压缩空气在管道中的流速

压缩空气在管道中的流速
压缩空气在管道中的流速

压缩空气在管道中的流速

在计算压空管道管径时,压缩空气在管道中的流速一般取多少比较合适

管道的设计计算——管径和管壁厚度

空压机是通过管路、阀门等和其它设备构成一个完整的系统。管道的设计计算和安装不当,将会影响整个系统的经济性及工作的可靠性,甚至会带来严重的破坏性事故。

A.管内径:管道内径可按预先选取的气体流速由下式求得:

式中,为管道内径();为气体容积流量();为管内气体平均流速(),下表中给出压缩空气的平均流速取值范围。

管内平均流速推荐值

气体介质压力范围 (Mpa)

平均流速(m/s)

空气~ 10~20

~ 10~15

~ 8~12

~ 3~6

注:上表内推荐值,为输气主管路(或主干管)内压缩空气流速推荐值;对于长度在1m内的管路或管路附件——冷却器、净化设备、压力容器等的进出口处,有安装尺寸的限制,可适当提高瞬间气体流速。

例1:2台30及2台H-6S型空压机共同使用一根排气管路,计算此排气管路内径。

已知30型空压机排气量为 m3/min 排气压力为 MPa

已知H-6S型空压机排气量为 m3/min 排气压力为 MPa

4台空压机合计排气量=×2+×2= m3/min=252 m3/h

如上表所示u=6 m/s

带入上述公式 =

得出管路内径为121 。

B.管壁厚度:管壁厚度取决于管道内气体压力。

a.低压管道,可采用碳钢、合金钢焊接钢管;中压管道,通常采用碳钢、合金钢无缝钢管。其壁厚可近似按薄壁圆筒公式计算:

=

式中,为管内气体压力(MPa);为强度安全系数,取[σ]为管材的许用应力(MPa),常用管材许用应力值列于下表;为焊缝系数,无缝钢管 =1,直缝焊接钢管 =;为附加壁厚(包括:壁厚偏差、腐蚀裕度、加工减薄量),为简便起见,通常当>6mm时,≈ ;当≤6mm时,=1mm。

当管子被弯曲时,管壁应适当增加厚度,可取

=

式中,为管道外径;为管道弯曲半径。

b.高压管道的壁厚,应查阅相关专业资料进行计算,在此不做叙述。

常用管材许用应力

钢号壁厚(mm)不同温度下需用应力值(MPa)

≤20oC 100oC 150oC

10 ≤10 113 113 109

20 133 133 131

Ocr18Ni9Ti 140 140 140

1cr18Ni9Ti 140 140 140

注:管路输气压力在以上时,管路材料推荐采用20#钢。

例2:算出例1中排气管路的厚度。管路材料为20#钢

公式= 中n=2 , p= MPa , =121

如上表20#钢150oC时的许用应力为131,即σ=131

=1 , C =1 带入公式

= = = mm

管路厚度取4 mm

压缩空气管径的选择(2009-03-29 21:43:42)

1、平方单位上面压缩空气压力及速度的换算

公式:P=ρV2

ρ---密度(压缩空气密度)

V2---速度平方

P--静压(作用于物体表面)

2、压缩空气流量、流速的计算

流量=管截面积X流速=管径^2X流速(立方米/小时)^2:平方。管径单位:mm

流速可用柏努力方程;

Z+(V2/2g)+(P/r)=0

r=ρg

V2是V的平方 ,是流速

Z是高度.(水平流动为0)

ρ是空气密度.

g是重力加速度=

P是压力(MPa)

3、压缩空气管路配管应注意的事项

(1) 主管路配管时,管路须有1°~2°的倾斜度,以利于管路中冷凝水的排出,如图1、图2所示。

(2) 配管管路的压力降不得超过空压机使用压力的5%,故配管时最好选用比设计值大的管路,其计算公式如下:

管径计算d= mm= mm

其中Q压-压缩空气在管道内流量m3/min

V-压缩空气在管道内的流速m/s

Q自-空压机铭牌标量m3/min

p排绝-空压机排气绝压bar(等于空压机排气压力加1大气压)

(3) 支线管路必须从主管路的顶端接出,以避免主管路中的凝结水下流至工作机械中或者回流至空压机中。

(4) 管路不要任意缩小或放大,管路需使用渐缩管,若没有使用渐缩管,在接头处会有扰流产生,产生扰流则会导致大的压力降,同时对管路的寿命也有不利影响。

(5) 空压机之后如果有储气罐及干燥机等净化缓冲设备,理想的配管顺序应是空压机+储气罐+干燥机。储气罐可将部分的冷凝水滤除,同时也有降低气体温度的功能。将较低温度且含水量较少的压缩空气再导入干燥机,则可减轻干燥机负荷。

(6) 若空气使用量很大且时间很短,最好另加装一储气罐做为缓冲之用,这样可以减少空压机加泄载次数,对空压机使用寿命有很大的益处。

(7) 管路中尽量减少使用弯头及各种阀类。

(8) 理想的配管是主管线环绕整个厂房,这样可以在任何位置均可以获得双方向的压缩空气。如在某支线用气量突然大增时,可以减少压降。除此之外,在环状主管线上应配置适当的阀组,以利于检修时切断之用。

(9) 多台空压机空气输出管道并联联网时,空压机输出端无须加装止回阀。

压缩空气用气量计算

压缩空气用气量计算 压缩空气用气量计算 压缩空气理论――状态及气量 1、标准状态 标准状态的定义是:空气吸入压力为0.1MPa,温度为15.6℃(国内行业定义是0℃)的状态下提供给用户系统的空气的容积。如果需要用标准状态,来反映考虑实际的操作条件,诸如海拔高度、温度和相对湿度则将应实际吸入状态转换成标准状态。 2、常态空气 规定压力为0.1MPa、温度为20℃、相对湿度为36%状态下的空气为常态空气。常态空气与标准空气不同在于温度并含有水分。当空气中有水气,一旦把水气分离掉,气量将有所降低。 3、吸入状态 压缩机进口状态下的空气。 4、海拔高度 按海平面垂直向上衡量,海拔只不过是指海平面以上的高度。海拔在压缩机工程方面占有重要因素,因为在海拔高度越高,空气变得越稀薄,绝对压力变得越低。既然在海拔上的空气比较稀薄,那么电动机的冷却效果就比较差,这使得标准电动机只能局限在一定的海拔高度内运行。EP200 标准机组的最大容许运行海拔高度为2286米。 5、影响排气量的因素: Pj、Tj、海拔高度、n、V余、泄漏等。 6、海拔高度对压缩机的影响: (1)、海拔越高,空气越稀薄,绝压越低,压比越高,Nd越大; (2)、海拔越高,冷却效果越差,电机温升越大; (3)、海拔越高,空气越稀薄,柴油机的油气比越大,N越小。 7、容积流量 容积流量是指在单位时间内压缩机吸入标准状态下空气的流量。用单位:M3/min (立方米/分)表示。标方用N M3/min表示。 1CFM=0.02832 M3/min, 或者1 M3/min=35.311CFM, S--标准状态,A--实际状态 8、余隙容积 余隙容积是指正排量容积式(往复或螺杆)压缩机冲程终端留下的容积,此容积的压缩空气经膨胀后返回到吸入口,并对容积系数产生巨大的影响。 9、负载系数

