构建数学模型 解决实际问题(含解答)-
实际问题与一元二次方程-(含答案)

实际问题与一元二次方程-(含答案)实际问题与一元二次方程列一元二次方程解应用题与列一元一次方程解应用题类似。
都是根据问题中的相等关系列出方程,解方程,并能根据具体问题的实际意义检验结果的合理性,进一步提高分析问题、解决问题的意识和能力。
在利用一元二次方程解决实际问题时,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性。
主要研究下列两个内容:1.列一元二次方程解决实际问题。
一般情况下,列方程解决实际问题的一般步骤为:审、设、列、解、验、答六个步骤。
找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键。
2.一元二次方程根与系数的关系。
一般地,如果一元二次方程ax^2+bx+c=(a≠0)的两个根是x1和x2,那么x1+x2=-b/a,x1•x2=c/a。
知识链接点击一:列方程解决实际问题的一般步骤应用题考查的是如何把实际问题抽象成数学问题,然后用数学知识和方法加以解决的一种能力。
列方程解应用题最关键的是审题,通过审题弄清已知量与未知量之间的等量关系,从而正确地列出方程。
概括来说就是实际问题——数学模型——数学问题的解——实际问题的答案。
一般情况下列方程解决实际问题的一般步骤如下:1) 审:是指读懂题目,弄清题意和题目中的已知量、未知量,并能够找出能表示实际问题全部含义的等量关系。
2) 设:是在理清题意的前提下,进行未知量的假设(分直接与间接)。
3) 列:是指列方程,根据等量关系列出方程。
4) 解:就是解所列方程,求出未知量的值。
5) 验:是指检验所求方程的解是否正确,然后检验所得方程的解是否符合实际意义,不满足要求的应舍去。
6) 答:即写出答案,不要忘记单位名称。
总之,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键。
点击二:一元二次方程根与系数的关系一元二次方程根与系数的关系。
一般地,如果一元二次方程ax^2+bx+c=(a≠0)的两个根是x1和x2,那么x1+x2=-b/a,x1•x2=c/a。
2020年中考数学 有关方程和不等式的实际问题(含答案)-

联系实际问题一、方程问题考试目标导引:1.重点热点: 将与市场经济、成本计算、利润、商品价格等实际生活中的应用题建立为方程(组)模型.2.目标要求:会通过分析数量关系,找出题中的等量关系,列出方程(组).命题趋热分析:例1 (1)我市某企业为节约用水,自建污水净化站,3月份净化污水3000吨,5月份增加到3630吨,则这两个月净化污水的量平均每月增长的百分率为_______.(2)北京至石家庄的铁路长392千米,为适应经济发展,自2001年10月21日起,某客运列车的行车速度每小时比原来增加40千米,使得石家庄到北京的行车时 间缩短了1小时,如果设该列车提速前的速度为每小时X 千米,那么为求X 所列出的方程为________.(3)某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调价后售出可获利10%(相对于进价),另一台空调价后售出则要亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( )A.既不获利也不亏本B.可获利1%C.要亏本2%D.要亏本1%【特色】以上几道题与课本中的基本题型一致,且与实际生活紧密结合.【解答】(1)设平均每月增长的百分率为x ,则依题意列方程3000(1+X)2=3630 解答x 1=0.1 x 2=-2.1(舍去)故平均每月增长的百分率为10%; (2)140392392=+-X X ; (3)设一种型号空调进价为a ,另一种为b ,则1.1a=0.96 得b=a 911 代入下式101.0)(9.01.0-=-=++-+ba b a b a % 故选D. 【拓展】解产销问题时,关键在于理解成本价、销售价、利润、利率之间的关系: 利润=售价-进价,利率=销售利润÷成本×100%等.例2 (2002北京市西城区)(1)据2001年中国环境状况公报,我国由水蚀和风蚀造成的水土流失面 积达356万平方公里,其中风蚀造成的水土流失面积比水蚀造成的水土流失面积多26万平方公里.问水蚀与风蚀造成的水土流失面积各多少万平方公里?(2)某省重视治理水土流失问题,2001年治理了水土流失面积400平方公里,该省逐年加大治理力度,计划今明两年每年治理水土流失面积都比前一年增长一个相同的百分数,到2003年底,使这三年治理的水土流失面积达到1324平方公里.求该省今明两年治理水土流失面积每年增长的百分数.【特色】这是一道贴近社会热点的方程应用题,它不仅可以对学生的阅读理解能力进行考查,而且也是让学生了解我国环境状况的一份很好的资料.【解答】(1)设水蚀造成的水土流失面积为X 万平方公里,依题意得X+(X+26)=356 解得 X=165 ∴X+26=191答:水蚀和风蚀造成的水土流失面积分别为165万平方公里和191万平方公里.(2)设该省今明两年治理水土流失面积每年增长的百分数为x,依题意得 400+400(1+x)+400(1+x)2=1324整理,得100x 2+300x-31=0 解得x 1=0.1 x 2=-3.1(舍去)答:平均每年增长的百分数为10%.【拓展】增长率问题可归结为a(1±x)2=b 的形式,其中a 为初始数,b 为末数,x 为增长率(或下降率).例3 黄冈百货商品服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每 件盈利40元,为了迎接“六·一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?【特色】在近几年各地中考试卷中常能见到这种类型的问题.【解答】设每件童装应降价x元,依题意得(40-x)(20+2x)=1200整理,得x2-30x+200=0,解得x1=10 x2=20因要尽量减少库存,故x应取20.答:每件童装应降价20元.【拓展】当用一元二次方程的解法求出两个解后,一定要注意检验是否符合题意. 中考动向前瞻:贴近社会热点的方程应用题,以选择题、填空题的题型出现时,一般都较为基本,而以解答题出现时,具有一定的综合性,主要考查学生收集和处理信息、分析和解决实际问题的能力.中考佳题自测1.(2002南宁市)革命老区百色某芒果种植基地,去年结余为500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%,求去年的收入与支出各是多少万元?2.(2002武汉市)武汉市某校组织甲、乙两班学生参加“美化校园”的义务劳动,若甲班做2小时,乙班做3小时则恰好完成全部工作的一半;若甲班先做2小时后另有任务,剩下工作由乙班单独完成,则乙班所用的时间恰好比甲班单独完成全部工作的时间多1小时,问单独完成这项工作,甲、乙两班各需多少时间?3.(2001浙江绍兴)光明中学现有校舍面积20000平方米,为改善办学条件,计划拆除部分旧校舍,建造新校舍,使新造校舍的面积是拆除旧校舍面积的3倍还多1000平方米.这样,计划完成后的校舍总面积可比现有校舍面积增加20%,已知拆除旧校舍每平方米需用80元,建造新校舍每平方米需费用700元,问完成该计划需多少费用?中考新题演练1.两条都是长1.5千米的绿化带上有废弃物,甲、乙两组共青团员在星期日上午各清扫一条,乙组的清扫速度是甲组的1.2倍,乙组比甲组少用半小时就完成任务,求甲、乙两组的清扫速度各是多少.2.某市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,需要将原定的工作效率提高12%.问原计划完成这项工程用多少个月?3.某公园有东、西两个门,开园半小时内东门售出成人票65张,儿童票12张,收票款568元,西门售出成人票81张,儿童票8张,收票款680元,问此公园成人票、儿童票每张售价各几元?4.甲、乙两名职工接受相同数量的生产任务,开始时,乙比甲每天少做4件,乙比甲多用2天时间,这样甲、乙两人各剩624件;随后,乙改进了生产技术,每天比原来多做6件,而甲每天的工作量不变,结果两人完成全部生产任务所用.......求原来甲、........的时间相同乙两人每天各做多少件?每人的全部生产任务是多少?5.小明的妈妈上周三在自选商场花10元钱买了几瓶酸奶,周六再去买时,正好遇上商场搞酬宾活动,同样的酸奶,每瓶比周三便宜0.5元,结果小明的妈妈只比上次多花了2元钱,却比上次多买了2瓶酸奶,问她上周三买了几瓶酸奶?6.为落实“珍惜和合理利用每一寸土地”的基本国策,某地区计划经过若干年开发“改造后可利用土地”360平方千米,实际施工中,每年比原计划多开发2平方千米,按此进度预计可提前6年完成开发任务,问实际每年可开发多少平方千米?7.