率高,能够减少 能源的消耗。
作为一种可再生的能源 ,抽水蓄能电站的运行 不会产生污染物,对环 境友好。
抽水蓄能技术的应用场景
抽水蓄能技术在电力系统峰谷调节、调 频、调相以及备用等应用场景中具有重 要地位。
在备用方面,抽水蓄能电站可以作为应 急电源,保障重要负荷的供电可靠性。
在调相方面,抽水蓄能电站可以补偿系 统无功功率,改善电能质量。
在峰谷调节方面,抽水蓄能电站可以在 电力需求高峰时释放储存的电能,缓解 电力供需矛盾,提高电网运行效率。
国内典型抽水蓄能电站介绍
广州抽水蓄能电站
作为我国华南地区最大的抽水蓄能电站,广州抽水蓄能电 站位于广州市从化区,总装机容量2400兆瓦,具有调峰填 谷、调频调相、事故备用、黑启动等功能。
浙江天荒坪抽水蓄能电站
位于浙江省安吉县,总装机容量1800兆瓦,是国内首座大 型抽水蓄能电站,也是世界上已建成的单体最大的抽水蓄 能电站。
02
它包括抽水蓄能发电和抽水蓄能 泵站两种类型,分别在电力需求 峰谷调节和区域水资源调配方面 发挥重要作用。
抽水蓄能技术原理
抽水蓄能技术原理基于能量守恒定律 ,通过将水从低处抽到高处储存势能 ,然后利用重力势能将水放出,驱动 水轮机发电。
在抽水蓄能电站中,上水库和下水库 之间的高度差决定了储能容量,而下 水库则通过放水发电将势能转化为电 能。
,实现电力系统的平衡。
抽水蓄能电站的能量转换过程
抽水蓄能电站ppt课件

提高能源利用效率
增加就业机会
抽水蓄能电站的建设和运营需要大量 的人力资源,可以提供就业机会,缓 解当地的就业压力。
抽水蓄能电站利用水的势能进行发电 ,相比于传统的火电和核电,能源利 用效率更高,能够减少能源浪费。
环境效益
减少环境污染
抽水蓄能电站是一种清洁能源, 相比于传统的火电和核电,能够 减少二氧化碳、氮氧化物等污染
运营成本高
由于抽水蓄能电站的运行需要大量的水资源,因此水费和维护费用 相对较高,增加了运营成本。
市场需求波动
市场需求的变化对抽水蓄能电站的经济效益产生影响,需要充分考 虑市场需求和变化趋势。
政策支持与市场前景
政策支持
政府对可再生能源的支持政策对抽水蓄能电站的发展具有重要影响 ,如补贴、税收优惠等政策可以降低投资和运营成本。
抽水蓄能电站PPT课 件
目录
CONTENTS
• 抽水蓄能电站概述 • 抽水蓄能电站的建设与运营 • 抽水蓄能电站的效益与影响 • 抽水蓄能电站的挑战与前景 • 抽水蓄能电站的案例分析 • 抽水蓄能电站的发展趋势与展望
01 抽水蓄能电站概述
定义与特点
定义
抽水蓄能电站是一种利用上下水 库位差进行能量储存和释放的电 站,主要用于调节电网负荷和提 供备用能源。
。
设备维护
定期对电站设备进行检查和维 护,确保设备安全稳定运行。
安全管理
制定并执行安全管理措施,确 保电站运营安全。
经济效益评估
对电站的运营经济效益进行评 估,为后续的运营管理提供决
策依据。
维护与管理
日常巡检
定期对电站设施进行巡检,及 时发现并处理潜在问题。
设备更新与改造
根据设备运行状况和新技术发 展,对电站设备进行更新和改 造。
抽水蓄能电站励磁系统原理及应用

抽水蓄能电站励磁系统原理及应用发布时间:2022-09-15T09:58:40.555Z 来源:《福光技术》2022年19期作者:常旭马矿怡[导读] 随着近来各种新能源项目例如太阳能、风能、生物能的大规模并网,其峰谷特性与用电负荷也无法很好的拟合。
松花江水力发电有限公司吉林白山发电厂吉林吉林 132000摘要:随着近来各种新能源项目例如太阳能、风能、生物能的大规模并网,其峰谷特性与用电负荷也无法很好的拟合。
所以在高负荷中心与煤炭资源丰富的资源地区相隔较远,并且对于电能的需求量也在实时变化的情况下,电网需要时时刻刻调整机组的出力,电压和频率会受到一定的影响。
基于此,本文主要对抽水蓄能电站励磁系统原理及应用进行分析探讨。
关键词:抽水蓄能电站;励磁系统原理;应用1、前言由于抽水蓄能电站在电网中削峰填谷、调频、调相、黑启动等作用,使得机组启停频繁,可以说励磁系统的质量直接影响到了整个机组的稳定与安全。
作为一种难以大规模储存的能源,电能必须实时生产,实时消耗,但是整个电网的负荷却是一个动态变化的过程。
2、励磁方式综述励磁系统总体由功率单元和调节单元两个部分组成,功率单元主要负责为发电-电动机提供直流电流,调节单元根据发电-电动机的状态对功率单元作出进一步的调整。
2.1 励磁功率单元的选择(1)直流励磁机在早些年,为发电机配备一个专用的直流励磁机在当时看来是一个很自然的选择,简单和可靠是它最大的优点,但问题就是调节速度太慢和日常维护的繁琐,所以现在已经很少使用。
(2)交流励磁机为解决直流励磁的不足,有着稳定、转速适应强和较好的进相运行方式的交流励磁机应运而生。
同时继承了直流励磁机可靠和稳定的优点,伴随着大功率可控硅整流方式的出现,更是推进了交流励磁机的发展。
但是谐波分量和噪音的问题制约其进一步的发展。
(3)静止励磁方式不再设置专用的励磁机,而是在发电机出口或者厂用母线上直接通过变压器作为励磁电源,这样的简化使得整个励磁系统更加的简单。
抽水蓄能电站设计和建设研究