压缩空气管径的设计计算及壁厚

管道的设计计算——管径和管壁厚度 空压机是通过管路、阀门等和其它设备构成一个完整的系统。管道的设计计算和安装不当,将会影响整个系统的经济性及工作的可靠性,甚至会带来严重的破坏性事故。 A.管内径:管道内径可按预先选取的气体流速由下式求得: =i d 8.1821??? ??u q v 式中,i d 为管道内径(mm );v q 为气体容积流量(h m 3);u 为管内气体平均流速(s m ),下 表中给出压缩空气的平均流速取值范围。 管内平均流速推荐值 注:上表内推荐值,为输气主管路(或主干管)内压缩空气流速推荐值;对于长度在1m 内的管路或管路附件——冷却器、净化设备、压力容器等的进出口处,有安装尺寸的限制,可适当提高瞬间气体流速。 例1:2台WJF-1.5/30及2台H-6S 型空压机共同使用一根排气管路,计算此排气管路内径。 已知WJF-1.5/30型空压机排气量为1.5 m 3/min 排气压力为3.0 MPa 已知H-6S 型空压机排气量为0.6 m 3/min 排气压力为3.0 MPa 4台空压机合计排气量v q =1.5×2+0.6×2=4.2 m 3/min =252 m 3/h 如上表所示u=6 m/s 带入上述公式=i d 8.1821??? ??u q v =i d 8.18216252??? ??=121.8 mm 得出管路内径为121mm 。 B.管壁厚度:管壁厚度δ取决于管道内气体压力。

a.低压管道,可采用碳钢、合金钢焊接钢管;中压管道,通常采用碳钢、合金钢无缝钢管。其壁厚可近似按薄壁圆筒公式计算: min δ=[]c np npd i +-?σ2 式中,p 为管内气体压力(MPa );n 为强度安全系数5.25.1~=n , 取[σ]为管材的许用应力(MPa ),常用管材许用应力值列于下表;?为焊缝系数,无缝钢管?=1,直缝焊接钢管?=0.8;c 为附加壁厚(包括:壁厚偏差、腐蚀裕度、加工减薄量),为简便起见,通常当δ>6mm 时,c ≈0.18δ;当δ≤6mm 时,c =1mm 。 当管子被弯曲时,管壁应适当增加厚度,可取 'δ=R d 20 δδ+ 式中,0d 为管道外径;R 为管道弯曲半径。 b.高压管道的壁厚,应查阅相关专业资料进行计算,在此不做叙述。 常用管材许用应力 例2: 算出例1中排气管路的厚度。管路材料为20#钢 公式 min δ=[]c np npd i +-?σ2中 n=2 , p=3.0 MPa , i d =121 如上表20#钢150o C 时的许用应力为131,即σ=131 ?=1 , C =1 带入公式 min δ=[]c np npd i +-?σ2=132******** 32+?-????=3.8 mm 管路厚度取4 mm

压缩空气在管道中的流速

压缩空气在管道中的流速 1. 压缩空气流量流速参考表 fancongming 发表于: 2008-7-22 13:07 来源: 半导体技术天地 在计算压空管道管径时,压缩空气在管道中的流速一般取多少比较合适? 对于低压冷空气流速在8~12m/s,对于高压空气流速为15m/s左右,一般如果压力不超过1.0MPaG,可以取10~15米/秒。 请问各位高手: 压缩空气压力在0.56MPa-0.75MPa,胶管管径10mm,传输距离约15m,要计算单位时间内的用气量,其流速如何确定? 流速=流量/面积 呵呵,这是施工时计算最头痛的问题 胶管管径10mm应该是3/8"的 4米/秒 5立方/小时 1.0 系统简介 1.1 系统用途 CDA系统主要用于芯片经水清洗后之吹干用、制程设备驱动器动力用、…..等其它用途。 1.2 主要设备 ?空气压缩机 ?空气储槽 ?过滤器 ?干燥机 1.3 控制方式 ?单机设定控制 ?另设控制盘设计联动控制 2.0 设计准则 2.1 管内最大流速10 m/s 2.2 于标准状态下,管路磨擦损失每100 m不大于0.2 Kg/cm2。 2.3 空气过滤标准为制程线径等级之1/10。 3.0 设计步骤及注意事项 3.1 空气压缩机筛选 A. 依业主提供之设备CDA耗量及使用点之需求压力,选用合适之空气压缩机。