美化城市,改善人们的居住环境已成为城市建设的一项重要内容,某市城区近几年来,通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息,回答下列问题:2001年底的绿地面积为____公顷,比2000年底增加了_____公顷;在1999年,2000年,2001年这三年中,绿地面积增加最多的是____年.(2)为满足城市发展的需要,计划到2003年底使城区绿地总面积达到72.6公顷,试求今明两年绿地面积的年平均增长率.参考答案中考佳题自测:1.设去年收入是x 万元,支出是y 万元,依题意得5001510(1)(1)960100100x y x y -=⎧⎪⎨+--=⎪⎩,解得20401540x y =⎧⎨=⎩答:去年收入2040万元,支出1540万元.2.设单独完成这项工作,甲班需x 小时,乙班需y 小时, 依题意得2312211x y x x y ⎧+=⎪⎪⎨+⎪+=⎪⎩, 解得 11812x y =⎧⎨=⎩2212x y =⎧⎨=-⎩答:单独完成这项工作,甲班需8小时,乙班需12小时.3.设拆除旧校舍的面积为x 平方米,依题意得20000-x+3x+1000=20000(1+20%)解得x=15001500×80+(3×1500+1000)×700=3970000这时完成该计划需费用3970000元.中考新题演练:1.设甲组的清扫速度为x 千米/时,根据题意得, 212.15.15.1=-x x解得x=0.5,经检验为原方程的解,当x=0.5时,1.2x=0.6.2.设原计划完成这项工程用x 个月,根据题意得(1+12%)×311-=x x 解得x=28.3.设此公园成人票每张售价x 元,儿童票每张售价y 元.根据题意得6512568818680x y x y +=⎧⎨+=⎩, 得 84x y =⎧⎨=⎩4.设原来甲每天做x 件,则乙每天做(x-4)件,由题意得 22624624=+-x x 解得x 1=24,x 2=-26(舍去)设每人的全部生产任务为y 件,则 22462420624=---y y ,解得y=864.5.设小明的妈妈上周三买了x 瓶酸奶,根据题意得 22105.010++=-x x 解得x 1=4,x 2=-10(舍去).6.设实际每年可开发x 平方千米,依题意得 .63602360=--x x 解得x 1=12, x 2=-10(舍去).7.(1)60,4,2000(2)设今明两年绿地面积的年平均增长率为x.根据题意, 得60(1+x)2=72.6 解得x 1=0.1,x 2=-2.1(舍去).二、不等式问题考试目标导引:1.重点、热点:将与市场经济、成本计算、利润、商品价格,人物分配等应用题建立为不等式(组)模型.2.目标要求:会通过分析数量关系列出不等式(组)命题趋势分析:例1 (1)恩格尔系数表示家庭日常饮食开支家庭经济总收入的比例,它反映了居民家庭的实际生活水平,各种类型家庭的恩格尔系数如下表所示:则用含n的不等式表示小康家庭的恩格尔系数__________.(2)(2001荆门市)有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要使总收入不低于15.6万元,则最多只能安排____________.(3)(2002重庆市)韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A、B两个出租车队,A队比B队少3辆车,若全部安排乘A队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B队的车,每辆车坐4人,车不够,每辆车坐5人,有的车未坐满,则A队有出租车()A.11辆B.10辆C.9辆D.8辆【特色】这几道题都是运用不等式的基本知识解决实际问题的.【解答】(1)40%≤n≤49%(2)设最多只能安排x人种甲种蔬菜,则0.5×3x+0.8×2(10-x)≥15.6 解得x ≤4 ,故x 取4.(3)设A 队有X 辆车,依题意得55664(3)565(3)x x x x <<⎧⎨+<<+⎩ 易得x 取10 故选B.【拓展】求不等式(组)的整数解的方法是:(1)求出不等式(组)的解集;(2)找出适合解集范围的整数解.例2 某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们. 如果每人送3本,则还余8本;如果前面每人送5本,最后一人得到的课外读物不足3本.设该校买了m 本课外读物,有x 名学生获奖,请解答下列问题:(1)用含x 的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.【特色】本题立意于对学生基础知识的考查.【解答】(1)m=3x+8(2)根据题意得385(1)0385(1)3x x x x +--≥⎧⎨+--<⎩ 不等式组解集为5<x ≤621∵x 为正整数,∴x=6把x=6代入m=3x+8中,得m=26.【拓展】先根据题意列出不等式组,再求出整数解.例3 香港受潮汐的影响,近日每天24小时港内的水深变化大体如下图:一艘货轮于上午7时在该港码头开始卸货,计划当天卸完货后离港,已知这艘货轮货后吃水深度为2.5m(吃水深度即船底离开水面的距离).该港口规定:为保证航全,只有当航底与港内水底间的距离不少于3.5m时,才能进出该港.根据题目中所给的条件,回答下列问题:(1)要使该船能在当天卸完货并安全出港,则出港的水深不能少于______m,卸货只能用____小时;(2)已知该船装有1200吨货,先由甲装卸队单独卸,每小时卸180吨,工作了一段后,交由乙队接着单独卸,每小时卸120吨,如果要保证该船能在当天卸完货并出港,则甲队至少应工作几小时,才能交给乙方接着卸?【特色】这是一道很有创意的好题,不仅考查了学生数形结合的解题思想,而且也考查了学生运用不等式的有关知识解决实际问题的能力.【解答】(1)6,8;(2)设甲队工作y小时,令180y+120(8-y)≥1200,解得y≥4,答:甲队至少应工作4小时.【拓展】第(2)小题是在前面提供的数据信息的基础上,利用不等式知识求甲队至少工作的时间,确保该船能在当天卸完货并安全出港.中考动向前瞻:贴近社会热点的不等式(组)应用题,一般很少以选择题、填空题出现,而以解答题出现时,主要考查数形结合以及通过分析数量关系建立不等式(组)模型的解题思想.中考佳题自测1.(2001陕西)乘某城市的一种出租汽车起价是10元(即行驶路程在5km以内需付10元车费),达到或超过5km后,每增加1km加价1.2元(不足1km部分按1km计),现在某人乘这种出租汽车从甲地到乙地支付车费17.2元,从甲地到乙地的路程大约是多少?2.(2001荆州)在双休日,某公司决定组织48名员工到附近一水上公园坐船游园,公司先派一个人去了解船只的租金情况,这个人看到的租金价格表如下:那么,怎样设计租船方案才能使所付租金最少?(严禁超载)3.(2001安徽)某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?中考新题演练1.某商品的进价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么,商店最多降_________元出售此商品.(利润=销售价-进货价,利润率=利润÷进货价×100%).2.某种植物适宜生长在温度为18℃~22℃的山区,已知山区海拔每升高100m,气温下降0.5℃,现测出山脚下的平均气温为22℃,问该植物种在山上的哪一部分为宜(设山脚下的平均海拔高度为 0m).3.商场出售的A 型冰箱每台售价2190元,每日耗电量为1度,而B 型节能冰箱每台售价虽比A 型冰箱高出10%,但每日耗电量却为0.55度,现将A 型冰箱打折出售(打一折后的售价为原价的101),问商场至少打几折,消费者购买才合算(按使用期为10年,每年365天,每度电0.40元计算)?4.修筑高速公路经过某村,需搬迁一批农户,为了节约土地资源和保护环境,政府统一规划搬迁建房区域.规划要求区域内绿色环境占地面积不得少于区域总面积的20%.若搬迁农户建房每户占地150m 2,则绿色环境面积还占总面积的40%;政府又鼓励其他有积蓄的农户到规划区域建房,这样又有20户农户加入建房,若仍以每户占地150m 2计算,则这时绿色环境面积又只占总面积的15%,为了符合规划要求,又需要退出部分农户.问:(1)最初需搬迁建房的农户有多少户?政府规划的建房区域总面积是多少m 2?(2)为了保证绿色环境占地面积不少于区域总面积的20%,至少需退出农户几户?5.某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年).年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再用门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算.6.在车站开始检票时,有a(a>0)名旅客在候车室等候检查进站,检查开始后,仍有旅客继续前来排队检票进站,设旅客按固定的速度增加,检票口检票的速度也是固定的.