抽水蓄能电站设计和建设研究一、引言抽水蓄能电站是一种新能源电站,能够有效地利用水力能源,提高电能利用率,为电力系统提供可靠的调峰能力。
近年来,随着国内新能源发展的迅速推进,抽水蓄能电站建设也正在逐步加速。
本文旨在对抽水蓄能电站的设计和建设进行研究,以期为抽水蓄能电站构建提供参考。
二、抽水蓄能电站的概述抽水蓄能电站(Pumped Storage Power Station)是指通过水泵把低位水库水抽入高位水库,高峰负荷时再通过水轮发电机将水贮存在高位水库内,形成一种水力蓄电池的装置。
因此,抽水蓄能电站具有储能高、调节能力强、响应速度快、稳定性好等特点,是一种系统调度和规划的重要手段。
三、抽水蓄能电站的设计原理抽水蓄能电站的设计原理是基于水力发电技术,其基本原理是借助重力要素和水力能转化的特点,用水泵将低位水库的水提升至高位水库,形成储水能,然后在高峰负荷时通过水轮发电机将水再放回低位水库,释放储水能,完成发电过程。
因此,抽水蓄能电站设计可以分为以下几个方面:1.水电厂的总体布置水电站通常由坝体结构、进水口、引水机组、水尾、发电机组、变压器和电力系统组成,这些部分需要完整的系统调节。
2.水轮机组的设计水轮机是转化水能为机械能的关键设备,它需要保证在满足系统调节要求的前提下,运行效率高、性能稳定。
3.水泵机组的设计水泵机组是将低位水库的水提升至高位水库的设施,需要在满足运行效率和性能稳定的前提下,兼顾经济性。
4.电机和变压器的设计电机和变压器是将机械能转化为电能的关键设备,在满足需求功能的基础上,需要兼顾经济性和环保性。
五、抽水蓄能电站的建设抽水蓄能电站的建设分为几个阶段,如前期储备、工程设计、建设和运行管理等。
在建设阶段,需要特别注意以下几个方面:1.水电站的选址和选型水电站的选址和选型需要充分考虑地质、水文、环保等条件,尽可能兼顾经济性和社会环境。
2.建设管理和监督建设管理和监督需要严格按照国家法律和规定,保证工程建设过程的合规性和工程质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽水蓄能电站的工作原理
抽水蓄能电站(Pumped Storage Power Plant)是一种利用水力与电力相互转换的发电方式。
它基于能量的储存和释放,能够调节电力系统的负荷平衡,并在需求高峰期提供额外的电力供应。
本文将介绍抽水蓄能电站的工作原理。
1. 系统构成
抽水蓄能电站由上水池、下水池、水泵、水轮机、发电机和控制系统等组成。
上水池与下水池之间的高度差决定了系统的潜在能量。
2. 蓄能充水阶段
当电力需求低谷时,抽水蓄能电站开始蓄能充水阶段。
这时,水泵开始运行,将从下水池抽来的水通过输水管道输送至上水池,使上水池的水位逐渐升高。
水泵的作用是将低位势能的水抬升至高位势能,将电能转化为潜在能。
3. 发电阶段
当电力需求高峰来临时,抽水蓄能电站进入发电阶段。
这时,上水池中的水通过水轮机流入下水池,水轮机驱动发电机发电。
发电机将水轮机的机械能转化为电能,并将电能输送至电力系统。
4. 再生阶段
当高峰期结束后,电力需求减弱时,抽水蓄能电站进入再生阶段。
这时,水轮机停止工作,电力系统中的过剩电能被用于带动水泵将水
从下水池抽回上水池,以便再次利用。
5. 调峰效应
抽水蓄能电站具有非常好的调峰效应,即在电网负荷波动的情况下,它能够快速响应电力需求变化。
当电力需求增加时,电站可快速启动
发电机并输出电能;当电力需求减少时,电站即可将电能转换为潜在能,储存在上水池中,以备再次利用。
6. 综合能源利用
抽水蓄能电站在发电阶段能够充分利用水资源和电力系统的剩余电能,实现综合能源的高效利用。
它也可以与太阳能、风能等可再生能
源发电系统相结合,提高整体的能源利用效率。
7. 环境友好
抽水蓄能电站不消耗燃料,无排放物,属于清洁能源发电方式。
它
在电力系统负荷平衡的同时,也具备环境保护的作用。
由于其技术成熟、可靠性高,且无需依赖特定的地理条件,因此在可再生能源领域
具有广阔的应用前景。
总结:
抽水蓄能电站通过调节水位高度,实现了水能与电能的转化,对电
力系统进行负荷平衡,并能快速响应电力需求的变化。
它在可再生能
源领域具有重要的地位,为电力系统稳定运行和清洁能源利用做出了
重要贡献。
相信随着技术的不断进步和需求的增长,抽水蓄能电站将在未来得到更广泛的应用。