B. 空气压缩机依压缩段数可分为单段压缩、双段压缩及多段压缩。 a. 压力≦7 Kg/cm2 (g)时使用单段压缩。 b. 压力≧7 Kg/cm2 (g)时使用双段压缩。 C. 空气压缩机依种类可分为往复式、螺旋式、离心式。高科技厂房以螺旋式较常用。 D. 空气压缩机依冷却方式分为气冷式及水冷式 a. 气冷式用于小容量 b. 一般以水冷式较常用 c. 采用水冷式空气压缩机时,不要忽略冷却水之量,须告知空调设计人员。 d. 冷却水来源有冰水、冷却水或其它。唯使用低温之冰水时,须注意空气压缩机可能结露。 E. 空气压缩机依润滑方式可分无油式及微油式,依业主需求选用。 3.2 缓冲槽筛选 A. 缓冲槽之容量最少须1/10 CDA需求量之容积。 B. 缓冲槽材质 a. 不锈钢 b. 镀锌钢内覆Epoxy c. 需有袪水器 3.3 过滤器筛选 A. 前置过滤器(Pre-filter) a. 处理量约CDA需求量之1.3~1.4倍。 b. Particle滤除可为5μm,1μm c. 需有袪水器 d. 需有差压器 B. 后段过滤器(After-filter) a. 处理量约CDA需求量之1.1~1.2倍。 b. Particle滤除为0.01μm c. 需有差压器 3.4 干燥机筛选 A. 干燥机之形式分为冷冻式干燥机及吸附式干燥机。 B. 一般而言压力露点概分为三级: a. +3oC b. -40 oC c. -70 oC C. 依压力露点之要求,选用干燥机 a. 压力露点+2 oC,可用冷冻式干燥机, b. 压力露点-40 oC,可用吸附式干燥机或冷冻式及吸附式两者并用。 c. 压力露点-70 oC,可用吸附式干燥机或冷冻式及吸附式两者并用。 D. 干燥机处理量约CDA需求量之1.3~1.4倍。 E. 吸附式干燥机后之过滤器处理量约CDA需求量之1.1~1.2倍。 F. 吸附式干燥机为2个处理单元为一组,1个处理单元吸附水分,另一个处理单元则再生,再生需求风量约15%。 3.5 管径筛选 A. 最大流速10 m/s。 B. 磨擦损失于标准状态下,每100 m不得大于0.2 Kg/cm2。 C. 依据附件二"CRANE" B-14可求得合适之管径。

压缩空气管道施工设计方案

WORD格式整理版 XXXXXXXXX 工程 XXXX 压缩空气管道施工方案 编写人: ____________________ 日期:__________________ 审核人:____________________ 日期:_________________

WORD格式整理版 批准人: _______________ 日期: ______________

XXXXXXXXXC目经理部 压缩空气管道施工方案 一、编制依据: 1、建设指挥部有关建设管理文件、会议纪要和设计单位提供的施工图设计文件。 2、根据现场勘察情况和前湾港站内运营规定。 3、《采暖通风与空气调节设计规范》GB50019-2003 4、《工业金属管道设计规范》GB50316-2000 5、《压力管道安全与监察规定》、《工业金属管道工程施工及验收规范》GB50235-97。 &《现场设备、工业管道焊接工程与施工验收规范》GB50236-97 7、《工业设备及管道绝热施工及验收规范》GBJ126 二、编制范围: 本工程为XXXX试风设备综合楼室外压缩空气管道设计。 三、工程概括: 1、本工程位于既有1股与新1股之间,施工里程为GLK1+77至GLK2+76范围内,压缩空气管道采用无缝钢管。 2、压缩空气管道及组成件属于压力管道,类别为GC级,流体类别为D类,设计压 力0.8MPa,水压试验为1.2MP&

3、室外压缩空气管道采用无缝钢管直埋敷设,管道连接采用焊接连接,管道阀门 为截断塞门,管道外刷防锈漆两道,银粉一道。埋地管道穿越铁路时需设套管保护,管顶距铁路轨面不小于1.2m。管道外壁与套管两端部的间隙用浸沥青的麻丝填实,再在外端用沥青堵塞。气源由空压机室外部储风缸接引。微控试风设备的试风柜距脱轨器轨边设备20m埋设管道作加强环氧沥青防腐层,防腐层厚度不小于6mm 四、施工方案及工艺 (一)、压缩空气管道系统 自然界的空气经空气压缩机压缩后称为压缩空气。压缩空气是一种重要的动力源。 1、压缩空气站的组成 1)、压缩空气站工艺生产流程 压缩空气的生产流程主要包括空气的过滤、空气的压缩、压缩空气的冷却及油和水分的排除、压缩空气的贮存与输送等。 2)、压缩空气站设备 (1)空气压缩机 在一般的压缩空气站中,最广泛采用的是活塞式空气压缩机。在大型压缩空气站中,较多采用离心式或轴流式空气压缩机。 (2)空气过滤器 (3)后冷却器 (4)贮气罐

压缩空气管道规范

压缩空气管道规范 为避免重复建设和节约投资,压缩空气管道考虑近期发展的需要是必要的。近期发展应包括对流量、压力及品质的要求。 9.0.2 本条是原规范第9.0.1 条后段的修订条文。 压缩空气管道系统有辐射状、树枝状和环状三种形式。其中,厂(矿区)管道一般采用辐射状和树枝状系统,车间采用树枝状和环状系统。辐射状系统便于集中调节用气量,压力和泄漏损失小,但一次性投资大,管网较复杂;树枝状系统的优缺点则与辐射状系统相反;环状系统的主要特点是供气可靠,压力稳定。由于各有优缺点,并且在不同的使用条件下均能获得较好的效益,所以,笼统地推荐一种系统是不合适的,特别是近年来,许多厂(矿)已经采用了树枝与辐射混合型的管网系统,其效益也是明显的。在设计管道系统时,可以根据当地的实际情况,因地制宜地选择合适的管道系统。 管道的三种敷设方式:架空、管沟和埋地,各有其特点和使用条件。架空管道安装、维修方便、直观,也便于以后改造。这种敷设方式被夏热冬暖地区、温和地区、夏热冬冷地区和寒冷地区的大多数厂(矿)采用。管沟敷设如能与热力管道同沟,将是经济合理的。直接埋地敷设在寒冷地区及总平面布置不希望有架空管线的厂(矿)采用较多。 寒冷地区和严寒地区的饱和压缩空气管道架空敷设时,冻结的可能性比较大,尤其是严寒地区需采取严格的防冻措施。 9.0.3 本条是原规范第9.0.2 条的修订条文。 管道设坡度有利于排放油水,但也有许多单位在管道设计时均不设坡度。多年来的使用证明,只要设有排除油水的装置,一般是没有问题的,尤其在不冻结地区,并且还有设计和施工方便的优点,因此,本条文对坡度设置问题未作规定,仅规定了管道应设置可排放油水的装置。如有坡度敷设时,推荐不小于0.002。 条文中提到的“饱和压缩空气”是指未经干燥处理或干燥处理后其露点温度仍然高于当地极端环 境最低温度的压缩空气,这样的压缩空气在架空管道中会析出水分,所以,架空敷设时需考虑防冻措施。 干燥、净化压缩空气管道的管材和附件的选择,对于确保供应用气设备符合要求的干燥、净化压缩空气十分重要。若管材和附件选择不当,常会使已经干燥、净化的压缩空气受到污染。根据对各行业企业的调查,将压缩空气按干燥净化程度分为四档,分别推荐使用不同的管材,这样既节约了成本,又保证了压缩空气的品质。 对于近年来出现的PVC塑料管、铝塑管、不锈钢复合管等新材料,由于尚无使用的成熟经验,故这里未予列出。 现在用于干燥和净化压缩空气管道的阀门和附件品种及材质较多,凡在强度、密封、抗腐蚀性方面满足要求者均可采用。 管道连接采用焊接,已有多年成熟的经验。焊接比法兰或螺纹连接更具有省料、施工快和严密性好等优点,故推荐采用。 干燥和净化压缩空气管道的焊接方式与一般压缩空气管道的焊接方式有所不同,这在《洁净厂房设计规范》(GB 50073)中已有明确的规定,因此,本条文要求遵照执行。 9.0.7 本条为新增条文。