若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,内只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,至少要同时开放几个检票口?参考答案中考佳题自测:1.设从甲地到乙地的路程大约是xkm,依题意得16<10+1.2(x-5)≤17.2 解得10<x ≤11.2.设租大船x 只,小船y 只,则5x+3y=48 得y=16-35x 又 x ≥0 ,y ≥0 得0≤x ≤548 费用A=3x+2y=3x+2(16-35x)=32-31x ∴当x=9时, A 最小为29故最佳方案是租大船9只,租小船1只.3.设招聘甲种工种的工人x 人,则招聘乙种工种的工人为(150-x)人,依题意得150-x ≥2x 解得x ≤50于是0≤x ≤50;设所聘请的工人共需付月工资y 元,则有y=600x+1000(150-x)=-400x+150000 易知x=50时,y 最小=130000此时乙种工种的工人为150-x=100(人).中考新题演练:1.设最多降x 元售出此商品,由题意得100010001500--x ≥5% 得x ≤450 故x 取450元 2.设该植物种在海拔高度为x 米为宜,由题意得18≤22-100x ·0.5≤20 得400≤x ≤800 3.设商场将A 型冰箱打x 折出售,则消费者购买A 型冰箱需耗资2190×10x +365×10×1×0.4(元) ; 购买B 型冰箱需耗资 2190(1+10%)+360×10×0.55×0.4(元)依题意得2190×10x +365×10×1×0.4≤2190×(1+10%)+365×10×0.55×0.4 解得x ≤8因此,商场应将A 型冰箱至少打八折出售,消费者购买才合算.4.(1)设最初需搬迁建房的农户有x 户,政府规划的建房区域总面积为ym 2,则有 15040%150(20)15%x y y x y y +=⎧⎨++=⎩, 解得4812000x y =⎧⎨=⎩(2)设至少需退出z 户,则有12000-150(68-z)≥12000×20% 解得z ≥4.5.(1)因为80<120,所以不可能选A 类年票若选B 类年票,则1024080=-(次); 若选C 类年票,则1334080=-(次); 若不购买年票,则81080=(次). 所以计划用80元花在该园林的门票上时,选择购买C 类年票的方法进入园林的次数最多,为13次.(2)设至少超过x 次时,购买A 类年票比较合算,则有不等式组602120403120x x +>⎧⎨+>⎩, 解得 302263x x >⎧⎪⎨>⎪⎩其公共解集为x>30.所以一年中进入该园林至少超过30次时,购买A 类年票比较合算.6.设至少要同时开放n 个检票口,且每分钟旅客进站x 人、检票口检票y 人,依题意得 303010210a x y a x y+=⎧⎨+=⨯⎩解得n ≥3.5∵n 只能取整数,∴n=4.a+5x ≤5ny。
考点08 二次函数实际应用问题的7大类型-原卷版 2023-2024学年九年级数学考点归纳与解题策略

考点08 二次函数实际应用问题的7大类型1 围栏篱笆图形类问题的解决方法几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.面积的最值问题应设图形的一边长为自变量,所求面积为函数,建立二次函数的模型,利用二次函数有关知识求得最值,要注意函数自变量的取值范围.一般涉及到矩形等四边形问题,把图形的面积公式掌握,把需要用到的边和高等用未知数表示,即可表示出面积问题的二次函数的关系式,通过最值问题的解决方法,即可求出最值等问题,注意自变量的取值范围问题。
2 图形运动问题的解决思路此类问题一般具体分析动点所在位置,位置不同,所求的结果也不一样,一般把每一段的解析式求出来,根据解析式判断函数类型,从而判断图像形状。
3 拱桥问题的解决方法◆1、建立二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.◆2、建立二次函数模型解决实际问题的一般步骤:(1)根据题意建立适当的平面直角坐标系;(2)把已知条件转化为点的坐标;(3)合理设出函数解析式;(4)利用待定系数法求出函数解析式;(5)根据求得的解析式进一步分析、判断并进行有关的计算.4 销售问题◆1、销售问题中的数量关系:销售利润=销售收入﹣成本;销售总利润=销售量×单价利润◆2、求解最大利润问题的一般步骤:(1)建立利润与价格之间的函数关系式:运用“总利润 = 单件利润×总销量”或“总利润 = 总售价 - 总成本”;(2)结合实际意义,确定自变量的取值范围;(3)在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.◆3、在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.5 投球问题的解决方法此类问题一般需要建立平面直角坐标系,设定好每个点的坐标,分析好题目中的每句话的含义是解决这类问题的关键,有排球、足球、高尔夫球、篮球等,首先根据已知条件确定设定的解析式形式,求出解析式,再根据题意了解问题所求的实质是什么求出即可。
初中数学解题思路分析(含学习方法技巧、例题示范教学方法)

初中数学解题思路分析第一篇范文在学生的数学学习过程中,掌握解题思路和方法至关重要。
本文将从初中数学教学实践出发,对初中数学解题思路进行分析,以期为广大师生提供有益的参考。
一、理解题目要求首先,我们要充分理解题目的要求。
在阅读题目时,要仔细观察题目的类型、结构、已知条件和求解目标。
对于不熟悉的问题类型,我们要通过查阅资料或向教师请教,以便对问题有一个全面、准确的理解。
二、分析题目条件在理解题目要求的基础上,我们需要分析题目给出的条件。
这些条件可能是直接的,也可能是隐含的。
我们需要通过数学推理和逻辑思维,将这些条件挖掘出来,并明确它们与求解目标之间的关系。
三、构建数学模型根据题目条件和求解目标,我们需要构建合适的数学模型。
数学模型可以是方程、不等式、函数等。
在构建模型的过程中,我们要注意运用数学知识和方法,如代数、几何、概率等。
同时,我们要保持模型的简洁性和准确性。
四、求解数学模型在构建数学模型后,我们需要对其进行求解。
在求解过程中,我们要遵循数学运算的规则,注意化简、变形、合并同类项等操作。
对于复杂的问题,我们要善于运用数学工具,如计算器、数学软件等。
在求解过程中,我们要保持解答的简洁性和条理性。
五、检验解答在得到解答后,我们需要对解答进行检验。
检验的方法有多种,如代入法、画图法、逻辑推理法等。
我们要确保解答的正确性和合理性。
若发现解答有误,我们要回过头来检查解题过程中的错误,并重新求解。
六、总结解题经验在完成解题后,我们要对解题过程进行总结。
总结的内容包括解题思路、方法、技巧等。
我们要认真反思自己在解题过程中的优点和不足,以便在今后的学习中更好地提高解题能力。
七、注重实践与应用最后,我们要注重数学解题实践与应用。
通过大量的练习,提高自己的解题能力。
同时,我们要将所学的数学知识应用到实际生活中,解决实际问题,从而提高自己的数学素养。
总之,初中数学解题思路分析是数学学习的重要组成部分。
我们要掌握解题的基本思路和方法,注重实践与应用,从而提高自己的数学素养和能力。
数学模型思想

. . . .
300
9.在二次根式中的应用
2 2 y x 1 ( 9 x ) 4 若
,当x=______ 时,y有最 B
小值为 ______。
思路分析:
此题乍一看让人无处下手,通过仔细观 察发现,两个被开方数均为“ 法一:利用相似 a2+b2”的形 A 式,这很容易让人联想到勾股定理。此题 1 若采用数形结合的思想方法既有助于找到 C 解答思路,也常使解答简捷 . 数形结合的关 法二:利用勾股定理 键在于能将代数问题蕴含的几何图形,几 2 何知识抽取,转化出来,再进行解决。
近几年,中考加强了应用题的考察,这些应用题以数学 建模为中心,考察学生应用数学的能力。但是学生在应用题 中的得分率远低于其它题,原因之一就是学生缺乏数学建模 能力和应用数学意识。因此,教师应加强数学建模的教学, 提高学生数学建模能力,培养学生应用数学意识和创新意识。
二、解答数学模型问题的一般步骤
(二)测古塔模型
【例题】如图,小明想测量塔CD的高度。他在A处仰望塔顶, 测得仰角为300,再往塔的方向前进50m至B处,测得仰角为600, 小明的身高为1.5m,那么该塔有多高?(精确到0.1m) B
在RtBCD中 BD 0 tan60 50 BD 50 3
.
300 50m
BE 50 3 1.5 88.1 该塔高约为88.1米。
问题:如果把条件改为“E是AB 上 一点”应该这样思考?
B .
D
1
C
2
300 300
P 1
A
∟
. . E
B
8.在圆中的应用
半径为2的⊙O中,AB是直径,C、D为半圆上两点,若 AC为960,BD为360,动点P在AB上,求PC+PD的最小值。 C .