压缩空气用气量计算[资料]

压缩空气用气量计算[资料] 压缩空气用气量计算 压缩空气理论――状态及气量 1、标准状态 标准状态的定义是:空气吸入压力为0.1MPa,温度为15.6?(国内行业定义是0?)的状态下提供给用户系统的空气的容积。如果需要用标准状态,来反映考虑实际的操作条件,诸如海拔高度、温度和相 对湿度则将应实际吸入状态转换成标准状态。 2、常态空气 规定压力为0.1MPa、温度为20?、相对湿度为36,状态下的空气为常态空气。 常态空气与标准空气不同在于温度并含有水分。当空气中有水气,一旦把水气分离掉,气量将有所降低。 3、吸入状态 压缩机进口状态下的空气。 4、海拔高度 按海平面垂直向上衡量,海拔只不过是指海平面以上的高度。海拔在压缩机工程方面占有重要因素,因为在海拔高度越高,空气变得越稀薄,绝对压力变得越低。既然在海拔上的空气比较稀薄,那么电动机的冷却效果就比较差,这使得标准电动机只能局限在一定的海拔高度内运行。EP200 标准机组的最大容许运行海拔高度为2286米。 5、影响排气量的因素: Pj、Tj、海拔高度、n、V余、泄漏等。 6、海拔高度对压缩机的影响:

(1)、海拔越高,空气越稀薄,绝压越低,压比越高,Nd越大; (2)、海拔越高,冷却效果越差,电机温升越大; (3)、海拔越高,空气越稀薄,柴油机的油气比越大,N越小。 7、容积流量 容积流量是指在单位时间内压缩机吸入标准状态下空气的流量。用单 位:M3/min (立方米/分)表示。 标方用N M3/min表示。 1CFM=0.02832 M3/min, 或者 1 M3/min=35.311CFM, S--标准状态,A--实际状态 8、余隙容积 余隙容积是指正排量容积式(往复或螺杆)压缩机冲程终端留下的容积,此容积的压缩空气经膨胀 后返回到吸入口,并对容积系数产生巨大的影响。 9、负载系数 负载系数是指某一段时间内压缩机的平均输出与压缩机的最大额定输出之比。不明智的做法就是卖给用户的压缩机,正好满足用户的最大的需求,增加一个或几个工具或有泄漏会导致工厂的压力下降。为了避免这种情况,英格索兰多年来一直建议采用负载系数:取用户系统所需气量的极大值,并除以0.9或 0.8的负载系数。(或任何用户认为是个安全系数) 这种综合气量选择能顾及未预计到的空气需量的增加。无需额外的资本的投入,就可做一些小型的 扩建。 10、气量测试 (1)、往复式压缩机气缸容积

压缩空气管道的选择

d=(Q/v)1/2 d为管道内径,mm d为管道内径,mm Q为介质容积流量,m3/h v为介质平均流速,m/s,此处压缩气体取流速10-15m/s。 计算,d=48.5mm,实际取57×管道即可。 说明,上述计算为常温下的计算,输送高温气体另行计算为宜。 上述Q指实际气体流量,当指标况下应换算为实际气体流量,由pv=nRT公式可推导出。 一、空压管道设计属于压力管道范畴(压力大于,管径大于25MM),你所在的单位应持有《中华人民共和国特种设备设计许可证》。 二、空压站及管道设计,应参照有关规范及相关设计手册。 1、GB50029-2003 压缩空气站设计规范 2、GB50316-2000 工业金属管道设计规范 3、动力管道设计手册机械工业出版社 三、压力管道设计,应按持证单位的《设计质量管理手册》《压力管道设计技术规定》《设计管理制度》等工作程序进行,这是单位设计平台的有效文件,有利于设计工作的正常开展。 四、设计前应有相关设计参数,你的问题中没有说明,无法具体回答。 五、问题1 ①管材的使用要求应按GB50316-2000执行,参照相关的材料章节。 ②公称直径为表征管子、管件、阀门等囗径的名义内直径,其实际数值与内径并不完全相同。钢管是按外径和壁厚系列组织生产的,管道的壁厚应参照GB50316中金属管道组成件耐压强度计算等有关章节。根据GB/8163或GB3087或GB6479或GB5310,选用壁厚应大于计算壁厚。 问题2 ①压力管道的连接应以焊接为主,阀门、设备接囗和特殊要求的管均应用法兰连接。 ②有关阀门的选用建议先了解一下阀门的类型、功

能、结构形式、连接形式、阀体材料等。压缩空气管可选用截止阀和球阀,大管径用截止阀,小管径用球阀。 一为安全,二为经济,所谓安全,就是有毒易燃易爆的介质,比如乙炔、纯氧管道,这些介 质一旦流速过快, 有爆炸等安全方面的危险, 所谓经济, 就是要算经济账, 比如你的压缩空 气,都是用压缩机打出来的,压缩机要消耗电,或者消耗蒸汽,要耗电就要算钱,经济流速 的选择就是因流速而引起的压力降不能过大,要在经济的范围之内。 何谓经济?拿你帖子里的数据举个很简单的例子就知道了: 压缩空气 P= MPaG,T=30℃(空压机冷却后大致都是这个温度),密度ρ=kg/m3,标态流量V0=1000 Nm3/h,工况流量V=125 m3/h,质量流量W=1292 kg/h,管道57X3.5mm,di=50mm,管长L=100m(含管件当量长度),管道绝对粗糙度0.2mm,摩擦系数λ取,空压机功率110 kW。 上面这组数据在工程现场楼主可随意取得,就上面这组数据简单的计算就可知道什么叫 “经济流速”:管道流速u= m/s,那么这个流速到底经济与否呢?要看阻力损失在空压机功率中所占比 例而定,阻力损失 ΔP=ρ.λ.(L/d).(u^2/2)=96788Pa= MPa,也就说经过100m长的管道管件后,压力自MPaG下降到了~ MPaG,阻力损失折算成功率损失ΔW=G.λ.(L/d).(u^2/2)=(1292/3600)X(9346/1000)=kW,占压缩机总能耗的110=% 看到了吗?在经历了100m后,损失了kW的功率,因为这段管道,每小时就有度电没了,一年按8000小时计就是26800度电,每度电按元,仅此一项,每年13400元就没了,悄无声息地没了。如果你把这根管道换成的DN38的管道,100m管道后的压力就只有MPaG了,压力保不住了,相应的功率损失更大,可达20 kW,每年83000元没了,这样的损失是无法接受的,也无法容忍。很自然,你