第二章 第十节 函数的模型与应用 解析版-备战2022年(新高考)数学一轮复习考点讲解+习题练习

第十节函数模型及其应用知识回顾1.几类函数模型2.三种函数模型的性质1.【2019年浙江丽水高一上学期期末考试数学试卷统测】某种放射性元素的原子数N随时间t的变化规律是N=N0eλt,其中N0,λ是正的常数.当N=2N0时,t=________ .ln2【答案】1λ【解析】【解答】某种放射性元素的原子数N随时间t的变化规律是N=N0eλt,其中N0,λ是正的常数.当N= 2N0时,则N=N0eλt=2N0≠0,化为:eλt=2,ln2.解得t=1λ故答案为1λln2.【分析】由题意可得:N =N 0e λt =2N 0≠0,化为:e λt =2,化为对数式即可得出. 【备注】【点评】本题考查了指数式化为对数式,考查了推理能力与计算能力,属于基础题.2.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为________. 答案p +1q +1-1解析 设年平均增长率为x ,则(1+x )2=(1+p )(1+q ), ∴x =1+p1+q -1.3.某公司租地建仓库,已知仓库每月占用费y 1与仓库到车站的距离成反比,而每月车载货物的运费y 2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y 1,y 2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________千米处. 答案 5解析 由题意得,y 1=k 1x ,y 2=k 2x ,其中x >0,当x =10时,代入两项费用y 1,y 2分别是2万元和8万元,可得k 1=20,k 2=45,y 1+y 2=20x +45x ≥220x ·45x =8,当且仅当20x =45x ,即x =5时取等号.4.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x ,y 应为________. 答案 15,12解析 由三角形相似得24-y 24-8=x 20,得x =54(24-y ),∴S =xy =-54(y -12)2+180,∴当y =12时,S 有最大值,此时x =15.5.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a 、b 、c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________分钟.答案 3.75解析 根据图表,把(t ,p )的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,联立方程组得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,消去c 化简得⎩⎪⎨⎪⎧7a +b =0.1,9a +b =-0.3,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2.0.所以p =-0.2t 2+1.5t -2.0=-15(t 2-152t +22516)+4516-2=-15(t -154)2+1316,所以当t =154=3.75时,p 取得最大值,即最佳加工时间为3.75分钟.6.(多选)某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少13,则使产品达到市场要求的过滤次数可以为(参考数据:lg2≈0.301,lg 3≈0.477)( ) A .6 B .9 C .8 D .7 答案 BC解析 设经过n 次过滤,产品达到市场要求, 则2100×⎝⎛⎭⎫23n ≤11 000,即⎝⎛⎭⎫23n ≤120, 由n lg 23≤-lg 20,即n (lg 2-lg 3)≤-(1+lg 2),得n ≥1+lg 2lg 3-lg 2≈7.4,故选BC.课中讲解考点一.函数图像刻画变化过程例1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )解析:选C 小明匀速行驶时,图象为一条直线,且距离学校越来越近,故排除A.因交通堵塞停留了一段时间,与学校的距离不变,故排除D.后来为了赶时间加快速度行驶,故排除B.故选C.变式1.如图,四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象表示该容器中水面的高度h 和时间t 之间的关系,其中不正确的个数为( )A.1B.2C.3 D.4解析:选A将水从容器顶部一个孔中以相同的速度注入其中,容器中水面的高度h和时间t之间的关系可以从高度随时间的变化率上反映出来.图①应该是匀速的,故下面的图象不正确;②中的变化率应该是越来越慢的,正确;③中的变化率是先快后慢再快,正确;④中的变化率是先慢后快再慢,也正确,故只有①是错误的.例2.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为()答案 D解析y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,故排除B,故选D.变式2.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)的影响.根据近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据得到下面的散点图.则下列哪个作为年销售量y关于年宣传费x的函数模型最适合()A.y=ax+b B.y=a+b xC.y=a·b x D.y=ax2+bx+c答案 B解析根据散点图可知,选择y=a+b x最适合.考点二.应用所给的模型解决实际问题例1.候鸟每年都要随季节的变化而进行大规模迁徙,研究某种候鸟的专家发现,该种候鸟的飞行速度 v (单位:m ⋅s −1)与其耗氧量 Q 之间的关系为 v =a +blog 3Q10(其中 a 、b 是常数).据统计,该种鸟类在静止时的耗氧量为 30 个单位,而其耗氧量为个 90 单位时,飞行速度为 1m ⋅s −1.若这种候鸟为赶路程,飞行的速度不能低于 2m ⋅s −1,求其耗氧量至少要多少个单位. 【答案】270 个单位【解析】由题意,知 {a +blog 33010=0a +blog 39010=1,即 {a +b =0a +2b =1,解得 {a =−1b =1,所以 v =−1+log 3Q 10, 要使飞行速度不能低于 2m ⋅s −1,则有 v ⩾2,即 −1+log 3Q 10⩾2,即 log 3Q10⩾3,解得 Q10⩾27,即 Q10⩾270,所以耗氧量至少要 270 个单位.变式1.数据显示,某 IT 公司 2018 年上半年五个月的收入情况如下表所示:月份 2 3 4 5 6月收入(万元)1.42.565.311121.3根据上述数据,在建立该公司 2018 年月收入 y (万元)与月份 x 的函数模型时,给出两个函数模型 y =x 12 与 y =2x 3供选择.(1) 你认为哪个函数模型较好,并简单说明理由; 【答案】函数 y =2x 3这一模型较好【解析】画出散点图由图可知点 (2,1.4);(3,2.56);(4,5.31);(5,11);(6,21.3) 基本上是落在函数 y =2x 3的图像的附近,因此用函数 y =2x 3这一模型较好.(2) 试用你认为较好的函数模型,分析大约从第几个月份开始,该公司的月收入会超过 100 万元?(参考数据 lg2=0.3010,lg3=0.4771) 【答案】大约从第 9 月份开始 【解析】当2x 3>100 时,2x >300,∴lg2x >lg300即 xlg2>2+lg3∴x >2+lg3lg 2=2+0.47710.3010≈8.23故大约从第 9 月份开始,该公司的月收入会超过 100 万元. 当2x 3>100 时,2x >30028=256<300;29=512>300故大约从第 9 月份开始,该公司的月收入会超过 100 万元.例2.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式y =⎝⎛⎭⎫116t -a(a 为常数),如图所示,根据图中提供的信息,回答下列问题:①从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为________________________________________________________________________.②据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室. 答案 ①y =⎩⎪⎨⎪⎧10t ,0≤t ≤0.1,⎝⎛⎭⎫116t -0.1,t >0.1②0.6解析 ①设y =kt ,由图象知y =kt 过点(0.1,1), 则1=k ×0.1,k =10,∴y =10t (0≤t ≤0.1). 由y =⎝⎛⎭⎫116t -a过点(0.1,1),得1=⎝⎛⎭⎫1160.1-a , 解得a =0.1,∴y =⎝⎛⎭⎫116t -0.1(t >0.1).②由⎝⎛⎭⎫116t -0.1≤0.25=14,得t ≥0.6. 故至少需经过0.6小时学生才能回到教室.变式2.拟定甲、乙两地通话m 分钟的电话费(单位:元)由f (m )=1.06(0.5[m ]+1)给出,其中m >0,[m ]是不超过m 的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为______元. 答案 4.24解析 ∵m =6.5,∴[m ]=6, 则f (6.5)=1.06×(0.5×6+1)=4.24. 考点三.构建函数模型解决实际问题1.二次函数模型例1.某企业为打入国际市场,决定从A ,B 两种产品中只选择一种进行投资生产,已知投资生产这两种产品的有关数据如下表(单位:万美元):预计m ∈[6,8],另外,年销售x 件B 产品时需上交0.05x 2万美元的特别关税,假设生产出来的产品都能在当年销售出去.(1)写出该厂分别投资生产A ,B 两种产品的年利润y 1,y 2与生产相应产品的件数x 1,x 2之间的函数关系式,并指明定义域;(2)如何投资才可获得最大年利润?请你做出规划.[解] (1)由题意得y 1=10x 1-(20+mx 1)=(10-m )x 1-20(0≤x 1≤200且x 1∈N),y 2=18x 2-(40+8x 2)-0.05x 22=-0.05x 22+10x 2-40=-0.05(x 2-100)2+460(0≤x 2≤120且x 2∈N). (2)∵6≤m ≤8,∴10-m >0, ∴y 1=(10-m )x 1-20为增函数. 又0≤x 1≤200,x 1∈N ,∴当x 1=200时,生产A 产品的最大利润为(10-m )×200-20=1 980-200m (万美元). ∵y 2=-0.05(x 2-100)2+460(0≤x 2≤120,且x 2∈N), ∴当x 2=100时,生产B 产品的最大利润为460万美元. (y 1)max -(y 2)max =(1 980-200m )-460=1 520-200m . 易知当6≤m <7.6时,(y 1)max >(y 2)max .即当6≤m <7.6时,投资生产A 产品200件可获得最大年利润;当m =7.6时,投资生产A 产品200件或投资生产B 产品100件,均可获得最大年利润; 当7.6<m ≤8时,投资生产B 产品100件可获得最大年利润.变式1. 某城市对一种售价为每件160元的商品征收附加税,税率为R %(即每销售100元征税R 元),若每年销售量为⎝⎛⎭⎫30-52R 万件,要使附加税不少于128万元,则R 的取值范围是( ) A .[4,8] B .[6,10] C .[4%,8%] D .[6%,10%]答案 A解析 根据题意,要使附加税不少于128万元,需⎝⎛⎭⎫30-52R ×160×R %≥128, 整理得R 2-12R +32≤0,解得4≤R ≤8,即R ∈[4,8].2. 指对数函数模型例2.某公司为激励创新,计划逐年加大研发资金投入.若该公司2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A .2018年 B .2019年 C .2020年D .2021年变式2.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( )A .16小时B .20小时C .24小时D .28小时[解析] (1)设第n (n ∈N *)年该公司全年投入的研发资金开始超过200万元. 根据题意得130(1+12%)n -1>200, 则lg[130(1+12%)n -1]>lg 200, ∴lg 130+(n -1)lg 1.12>lg 2+2, ∴2+lg 1.3+(n -1)lg 1.12>lg 2+2, ∴0.11+(n -1)×0.05>0.30,解得n >245,又∵n ∈N *,∴n ≥5,∴该公司全年投入的研发资金开始超过200万元的年份是2020年.故选C. (2)由已知得192=e b ,① 48=e 22k +b =e 22k ·e b ,②将①代入②得e 22k =14,则e 11k =12,当x =33时,y =e 33k +b =e 33k ·e b =⎝⎛⎭⎫123×192=24,所以该食品在33 ℃的保鲜时间是24小时.故选C. [答案] (1)C (2)C3. 对勾函数模型例3 某汽车运输公司购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y (万元)与营运年数x 的关系如图所示(抛物线的一段),则为使其营运年平均利润最大,每辆客车营运年数为________.答案 5解析 根据图象求得y =-(x -6)2+11, ∴年平均利润yx=12-⎝⎛⎭⎫x +25x , ∵x +25x ≥10,当且仅当x =5时等号成立.∴要使平均利润最大,客车营运年数为5.变式3.某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面要求面积为9 3 平方米,且高度不低于 3 米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x =________米.答案 2 3解析 由题意可得BC =18x -x2(2≤x <6),∴y =18x +3x 2≥218x ×3x2=6 3. 当且仅当18x =3x2(2≤x <6),即x =23时等号成立.4. 分段函数模型例4.某市营业区内住宅电话通话费用为前 3 分钟 0.20 元,以后每分钟 0.10 元(前 3 分钟不足 3 分钟按 3 分钟计,以后不足 1 分钟按 1 分钟计).(1) 在直角坐标系内,画出一次通话在 6 分钟内(包括 6 分钟)的话费 y (元)关于通话时间 t (分钟)的函数图象; 【答案】见解析 【解析】如下图所示.(2) 如果一次通话t分钟(t>0),写出话费y(元)关于通话时间t(分钟)的函数关系式(可用[t]表示不小于t的最小整数).【答案】y={0.2,0<t⩽30.2+[t−3]×0.1,t>3【解析】由(1)知,话费y与时间t的关系是分段函数.当0<t⩽3时,话费y为0.2元;当t>3时,话费y应为(0.2+[t−3]×0.1)元.所以y={0.2,0<t⩽30.2+[t−3]×0.1,t>3.变式4.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;①该店月销量Q(百件)与销量价格P(元)的关系如图所示;①每月需各种开支2000元.(1) 当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;【答案】当P=19.5元时,月利润余额最大,为450元【解析】设该店月利润余额为L元,则由题设得L=Q(P−14)×100−3600−2000①由销量图易得Q={−2P+50,14⩽P⩽20−32P+40,20<P⩽26,代入①式得L={(−2P+50)(P−14)×100−5600,14⩽P⩽20(−32P+40)(P−14)×100−5000,20<P⩽26当14⩽P⩽20时,L max=450元,此时P=19.5元;当20<P⩽26时,L max=12503元,此时P=613元.故当P=19.5元时,月利润余额最大,为450元.(2) 企业乙只依靠该店,最早可望在几年后脱贫?【答案】最早可望在20年后脱贫【解析】设可在n年后脱贫,依题意有12n×450−50000−58000⩾0,解得n⩾20.即最早可望在20年后脱贫.课后习题一.单选题1.(2018·北京石景山联考)小明在如图1所示的跑道上匀速跑步,他从点A出发,沿箭头方向经过点B跑到点C,共用时30 s,他的教练选择了一个固定的位置观察小明跑步的过程,设小明跑步的时间为t(s),他与教练间的距离为y(m),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点M B.点NC.点P D.点Q解析:选D假设这个位置在点M,则从A至B这段时间,y不随时间的变化改变,与函数图象不符,故A选项错误;假设这个位置在点N,则从A至C这段时间,A点与C点对应y的大小应该相同,与函数图象不符,故B选项错误;假设这个位置在点P,则由函数图象可得,从A到C的过程中,会有一个时刻,教练到小明的距离等于经过30 s时教练到小明的距离,而点P不符合这个条件,故C选项错误;经判断点Q符合函数图象,故D选项正确,选D.2.(2019·洛阳模拟)某校为了规范教职工绩效考核制度,现准备拟定一函数用于根据当月评价分数x(正常情况下0≤x≤100,且教职工平均月评价分数在50分左右,若有突出贡献可以高于100分)计算当月绩效工资y(元).要求绩效工资不低于500元,不设上限,且让大部分教职工绩效工资在600元左右,另外绩效工资越低或越高时,人数要越少.则下列函数最符合要求的是()A.y=(x-50)2+500 B.y=10x25+500C .y =11 000(x -50)3+625D .y =50[10+lg(2x +1)]解析:选C 由题意知,拟定函数应满足:①是单调递增函数,且增长速度先快后慢再快;②在x =50左右增长速度较慢,最小值为500.A 中,函数y =(x -50)2+500先减后增,不符合要求;B 中,函数y =10x25+500是指数型函数,增长速度是越来越快,不符合要求;D 中,函数y =50[10+lg(2x +1)]是对数型函数,增长速度是越来越慢,不符合要求;而C 中,函数y =11 000(x -50)3+625是由函数y =x 3经过平移和伸缩变换得到的,符合要求.故选C.3.(2019·邯郸名校联考)某企业准备投入适当的广告费对甲产品进行促销宣传,在一年内预计销售量y (万件)与广告费x (万元)之间的函数关系为y =1+3x x +2(x ≥0).已知生产此产品的年固定投入为4万元,每生产1万件此产品仍需再投入30万元,且能全部售完. 若每件甲产品售价(元)定为“平均每件甲产品所占生产成本的150%”与“年平均每件甲产品所占广告费的50%”之和,则当广告费为1万元时,该企业甲产品的年利润为( )A .30.5万元B .31.5万元C .32.5万元D .33.5万元解析:选B 由题意,产品的生产成本为(30y +4)万元,销售单价为30y +4y ×150%+xy ×50%,故年销售收入为z =⎝⎛⎭⎫30y +4y ×150%+xy ×50%·y =45y +6+12x .∴年利润W =z -(30y +4)-x =15y +2-x 2=17+45x x +2-x 2(万元).∴当广告费为1万元时,即x =1,该企业甲产品的年利润为17+451+2-12=31.5(万元).故选B. 4.一种放射性元素的质量按每年10%衰减,这种放射性元素的半衰期(剩余质量为最初质量的一半所需的时间叫作半衰期)是(精确到0.1,已知lg 2≈0.301 0,lg 3≈0.477 1)( ) A .5.2 B .6.6 C .7.1 D .8.3 答案 B解析 设这种放射性元素的半衰期是x 年, 则(1-10%)x =12,化简得0.9x =12,即x =log 0.912=lg12lg 0.9=-lg 22lg 3-1≈-0.301 02×0.477 1-1≈6.6(年).故选B. 5.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m 3的,按每立方米m 元收费;用水超过10 m 3的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( ) A .13 m 3 B .14 m 3 C .18 m 3 D .26 m 3答案 A解析 设该职工用水x m 3时,缴纳的水费为y 元,由题意得y =⎩⎪⎨⎪⎧mx ,0<x ≤10,10m +x -10·2m ,x >10,则10m +(x -10)·2m =16m ,解得x =13.6.(2020·青岛模拟)某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x ,y 应为( )A .x =15,y =12B .x =12,y =15C .x =14,y =10D .x =10,y =14答案 A解析 由三角形相似得24-y 24-8=x 20,得x =54(24-y ),所以S =xy =-54(y -12)2+180,所以当y =12时,S 有最大值,此时x =15.检验符合题意.二.多选题7.(多选)在一次社会实践活动中,某数学调研小组根据车间持续5个小时的生产情况画出了某种产品的总产量y (单位:千克)与时间x (单位:小时)的函数图象,则以下关于该产品生产状况的正确判断是( )A .