压缩空气管道安装标准

压缩空气管道安装标准 The manuscript was revised on the evening of 2021

压缩空气管道安装标准 压缩空气管道安装标准和气动设备工程安装验收标准参照GB5038-2006一般规定管子与管子,管子与设备连接不得进行强力对口。压缩空气碳素钢管道涂漆前应清除其表面的铁锈、焊渣、毛刺、油和水等污物,试压前焊缝不得涂漆管道焊接压缩空气碳素钢管对接焊缝应采用氩弧焊接或氩弧焊打底,电弧填充。压缩空气碳素钢管道对接焊缝外观质量不允许有裂纹、气孔、夹渣、溶合性飞溅和未焊透:咬边深度小于,且焊缝两侧的总长度小于焊缝全长的10%,焊缝与高小于或等于1+(b为焊缝宽度),且不大于3mm。管道制作管子切断、管子坡口应采用机械加工方法。切口端面应平整,端面应与管子轴线垂直,允许偏差为管子直径的1%且不应大于。管子焊接坡口形式、尺寸应符合焊接作业指导书的规定,坡口加工完应将铁屑、毛刺等清除干净。管子制弯应符合下列规定:1、弯管宜采用冷弯,弯管的最小弯曲半径不应小于 管子外径的3倍;采用冲压弯头时,弯曲半径不就小于管子外径的1倍。2、管子弯制后的最大外径与最小外径之差不应超过管径的8%。3、管子弯曲部位不宜有皱纹、起皮等缺陷。4、管道螺纹加工应符合设计技术文件的规定。螺纹加工完成后,表面应无裂纹、凹陷、毛刺等缺陷。有轻微机械损伤或断面不完整的螺纹,全长累计不应大于1/3圈,螺纹牙高减少不应大于其高度的1/5。管道安装压缩空气碳素钢管道的敷设应符合下列规定:1、管道走向应符合设计技术文件要求,水平管道平直度允许偏差为2/1000,且不大于30mm;立管垂直度允许偏差为3/1000,且不大于20mm;按设计技术文件规定的坐标位置和标高尺寸安装管道,坐标位置允许偏差为15mm,标高允许偏差为±15mm。2、管子

水在管路中的阻力计算

水在管路中的阻力计算 The Friction Loss Calculation in W ater Pipe Flow 张蓉台固展節能工程有限公司 Alexander Chang Goodpipe System Engineering Co Abstract There were many formulas or equations to calculate the pipe friction loss when the liquid or gas flowed through the pipeline.We collected the primary equations which were approved to calculate the pipe friction loss commonly and widely in engineering fields.We described the concerned equations clearly for junior and senior engineers in HV A C,Plumbing and Civil engineering fields. The primary pipe flow friction formulas which we described in this article included Darcy-Weisbach Equ,Colebrook-White Equ,Hazen-Williams Equ and Manning Equ.This article proved that the correct pipe friction loss calculation would suggest the good p ipe material selection and high energy efficiency pump selection in plant and facility hydraulic systems. 摘要 在管道工程上,计算流体于管道内部的阻力损失之方程式有许多种方程式或公式可资选用。 本文就主要的、常用的管道阻力计算方程式提出,并详细说明如何正确使用方程式计算水在管道中的阻力损失,并在结论指出正确的管道阻力损失,可以对管道材料与水泵的扬程正确选择,并节省大量的能源损耗,提升能源使用效率。在中央空调、给排水、及土木等管道系统中,本论文阐明水在管道中的阻力计算的重要性,不可等闲视之。本文就Darcy-Weisbach Equ,Colebrook-White Eq u,Hazen-Williams Equ 及Manning Equ的正确用法做深入浅出的论述,提供在中央空调、给排水、及土木等管道系统中的工程师正确的专业知识。 关建词 光滑度、层流、稳流、乱流、雷诺系数、Colebrook – White Equatio n、Darcy-Weisbach Equatio n、Hazen-Williams Eq uatuon、Manning Equation 前言 水在管道中的阻力计算有许多方程序可以应用。 至于如何演算各个方程式的由来,这是一个大工程。首先需要基础知识,如:热力学第一、二定律,基础流体力学,微分方程式的基础工程数学,˙˙˙。 如果你没有很札实的这些基本理论知识,演算过程对你而言,犹如天书。如果你仅仅是一位工程师,为了能做正确的「水在管路中的阻力计算」,建议你舍繁取简,务实的了解如何选选择正确的管道阻力计算方程式为上上策! 在给排水、消防及中央空调的水输送管路之设计,管路的位置、阻力决定泵扬程的计算与泵马力的决定。所以要探讨泵的节能效益,管道的正确阻力计算很重要,不可轻忽! 壹、概述 一、确认在管道内的流体流动之类别 水在管道中的输送、流动都是属于乱流(turbulent flow)的类别。 管道内的流体流动之类别,计分为层流、稳流、及乱流三大类别,均以雷诺系数做为区隔。 层流Smooth turbulent ( laminar flow) Re < 2000 稳流Transitional turbulent (transition flow) 2000< Re <4000 乱流Rough turbulent ( turbulent flow ) Re > 4000