在前三小时内,每小时的产量逐步增加B .在前三小时内,每小时的产量逐步减少C .最后一小时内的产量与第三小时内的产量相同D .最后两小时内,该车间没有生产该产品 答案 BD解析 由该车间5小时来某种产品的总产量y (千克)与时间x (小时)的函数图象,得前三小时的年产量逐步减少,故A 错误,B 正确;后两小时均没有生产,故C 错误,D 正确.三.填空题 8.(2019·唐山模拟)某人计划购买一辆A 型轿车,售价为14.4万元,购买后轿车每年的保险费、汽油费、车检费、停车费等约需2.4万元,同时汽车年折旧率约为10%(即这辆车每年减少它的价值的10%),试问,大约使用________年后,用在该车上的费用(含折旧费)达到14.4万元.解析:设使用x 年后花费在该车上的费用达到14.4万元,依题意可得,14.4(1-0.9x )+2.4x =14.4. 化简得x -6×0.9x =0. 令f (x )=x -6×0.9x ,易得f (x )为单调递增函数,又f (3)=-1.374<0,f (4)=0.063 4>0,所以函数f (x )在(3,4)上有一个零点. 故大约使用4年后,用在该车上的费用达到14.4万元. 答案:49.某地区要建造一条防洪堤,其横断面为等腰梯形ABCD ,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面面积为93平方米,且高度不低于3米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤横断面的外周长不超过10.5米,则其腰长x 的取值范围为________.解析:根据题意知,93=12(AD +BC )h ,其中AD =BC +2×x 2=BC +x ,h =32x ,所以93=12(2BC +x )32x ,得BC =18x -x2,由⎩⎨⎧h =32x ≥3,BC =18x -x2>0,得2≤x <6.所以y =BC +2x =18x +3x2(2≤x <6),由y =18x +3x2≤10.5,解得3≤x ≤4.因为[3,4] ⊆[2,6),所以腰长x 的取值范围为[3,4]. 答案:[3,4]10.(2019·皖南八校联考)某购物网站在2019年11月开展“全部6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为________. 答案 3解析 为使花钱总数最少,需使每张订单满足“每张订单金额(6折后)满300元时可减免100元”,即每张订单打折前原金额不少于500元.由于每件原价48元,因此每张订单至少11件,又42=11×3+9,所以最少需要下的订单张数为3.11.某市用37辆汽车往灾区运送一批救灾物资,假设以v km/h 的速度直达灾区,已知某市到灾区公路线长400 km ,为了安全起见,两辆汽车的间距不得小于⎝⎛⎭⎫v 202 km ,那么这批物资全部到达灾区的最少时间是______ h .(车身长度不计) 答案 12解析 设全部物资到达灾区所需时间为t h ,由题意可知,t 相当于最后一辆车行驶了⎣⎡⎦⎤36×⎝⎛⎭⎫v 202+400 km 所用的时间,因此,t =36×⎝⎛⎭⎫v 202+400v =36v 400+400v≥236v 400×400v=12, 当且仅当36v 400=400v ,即v =2003时取等号.故这些汽车以2003 km/h 的速度匀速行驶时,所需时间最少,最少时间为12 h.四.解答题12.某城市现有人口总数为 100 万,如果年自然增长率为 1.2%,试解答下面的问题: (1) 写出 x 年后该城市的人口总数 y (万人)与年数 x (年)的函数关系式; 【答案】y =100×(1+1.2%)x ,x ∈N ∗【解析】1 年后该城市人口总数为 y =100+100×1.2%=100×(1+1.2%);2 年后该城市人口总数为 y =100×(1+1.2%)+100×(1+1.2%)×1.2%=100×(1+1.2%)2;3 年后该城市人口总数为 y =100×(1+1.2%)3;…; x 年后该城市人口总数为 y =100×(1+1.2%)x ,x ∈N ∗.(2) 计算 10 年以后该城市人口总数(精确到 0.1 万); 【答案】112.7 万【解析】10 年后该城市人口总数为 y =100×(1+1.2%)10=100×1.01210≈112.7(万).(3) 计算大约多少年以后该城市人口总数将达到 120 万(精确到 1 年). 【答案】16 年【解析】令 y =120,则有 100×(1+1.2%)x =120,解方程可得 15<x <16. 故大约 16 年后该城市人口总数将达到 120 万.13.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压 p (千帕)是气球的体积 V (立方米)的反比例函数,其图象如图所示.(千帕是一种压强单位)(1) 写出这个函数的解析式;【答案】p=96V【解析】设p与V的函数的解析式为p=k,把点A(1.5,64)代入,解得k=96.V∴这个函数的解析式为p=96.V(2) 当气球的体积为0.8立方米时,气球内的气压是多少千帕?【答案】120千帕【解析】把V=0.8代入p=96,p=120,V当气球的体积为0.8立方米时,气球内的气压是120千帕.(3) 当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?立方米【答案】气球的体积应不小于23,【解析】由p=144时,V=23∴p⩽144时,V⩾2,3当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于2立方米314.如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE=4米,CD=6米.为合理利用这块钢板,在五边形ABCDE内截取一个矩形BNPM,使点P在边DE上.设MP=x米,PN=y米,将y表示成x的函数,求该函数的解析式及定义域.【答案】y=−12x+10,定义域为[4,8]【解析】作PQ⊥AF于Q,∴PQ=(8−y)米,EQ=(x−4)米.又△EPQ∼△EDF,∴EQPQ =EFFD,即x−48−y=42.∴y=−12x+10,定义域为[4,8].15.大西洋鲑鱼每年都要逆流而上,游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速可以表示为函数v=1 2log3O100,单位是m/s,其中O表示鱼的耗氧量的单位数,(1) 当一条鱼的行氧量是2700个单位时,它的游速是多少?【答案】当一条鱼的行氧量是2700个单位时,它的游速是32(m/s)【解析】由题意得v=12log32700100=32(m/s)当一条鱼的行氧量是2700个单位时,它的游速是32(m/s).(2) 计算一条鱼静止时耗氧量的单位数.【答案】当一条鱼静止时耗氧量的单位数是100【解析】当一条鱼静止时,即v=0,则0=12log3O100,解得O=100当一条鱼静止时耗氧量的单位数是100.。
2020年中考数学 中考新题型 实际应用型(含解答)-

中考新题型 实际应用型命题思路导航近年来,在全国各地的中考试卷中,都有一些密切联系实际的应用型题.强调“学习数学在于应用”这一导向已受到广泛的关注和肯定,为了有效地解答中考应用型题.应当对此进行深入的研究,从近几年的中考“应用问题”来看,始终贯穿着一条主线——将生产、生活实际问题转化为数学问题,数学问题的解答就可能是生产、生活实际问题的解答.一般地应用问题的解答包括三个环节:一是将生产、生活实际问题转化成纯数学问题;二是对数学问题作出解答,得出数学问题的解法;三是检验数学问题作出的解是否符合实际问题.在这三个环节中最关键的环节就是“如何将实际问题转化成数学问题”,我们认为解决这类问题的有效方法之一就是撇开试题中非本质的东西,抓住题目的本质要素,建立数学模型.典型例题解析例1 农作物栽植时在株距相等的条件下,一般选用菱形或正方形两种栽植方式,如图所示,试比较两种栽植方式的优劣.(a ) (b )分析:可以从两种栽植方式的土地利用率,栽植密度,采光面积分析比较,并将问题转化为几何量的计算.解:(1)土地利用率设AB =BC =CD =DA =a ,A ′B ′=B ′C ′=C ′D ′=D ′A ′=a ,∴ S 菱形=2S △ABC =2·243a =223a ,S 正方形=a 2, ∴ 正方形菱形S S =23≈0.866. 即菱形种植方式的占地面积小,只占正方形种植方式的86.6%.(2)栽植密度显然:AD =23AB ≈0.866A ′B ′. 即正方形种植方式的7行,可改菱形种植方式的8行,大面积栽植时每行达数百棵,假设为300棵.正方形栽植方式的700行,可改为菱形栽植800行,即多栽植300×100=30000棵.(3)采光面积作物生长中叶子的截面大体面圆形,充分长大后相邻两圆外切,因而阴影部分有面积减少,作物采光面积增大.图(a )中阴影部分的面积S 1为:S 1=2·21a ·23a -π22⎪⎭⎫ ⎝⎛a =24π23a ⎪⎪⎭⎫ ⎝⎛-. 图(b )中阴影部分面积S 2为:S 2=a 2-π22⎪⎭⎫ ⎝⎛a =24π1a ⎪⎭⎫ ⎝⎛- ∴ 12S S =224π234π1a a ⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=π32π4--≈2.56, 即菱形种植方式作物采光面积比正方形种植方式作物采光面积大得多.综上所述,菱形种植方式较好.剖析:我国国土资源十分珍贵,特别是温室大棚寸土寸金,因此研究作物栽培方式具有现实意义,从而培养学生环保意识.例2 为了巩固1998年抗洪抢险的胜利成果,进一步增强长江大堤的防洪能力,经专家测算,长江某段堤坝(断面为如图所示的ABCD )的水坡面还需加宽1米,沿背水面由原来的坡度1︰1改建成坡度为1︰3,即∠EFG =30°,已知坝高10米,堤长1000米(参考数据2=1.41,3=1.73)(1)求坝底增加的宽度(如图中AF 的长);(2)若某工程队平均每天完成4500立方米的筑坝任务,问该工程队完成这一次任务至多要多少天?分析:该题以抗洪抢险为背景,立意于环境保护,科教兴国,是一道解直角三角形,梯形和工程问题的综合应用题,解答时应熟悉坡度概念,需要空间观念,会进行直角三角形、梯形中的有关计算从而求出所需土方数.解:(1)由DH ︰AH =1︰1,DH =10,得AH =10,故AB =AH -GH =9.又由Rt △EFG 中,FG =EG ·cot30°=103;得AF =FG -AG =(103-9)米.(2)S 梯形AFED =21(AF +DE )×EG =21×(103-9+1)×10 =5(103-8)得V =5·(103-8)×1000=(500003-40000)(m 3),则所需天数为:V ÷4500≈11(天),所以至多需要11天.