管径和压力损失计算

管径和压力损失计算 一、管径计算 1、管径计算 蒸汽、热水、压缩空气、氮气、氧气、乙炔按下述三式计算: 按体积流量计算 按质量流量计算 按允许压降计算 式中—管道内径(mm); —在工作状态下的体积流量(m3/h); —在工作状态下的质量流量(t/h); —在工作状态下的流速(m/s); —在工作状态下的密度(kg/m3); —摩擦阻力系数; —允许比压降(Pa/m)。 压缩空气、氮气、氧气、乙炔等气体工作状态下的体积流量可由标准状态(0℃,绝对压力0.1013MPa)下的体积流量换算而得 式中—标准状态下气体体积流量(m3/h); —气体工作温度(℃); —气体绝对工作压力(MPa)。 二、管道压力损失计算 管道中介质流动产生的总压差包括直管段的摩擦阻力压降和管道附件的局部阻力压降,以及管内介质的静压差。 管内介质的总静压差:; 直管的摩擦阻力压降:; 管道附件的局部阻力压降:; 管内介质的静压差:。 式中Δp—管内介质的总静压差(Pa); Δpm—直管的摩擦阻力压降(Pa); Δpd—管道附件的局部阻力压降(Pa); Δpz—管内介质的静压差(Pa); ∑ξ—管件局部阻力系数之和; ∑Ld—管道局部阻力当量长度之和(m); H1—管段始点标高(m); H2—管段终点标高(m); 对液体,因其密度大,计算中应计入介质静压差。对蒸汽或气体,其静压差可以忽略不计。 三、允许比压降计算 对各种压力管路的计算公式为 式中—单位压力降(Pa/m); 、—起点、终点压力(MPa); —管道直管段总长度(m);

—管道局部阻力当量长度(m)。 在做近似估算时,对厂区管路可取=(0.1-0.15);对车间的蒸汽、压缩空气、热水管路,取=(0.3-0.5);对车间氧气管路去=(0.15-0.20) 看见公式,写上自己知道的公式吧。 管径计算公式。 d=18.8乘以(Q/u)的开平方,其中Q=Qz(273+t)/(293*P),其中,Qz为标准状态下的压力,P为绝对压力。 对于u的确定,p=0.3~0.6MPa时,u=10~20s; p=0.6~1MPa时,u=10~15s; p=1~2MPa时,u=8~12s; p=2~3MPa时,u=3~6s; p>3MPa时,u=0~3s

压缩空气管道材质要

《洁净室施工及验收规范》GB50591-2010中第32页6.气体系统第6.2管材及附件项,对空气管道的明确要求说明,如下图: 《洁净厂房设计规范》GB50073-2013中第29页8.2管道材料和阀门项,干燥的压缩空气管道材质作出了明确要求,如下图:

制药工厂压缩空气系统设计完全指南 2018-10-1317:12设计/微生物/污染 1、引言 新建或改建一个制药工厂,设计是一项重要工作,其中包括制药工艺、设备、土建、空调、给排水、动力等方面,是多种专业配合的整体工作。制药工厂设计与机械工厂设计比较,有许多特殊之处,本文仅就制药工厂压缩空气系统设计方面的问题,结合近年来的一些设计实践做一简述。 2、制药工厂压缩空气用途及品质要求 2.1压缩空气主要用途 在制药工厂中,压缩空气主要用于液体制剂中的灌装机,固体制剂中的制粒机、加浆机、填充机、包装机、印字机,提取工艺中的提取罐。此外,还有化验中试用气、物料输送、干燥、吹扫、气动仪表、自动控制用气等等。上述压缩空气用途中,很多情况下压缩空气与药品直接接触,所以,在制药工厂设计中对压缩空气的品质有着严格的要求。 2.2压缩空气品质控制的必要性

制药工厂压缩空气的品质主要是控制其含水量、含油量、含尘粒量和含生物粒子量,同时还要求压缩空气无气味。 含有油份的压缩空气直接与药物接触会污染药物。含有液态水滴的压缩空气会使管道阀门和设备产生锈蚀,水滴锈渍同样也会污染药物,影响药品质量。 空气中含有大量尘粒和微生物粒子,对医药工业来说,微粒特别是尘粒会直接影响药品质量,进而危及人们生命安全。微生物(生物粒子)对人体的危害更强,微生物多指细菌和真菌,污染药品后不但会使药品本身燃菌、变质,一旦误用,无论从肠道或非肠道进入人体,都会直接影响人体健康,其后果更为严重。所以制药工厂所用压缩空气必须以微粒和微生物为主要控制对象,这一点就是制药工厂与只控制微粒的其他工厂(如电子、机械工厂等)的主要区别之一。 2.3压缩空气品质控制指标 a.仪表、自动控制等用气的质量标准可由GB/T13277-91《一般用压缩空气质量等级》(等效采用ISO8573/1)中查出。这个标准根据固体粒子尺寸和含量、水蒸气含量及含油量4项控制指标划分质量等级,见表1。 对于仪表、自动控制用压缩空气的质量等级要求,推荐4项指标为2.3.3级,具体指标为:颗粒尺寸最大1μm颗粒含量1mg/m3,水含量(压力露点)最高-20℃,油含量最大值1mg/m3。 b.制药用压缩空气质量指标 目前,对于制药用压缩空气还没有相关的质量标准,采用的国际标准ISO8573/1的GB/T13277-97,明确医用压缩空气不包括在本标准之内。多数资料文献中仅有定性的一般要求,缺少具体的控制指标。

压缩空气管径的选择

压缩空气管径的选择 1、平方单位上面压缩空气压力及速度的换算 公式:P=0.5ρV2 ρ---密度(压缩空气密度) V2---速度平方 P--静压(作用于物体表面) 2、压缩空气流量、流速的计算 流量=管截面积X流速=0.002827X管径^2X流速(立方米/小时)^2:平方。管径单位:mm 流速可用柏努力方程; Z+(V2/2g)+(P/r)=0 r=ρg V2是V的平方 ,是流速 Z是高度.(水平流动为0) ρ是空气密度. g是重力加速度=9.81 P是压力(MPa) 3、压缩空气管路配管应注意的事项 (1) 主管路配管时,管路须有1°~2°的倾斜度,以利于管路中冷凝水的排出。

(2) 配管管路的压力降不得超过空压机使用压力的5%,故配管时最好选用比设计值大的管路,其计算公式如下: 管径计算d= mm= mm 其中Q压-压缩空气在管道内流量m3/min V-压缩空气在管道内的流速m/s Q自-空压机铭牌标量m3/min p排绝-空压机排气绝压bar(等于空压机排气压力加1大气压) (3) 支线管路必须从主管路的顶端接出,以避免主管路中的凝结水下流至工作机械中或者回流至空压机中。 (4) 管路不要任意缩小或放大,管路需使用渐缩管,若没有使用渐缩管,在接头处会有扰流产生,产生扰流则会导致大的压力降,同时对管路的寿命也有不利影响。 (5) 空压机之后如果有储气罐及干燥机等净化缓冲设备,理想的配管顺序应是空压机+储气罐+干燥机。储气罐可将部分的冷凝水滤除,同时也有降低气体温度的功能。将较低温度且含水量较少的压缩空气再导入干燥机,则可减轻干燥机负荷。 (6) 若空气使用量很大且时间很短,最好另加装一储气罐做为缓冲之用,这样可以减少空压机加泄载次数,对空压机使用寿命有很大的益处。 (7) 管路中尽量减少使用弯头及各种阀类。 (8) 理想的配管是主管线环绕整个厂房,这样可以在任何位置均可以获得双方向的压缩空气。如在某支线用气量突然大增时,可以减少压降。除此之外,在环状主管线上应配置适当的阀组,以利于检修时切断之用。 (9) 多台空压机空气输出管道并联联网时,空压机输出端无须加装止回阀。