例3 某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品50件.生产一件A 产品需要甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B 产品,需要甲种原料4千克,乙种原料10千克,可获利润1200元.(1)按要求安排A 、B 两种产品的生产件数,有哪几种方案,请你设计出来.(2)设生产A 、B 两种产品获总利润为y 元,其中一种的生产件数为x ,试写出y 与x 之间的函数关系,并利用函数的性质说明(1)中哪种生产方案获总利润最大?最大利润是多少?分析:设安排生产A 种产品x 件,则生产B 种产品(50-x )件.安排生产方案的建模条件是:甲种原料用料不超过360千克,乙种原料用料不超过290千克,所以生产方案满足的数学模型是 ()⎩⎨⎧≤-+≤-+290)50(1033605049x x x x 而获得利润是由函数y =700x +1200(50-x )所决定的,问题转化为上述函数在闭区间内的最值问题.解:(1)解不等式组:()⎩⎨⎧≤-+≤-+290)50(1033605049x x x x 解得30≤x ≤32.∵ x 为整数.∴ x 只取30,31,32.∵ A 、B 两种生产方案有三种:生产A 产品30件,B 产品20件;或者生产A 产品31件,B 种产品19件;或者生产A 产品32件,B 产品18件.(2)在每种确定的生产方案下所获利最大利润为y =700x +1200(50-x )=-500x +60000.因y 随x 的增大而减小,因此当x =30时,y 取得最大值,此时y =-500×30+60000=45000(元).剖析:此题涉及利润、生产、决策等市场经济方面的应用题,富有时代气息,既考查了学生的构建函数、不等式数学模型解决实际问题的能力,也增强了学生的经济意识和决策意识.例4 我国为了缩小个人收入差异,采取了征缴个人所得税政策,某地规定:月收入不超过100元的不纳税;月收入超过1100元就必须纳税,纳税标准为:超过1100元的部分不多于500元的按超过部分5%纳税;超过1100元的部分多于500元而不多于2000元的,超过的500元按5%比例,超过部分中的其余部分按10%的比例纳税.若某人六月份缴纳个人所得税为85元.问此人六月份的收入为多少元.分析:由500×5%=25,500×55+(200-50)×10%=175,25<85<175,故知此人收入超过1100元部分多于500元而不多于2000元,设此人六月份收入为x 元,于是可得方程:500×5%+(x -1100-500)×10%=85,解得x =2200(元);所以此人六月份的收入为2200元.剖析:本题涉及收入与纳税,着重考查学生运用一元一次方程解决实际问题的能力,增强依法纳税意识.例5 (吉林省)某初一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?”(涂黑部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列方程解答.解:下面仅给出一例供评分时对照参考.补充部分:若两车分别从两地同时开出,相向而行,经几小时两车相遇?解:经x 小时两车相遇.依题可得45x +35x =40,∴ x =21. 答:经半小时两车相遇.剖析:此题有多种解法.本文只给出一种解法,这种问题以及前面涉及的自编题均属于命题方式上为“开放题“,其解法、结论均不惟一.例6 (山西省)某市场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15%,并可用本和利再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付出仓储费用700元,请问根据商场的资金状况,如何购销获利较多?解:设商场投资x 元,在月初出售,到月末可获利y 1元;在月末出售可获利y 2元. 根据题意,得y 1=15%+10%(x +15%x )=0.265x ,y 2=30%x -700=0.3x -700.(1)当y 1=y 2时,0.265x =0.3x -700,x =20000;(2)当y 1<y 2时,0.265x <0.3x -700,x <20000;(3)当y 1>y 2时,0.265x >0.3x -700,x >20000.答:当商场投资为20000元时,两种销售方式获利相同;当商场投资超过20000元时,第二种销售方式获利多;当商场投资不足20000元时,第一种销售方式获利较多.剖析:此类属于探索型试题,此类试题通过转换情景,让考生站在决策的高度解决问题,综合考查了学生运用所学知识综合解题的能力.例7 (1)据《北京日报》2000年5月16日报道:北京市人均水资源占有量只有300立方米,仅是全国人均占有量的81,世界人均占有量的321.问:全国人均水资源占有量有多少立方米?世界人均水资源占有量是多少立方米?(2)北京市一年漏掉的水,相当于新建一个自来水厂,据不完全统计,全市至少有6×105个水龙头、2×105个抽水马桶漏水,如果一个关不紧的水龙头,一个月能漏掉a 立方米水;一个漏水马桶,一个月漏掉b 立方米水,那么一个月造成的水流失量至少是多少立方米?(用含a 、b 的代数式表示)(3)水源透支令人担忧,节约迫在眉睫,针对居民用水浪费现象,北京市将制定居民用水标准,规定三口之家楼房每月标准用水量,超标部分加价收费,假设不超标部分每立方米水费1.3元,超标部分每立方米水费2.9元,某住楼房的三口之家某月用水12立方米,交消费22元,请你通过列方程求出北京市规定三口之家楼房每月标准用水量为多少立方米.解:(1)300÷81=2400,300÷321=9600. 答:全国人均水资源占有量是2400立方米,世界人均水资源占有量是9600立方米. (2)一个月造成的流失量至少为(6×105a +2×105b )立方米.(3)设北京市规定三口之家楼房每月标准用水为x 立方米,依题意,得1.3x +2.9(12-x )=22,解这个方程,得x =8.答:北京市规定三口之家楼房每月标准用水量为8立方米.剖析:此类阅读理解试题结合社会上的一些热点或考生所熟悉的生活设置问题的场景,编拟新颖,使试题密切贴近生活,突出了时代感,此类问题通常伴有大量的阅读理解,因此解这种问题的关键在于认真审题,准确理解,将身边的生活问题转化成数学问题.中考真题演练1.(武汉市)今年入夏以来,湖北部分地区旱情严重,为缓解甲、乙两地旱情,某水库计划向甲、乙两地送水,甲地需水量为180万立方米,乙地需水量为120万立方米,现已两次送水:往甲地送水3天,乙地送水2天,共送水48万立方米;往甲地送水2天,乙地送水3天,共送水81万立方米.问:完成往甲地、乙地送水任务还各需多少天?2.(吉林省)一年期定期储蓄年利率为2.25%,所得利息要交纳20%的利息税,例如:存入一年期100元,到期储户纳税后所得利息的计算公式为:税后利息=100×2.25%-100×2.25%×20%=100×2.25%(1-20%).已知某储户有一笔一年期定期储蓄到期纳税后得利息450元,问该储户存入多少本金?3.(云南省)在直径为AB 的平面内,.划出一块三角形区域.使三角形一边为AB ,顶点C 在半圆上,其他两边分别为6和8,现要建造一个内接于△ABC 的矩形水池DEFN ,其中,DE 在AB 上,如图的设计方案是使AC =8,BC =6,(1)求△ABC 中AB 上的高h ;(2)设DN =x ,当x 取何值时,水池DEFN 的面积最大?(3)实际施工时,发现在AB 上距B 点1.85的M 处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为保护大树,请设计出另一种方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.4.(宁夏回族自治区)列方程解应用题:(1)某同学勤工俭学挣的100元钱,按活期存入银行,如果月息是0.15%,数月后本金与利息的和为100.9元,那么该同学的钱在银行存了几个月?(2)王老师把500元钱按一年定期存入银行,到期后,取出了300元捐给了灾区,剩下的200元和应得利息又全部按一年期存入,由于利息下调,第二次的年利率是第一年存款年利率的53,这样到期后可得利息15元,求第一次存款的年利率(144=12).5.(连云港市)有一座抛物线形拱桥,正常水位在桥下面宽度为20米,拱顶距离水面4米.(1)在如图所示的直角坐标系中,求出该抛物线的解析式;(2)在正常水位的基础上,当水位上升h (米)时,桥下水面的宽度为d (米),试求出将d 表示为h 的函数解析式;(3)设正常水位时桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米,求水深超过多少米时就分影响过往船只在桥下顺利航行6.(北京市东城区)商场出售的A 型冰箱每台令售价2190元,每日耗电量为1千瓦·时,而B 型节能冰箱每台售价虽比A 型冰箱高出10%,但每日耗电量却为0.55千瓦·时,现将A 型冰箱打折出售(打一折后的售价为原价的101),问商场至少打几折,消费者购买才合算(按使用期为10年.每年365天,每千瓦·时电0.40元计算)?7.(沈阳市)某县位于沙漠边缘地带,治理沙漠、绿化家乡是全县人民的共同愿望.到1998年底,全县沙漠的绿化率已达30%,此后,政府计划在近几年内,每年将当年年初未绿化的沙漠面积的m%栽上树进行绿化,到2000年底,全县沙漠的绿化率已达43.3%,求m 值.已被绿化的沙漠总面积注:沙漠的绿化率=被绿化的部分)原有沙漠总面积(含已8.(安徽省)目前,包括长江与黄河等七大流域在内,全国水土流失面积达到367万平方千米,其中长江与黄河流域的水土流失总面积占全国的32.4%,而长江流域的水土流失问题更为严重,它的水土流失面积比黄河流域的水土流失面积还要多29万平方千米,问长江流域的水土流失面积是多少?(结果保留整数)9.(福州市)如图为某地的等高线示意图,图中a、b、c为等高线,海拔最低的一条为60米,等高距为10米,结合地理知识写出等高线a为________米,b为_________米,c 为_________米.10.(安徽省)我们知道,溶液的酸碱度由pH确定.当pH>7时,溶液呈碱性,当pH<7时,溶液呈酸性.若将给定的HCL溶液加水稀释,那么在下列图象中,能反映HCL溶液的pH与所加水的体积(v)的变化关系的是()A B C D11.(四川省)某种商品进价为a元,商店将价格提高30%作零售价销售.在销售旺季过后,商店又以8折(即售价的80%)的价格开展促销活动.这时一件该商品的售价为()(A)a元(B)0.8a元(C)1.04a元(D)0.92a元12.(新疆乌鲁木齐)今年世界杯足球赛的积分方法如下:赢一场得3分,平一场得1分,输了一场得0分.某小组四个队进行单循环赛后,其中一队积7分.