压缩空气用气量计算

压缩空气用气量计算 压缩空气理论――状态及气量 1、标准状态 标准状态的定义是:空气吸入压力为0.1MPa,温度为15.6℃(国内行业定义是0℃)的状态下提供给用户系统的空气的容积。如果需要用标准状态,来反映考虑实际的操作条件,诸如海拔高度、温度和相 对湿度则将应实际吸入状态转换成标准状态。 2、常态空气 规定压力为0.1MPa、温度为20℃、相对湿度为36%状态下的空气为常态空气。常态空气与标准空气不同在于温度并含有水分。当空气中有水气,一旦把水气分离掉,气量将有所降低。 3、吸入状态 压缩机进口状态下的空气。 4、海拔高度 按海平面垂直向上衡量,海拔只不过是指海平面以上的高度。海拔在压缩机工程方面占有重要因素,因为在海拔高度越高,空气变得越稀薄,绝对压力变得越低。既然在海拔上的空气比较稀薄,那么电动机的冷却效果就比较差,这使得标准电动机只能局限在一定的海拔高度内运行。EP200 标准机组的最大容许运 行海拔高度为2286米。 5、影响排气量的因素: Pj、Tj、海拔高度、n、V余、泄漏等。 6、海拔高度对压缩机的影响: (1)、海拔越高,空气越稀薄,绝压越低,压比越高,Nd越大; (2)、海拔越高,冷却效果越差,电机温升越大; (3)、海拔越高,空气越稀薄,柴油机的油气比越大,N越小。 7、容积流量 容积流量是指在单位时间内压缩机吸入标准状态下空气的流量。用单位:M3/min (立方米/分)表示。 标方用N M3/min表示。 1CFM=0.02832 M3/min, 或者1 M3/min=35.311CFM, S--标准状态,A--实际状态

8、余隙容积 余隙容积是指正排量容积式(往复或螺杆)压缩机冲程终端留下的容积,此容积的压缩空气经膨胀 后返回到吸入口,并对容积系数产生巨大的影响。 9、负载系数 负载系数是指某一段时间内压缩机的平均输出与压缩机的最大额定输出之比。不明智的做法就是卖给用户的压缩机,正好满足用户的最大的需求,增加一个或几个工具或有泄漏会导致工厂的压力下降。为了避免这种情况,英格索兰多年来一直建议采用负载系数:取用户系统所需气量的极大值,并除以0.9或 0.8的负载系数。(或任何用户认为是个安全系数) 这种综合气量选择能顾及未预计到的空气需量的增加。无需额外的资本的投入,就可做一些小型的 扩建。 10、气量测试 (1)、往复式压缩机气缸容积 压缩机气缸的容积是指活塞移动的容积减去活塞杆占有的体积。通常是用每分钟立方米来表示。多级压缩机的容积只是第一级压缩的容积,因为逐一通过所有级的气体都来源于第一级。 (2)、测试 低压喷嘴测试是一种精确衡量压缩机所提供空气的方法。这一方法得到压缩空气和气体学会的认可,还为ASME能源测试代号委员会所接受。ASME PTC-9中有关采用低压喷嘴测 试往复式压缩机的描述。ASME PTC-10中有有关采用低压喷嘴测试动力式压缩机的描述。 压缩空气理论――用气量的确定 确定一个新厂的压缩空气要求的传统方法是将所有用气设备的用气量(m3/min)加起来,再考虑增加一个安全、泄漏和发展系数。 在一个现有工厂里,你只要作一些简单的测试便可知道压缩空气供给量是否足够。如不能,则可估算出还需增加多少。 一般工业上空气压缩机的输出压力为0.69MPa(G),而送到设备使用点的压力至少0.62MPa。这说明我们所用的典型空气压缩机有0.69MPa(G)的卸载压力和0.62MPa(G)的筒体加载压力或叫系统压力。有了这些数字(或某一系统的卸载和加载值)我们便可确定。 如果筒体压力低于名义加载点(0.62MPa(G))或没有逐渐上升到卸载压力(0.69MPa(G)),就可能需要更多的空气。当然始终要检查,确信没有大的泄漏,并且压缩机的卸载和控制系统都运行正常。

(完整版)压缩空气管道施工方案

一、工程概况及有关参数 (一)工程概况 本工程为************公司,********************项目,压缩空气管道安装工程。 工程地点:************************ 设计单位:************************* 施工单位:************************* 工程开、竣工日期:计划开工日期为****年月日,竣工日期为****年月日 总工期为天。 (二)管道技术参数 1. 压缩空气管道 1.1. 管道规格:φ159×4.5 1.2. 管道编号:A0601—φ159×4.5—1.0A1 1.3. 工作压力:0.7Mpa 1.4. 工作温度:常温 1.5. 设计压力:0.8Mpa 1.6. 设计温度:常温 1.7. 强度试验压力:1.2Mpa 1.8. 试验介质:水 1.9. 管道材质:20#钢 1.10. 压力管道类别:GC2—4 二、编制依据 (一)GB50235-97《工业金属管道工程施工及验收规范》 (二)GB50236-98《现场设备、工业管道焊接工程施工及验收规范》 (三)GB50316-2000《工业金属管道设计规范》 (四)GB50231 《机械设备安装工程施工及验收规范》 (五)GB50275 《压缩机、风机、泵安装工程施工及验收规范》 (六)GB50093 《工业自动化仪表工程施工及验收规范》 (七)GB7231-2003 《工业管路的基本识别色、识别符号和安全标志》 (八)劳部发(1996)140号《压力管道安全管理及监察规定》及解析 (九)中华人民共和国国务院令第393号《建设工程安全生产管理条例》 (十)业主提供的施工图纸、相关要求及施工现场条件 三、管道安装施工及检验 (一)施工准备工作 1. 技术准备 1.1. 开工前须办理好开工告知,经有关部门审批通过后方可施工。 1.2. 了解熟悉图纸、技术资料及有关标准、规范。 1.3. 认真察悉现场编制施工方案,做好深化设计,并做好与设计单位、建设单位的技术 交底工作。 1.4. 准备好必要的焊接工艺卡和焊接工艺评定。

压缩空气管道施工设计方案

XXXXXXXXX工程 XXXX 压缩空气管道施工方案 编写人:日期: 审核人:日期: 批准人:日期:

XXXXXXXXXX项目经理部 压缩空气管道施工方案 一、编制依据: 1、建设指挥部有关建设管理文件、会议纪要和设计单位提供的施工图设计文件。 2、根据现场勘察情况和前湾港站运营规定。 3、《采暖通风与空气调节设计规》GB50019-2003。 4、《工业金属管道设计规》GB50316-2000。 5、《压力管道安全与监察规定》、《工业金属管道工程施工及验收规》GB50235-97。 6、《现场设备、工业管道焊接工程与施工验收规》GB50236-97。 7、《工业设备及管道绝热施工及验收规》GBJ126。 二、编制围: 本工程为XXXXX试风设备综合楼室外压缩空气管道设计。 三、工程概括: 1、本工程位于既有1股与新1股之间,施工里程为GLK1+772至GLK2+766围,压缩空气管道采用无缝钢管。 2、压缩空气管道及组成件属于压力管道,类别为GC3级,流体类别为D类,设计压力0.8MPa,水压试验为1.2MPa。 3、室外压缩空气管道采用无缝钢管直埋敷设,管道连接采用焊接连接,管道阀门

为截断塞门,管道外刷防锈漆两道,银粉一道。埋地管道穿越铁路时需设套管保护,管顶距铁路轨面不小于1.2m。管道外壁与套管两端部的间隙用浸沥青的麻丝填实,再在外端用沥青堵塞。气源由空压机室外部储风缸接引。微控试风设备的试风柜距脱轨器轨边设备20m,埋设管道作加强环氧沥青防腐层,防腐层厚度不小于6mm。四、施工方案及工艺 (一)、压缩空气管道系统 自然界的空气经空气压缩机压缩后称为压缩空气。压缩空气是一种重要的动力源。 1、压缩空气站的组成 1)、压缩空气站工艺生产流程 压缩空气的生产流程主要包括空气的过滤、空气的压缩、压缩空气的冷却及油和水分的排除、压缩空气的贮存与输送等。 2)、压缩空气站设备 (1)空气压缩机 在一般的压缩空气站中,最广泛采用的是活塞式空气压缩机。在大型压缩空气站中,较多采用离心式或轴流式空气压缩机。 (2)空气过滤器 (3)后冷却器 (4)贮气罐 活塞式压缩机都配备有贮气罐,目的是减弱压缩机排气的周期性脉动,稳定管网压力,同时可进一步分离空气中的油和水分。 贮气罐分立式和卧式两种,通常立式的用得较多,其高度为直径的2~3倍,容积约为压缩机每分钟生产能力换算成压缩后气体的体积。

压缩空气管道规范

压缩空气管道规范 Prepared on 24 November 2020

压缩空气管道规范 为避免重复建设和节约投资,压缩空气管道考虑近期发展的需要是必要的。近期发展应包括对流量、压力及品质的要求。 本条是原规范第条后段的修订条文。 压缩空气管道系统有辐射状、树枝状和环状三种形式。其中,厂(矿区)管道一般采用辐射状和树枝状系统,车间采用树枝状和环状系统。辐射状系统便于集中调节用气量,压力和泄漏损失小,但一次性投资大,管网较复杂;树枝状系统的优缺点则与辐射状系统相反;环状系统的主要特点是供气可靠,压力稳定。由于各有优缺点,并且在不同的使用条件下均能获得较好的效益,所以,笼统地推荐一种系统是不合适的,特别是近年来,许多厂(矿)已经采用了树枝与辐射混合型的管网系统,其效益也是明显的。在设计管道系统时,可以根据当地的实际情况,因地制宜地选择合适的管道系统。 管道的三种敷设方式:架空、管沟和埋地,各有其特点和使用条件。架空管道安装、维修方便、直观,也便于以后改造。这种敷设方式被夏热冬暖地区、温和地区、夏热冬冷地区和寒冷地区的大多数厂(矿)采用。管沟敷设如能与热力管道同沟,将是经济合理的。直接埋地敷设在寒冷地区及总平面布置不希望有架空管线的厂(矿)采用较多。 寒冷地区和严寒地区的饱和压缩空气管道架空敷设时,冻结的可能性比较大,尤其是严寒地区需采取严格的防冻措施。 本条是原规范第条的修订条文。 管道设坡度有利于排放油水,但也有许多单位在管道设计时均不设坡度。多年来的使用证明,只要设有排除油水的装置,一般是没有问题的,尤其在不冻结地区,并且还有设计和施工方便的优点,因此,本条文对坡度设置问题未作规定,仅规定了管道应设置可排放油水的装置。如有坡度敷设时,推荐不小于。 条文中提到的“饱和压缩空气”是指未经干燥处理或干燥处理后其露点温度仍然高于当地极端环境最低温度的压缩空气,这样的压缩空气在架空管道中会析出水分,所以,架空敷设时需考虑防冻措施。 干燥、净化压缩空气管道的管材和附件的选择,对于确保供应用气设备符合要求的干燥、净化压缩空气十分重要。若管材和附件选择不当,常会使已经干燥、净化的压缩空气受到污染。根据对各行业企业的调查,将压缩空气按干燥净化程度分为四档,分别推荐使用不同的管材,这样既节约了成本,又保证了压缩空气的品质。 对于近年来出现的PVC塑料管、铝塑管、不锈钢复合管等新材料,由于尚无使用的成熟经验,故这里未予列出。 现在用于干燥和净化压缩空气管道的阀门和附件品种及材质较多,凡在强度、密封、抗腐蚀性方面满足要求者均可采用。 管道连接采用焊接,已有多年成熟的经验。焊接比法兰或螺纹连接更具有省料、施工快和严密性好等优点,故推荐采用。 干燥和净化压缩空气管道的焊接方式与一般压缩空气管道的焊接方式有所不同,这在《洁净厂房设计规范》(GB 50073)中已有明确的规定,因此,本条文要求遵照执行。 本条为新增条文。

相关文档
最新文档