若该队赢了x场,平了y场,则(x,y)是()(A)(1,4)(B)(2,1)(C)(0,7)(D)(3,1)13.(安微省)据报载,我省人均耕地已从1951年的2.93亩减少到1999年的1.02亩,平均每年约减少0.04亩.若不采取措施,继续按此速度减下去,若干年后我省将无地可耕.无地可耕的情况最早会发生在()(A)2022年(B)2023年(C)2024年(D)2025年14.(北京市东城区)某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的32.若提前购票,则给予不同程度的优惠.在五月份内,团体票每张12元,共售出团体票数的52;零售票每张16元,共售出零售票数的一半.如果在六月份内,团体票按每张16元出售,并计划在六月份内售出全部余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?15.(北京市西城区)在北京市“危旧房改造”中,小强一家搬进了回龙观小区.这个小区冬季用家庭燃气炉取暖.为了估算冬季取暖第一个月使用天燃气的开支情况,从11月15日起,小强连续八天每天晚上记录了天燃气表显示的读数,如下表[注:天燃气表上先后两次显示的读数之差就是这段时间内使用天燃气的数量(单位:米3)]:小强的妈妈11月15日买了一张面值600元的天燃气使用卡,已知每立方米天燃气1.70元,请你估算这张卡够小强家用一个月(按30天计算)吗?为什么?16.(河北省)某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;(2)设销售单价为每千克x 元,月销售利润为y 元,求y 与x 的函数关系式(不必写出x 的取值范围);(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?17.(沈阳市)某书店老板去批发市场购买某种图书.第一次购书用100元,按该书定价2.8元出售,并很快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5元,用去了150元,所购书数量比第一次多10本.当这批书售出54时,出现滞销,便以定价的5折售完剩余的图书.试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其他因素)?若赔线,赔多少?若赚钱,赚多少?18.(哈尔滨市)哈市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.4元.“神州行”不缴月基础费,每通话1分钟,付话费0.6元(这里均指市内通话).若一个月内通话x 分钟,两种通讯方式的费用分别为1y 元和2y 元.(1)1y 、2y 与x 之间的函数关系式;(2)一个月内通话多少分钟,两种通讯方式的费用相同?(3)若某人预计一个月内使用话费200元,则应选择哪种通讯方式较合算? 19.(山东省)如图,是凸透镜成像的光路图,已知AB ⊥l ,l B A ⊥'',EO ⊥l ,它们的垂足分别是A 、A '、O ;BE ∥l ,f f OF O F AF ,211===为凸透镜的焦距.利用数学知识证明B A ''=AB .20.(山东省)如图表示近5年来某市的财政收入情况.图中x轴上1,2,…,5依次表示第1年,第2年,…,第5年,即1997年,1998年,…,2001年.可以看出,图中的折线近似于抛物线的一部分.(1)请你求出过A、C、D三点的二次函数的解析式;(2)分别求出当x=2和x=5时(1)中的二次函数的函数值;并分别与B、E两点的纵坐标相比较;(3)利用(1)中的二次函数的解析式预测今年该市的财政收入.21.(江西省)有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天,王老师到达道口时,发现由于拥挤,每分钟只能3人通过道口,此时,自己前面还有36个人等待通过(假定先到的先过,王老师过道口的时间忽略不计),通过道口后,还需7分钟到达学校.(1)此时,若绕道而行,要15分钟到达学校.从节省时间考虑,王老师应选择绕道去学校,还是选择通过拥挤的道口去学校?(2)若在王老师等人维持下,几分钟后,秩序恢复正常(维持秩序期间,每分钟仍有3人通过道口),结果王老师比拥挤的情况下提前了6分钟通过道口,问维持秩序的时间是多少?22.(长沙市)某商场经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价xx 3 5 9 11y 18 14 6 2(1)在直角坐标系中①根据表中提供的数据描出实数对(x,y)的对应点;②猜测并确定日销售量y件与日销售单价x元之间的函数关系式,并画出图象.(2)设经营此商品的日销售利润(不考虑其他因素)为 P元,根据日销售规律:①试求日销售利润P元与日销售单价x元之间的函数关系式,并求出日销售单价x为多少元时,才能获得最大日销售利润.试问日销售利润P是否存在最小值?若有,试求出,若无,请说明理由;②在直角坐标系中,画出日销售利润P元与日销售单价x元之间的函数图象的简图,观察图象,写出x与P的取值范围.参考答案1.设完成往甲地送水任务还需x 天,完成往乙地送水任务还需y 天.根据题意得:⎪⎪⎩⎪⎪⎨⎧=⋅++⋅+=⋅++⋅+813512025180842512035180y x y x ,整理得:⎪⎪⎩⎪⎪⎨⎧=+++=+++95405407520545y x y x解之是⎩⎨⎧==35y x ,经检验⎩⎨⎧==35y x 是原方程组的解.答:完成往甲地送水任务还需5天,完成往乙地送水任务还需3天.2.设存入x 元本金,根据题意,得:2.25%(1-20%)x =450. 解之得x =25000(元). 3.(1)∵ C 点是半圆周上的点,∴ ∠ACB =90°,从而知△ABC 是直角三角形, ∴ AB =22BC AC +=10,∵ 10h =48, ∴ h =4.8;(2)设NF =y ,∵ △CNF ∽△CAB ,∴ 108.48.4yx =-, ∴ y =10-1225x ,∴ S 矩形DEFN =1225x 2+10x (0<x <4.8)∴ 当x =⎪⎭⎫ ⎝⎛-1225210x =2.4时,S 矩形DEFN 的值最大,即此时水池DEFN 的面积最大.(3)在现设计方案中,欲判断大树是否位于水池边上,需求EB 的值. ∵ 当水池DEFN 的面积最大时,DN =2.4,∴ 此时F 是BC 的中点,在Rt △FEB 中,EF =2.4,BF =3.∴ EB =22EF BF -=24.29-=1.8∵ BM =1.85,∴ BM >EB ,从而在现设计方案中有BM >EB ,知大树必位于欲修建的水池边上,故应重新设计施工方案.∵ 当x =2.4时,DE =5,∴ AD =AB -(DE +BE )=3.2由圆的对称性知满足题设条件的另外设计方案是将最大面积的水池建成使AC =6,图略(注,不要求作图) 4.(1)设该同学的钱在银行存了x 个月.根据题意,得100+100×0.15%·x =100.9,解这个方程,得x =6. 答:略,(2)设第一次存款的年利率为x根据题意得[500(1+x )-300]·x 53=15, 整理,得20x 2+8x -1=0 解得x =101=10%,x =-105(不符合题意舍去) 答:第一次存款的年利率为10%. 5.(1)设抛物线的解析式为y =ax 2,在正常水位时,B 点坐标为B (10,-4),将它代入解析式得:-4=a ·102,∴ a =-251, ∴ 解析式为y =-251 x 2. (2)水位上升h (米)时,D 点的纵坐标为-(4-h ).设D 点横坐标为x (x >0),则-(4-h )=-251x 2, 解得x =5h -4, ∴ d =2h =10h -4,(3)当桥下水面宽度为18米时,得18=10h -4,2581=4-h , h =4-2581=2519=0.76. ∴ 桥下水深超过2.76米时就影响过往船只在桥下顺利航行. 6.设商场将A 型冰箱打x 折出售,消费者购买才合算. 依题意,有2190×10x+365×10×1×0.4≤2190×(1+10%)+365×10×0.55×0.4 2190×⎪⎭⎫⎝⎛-1.110x ≤365×10×0.4×(0.55-1)解这个不等式得x ≤8,答:商场应将A 型冰箱至少打八折出售,消费者购买才合算. 7.依题意:(1-30%)(1-m%)=(1-43.3%) 整理,得(-m%)2=0.81,1-m%=±0.9,m 1=10,m 2=190,m 2=190不合题意,舍去,所以m =10. 答:m 的值为10.8.设长江流域的水土流失面积为x 万平方千米,根据题意得 x +(x -29)=367×32.4%,解得x ≈74.答:长江流域的水土流失面积约是74万平方千米. 9.60,8010.C 11.C 12.B 13.D14.设总票数为a 张,六月份零售票应按每张x 元定价. 五月份:团体票售出数为,523253a a =⨯票款收入为a a 524325312=⨯⨯(元); 零售票售出票数为a a 613121=⨯,票款收入为a a 386116=⨯(元).六月份:团体票所剩票数为a a 1543252=⨯,可收入a a 156415416=⨯(元); 零售票所剩票数为a a 613121=⨯,可收入ax x a 6161=⨯(元).依题意,得ax a a a 61156438524+=+.解这个方程,得x =19.2答:六月份零售票应按每张19.2元定价.15.小强家这一周平均每天用天燃气10立方米.由此估计小强家冬季取暖第一个月使用天燃气约为300立方米. ∵ 1.7×300=510<600,∴ 估计这张卡够小强家用一个月. 16.(1)当销售单价定为每千克55元时,月销售量为:500―(55―50)×10=450(千克), 所以月销售利润为:(55-40)×450=6750(元).(2)当销售单价为每千克x 元时,月销售量为:[500―(x ―50)×10]千克, 而每千克的销售利润是:(x ―40)元, 所以月销售利润为:y =(x ―40)[500―(x ―50)×10]=(x ―40)(1000-10x )=-10x 2+1400x -40000(元),∴ y 与x 的函数解析式y =-10x 2+1400x -40000. (3)要使月销售利润达到8000元,即y =8000, ∴ -10x 2+1400x -40000=8000,即:x 2-140x +4800=0,解得x 1=60,x 2=80.当销售单价定为每千克60元时,月销售量为: 500―(60―50)×10=400(千克), 月销售成本为:40×400=16000(元);当销售单价定为每千克80元时,月销售量为: 500―(80―50)×10=200(千克) 月销售成本为:40×200=8000(元);由于8000<10000<16000,而月销售成本不能超过10000元, 所以销售单位应定为每千克80元.17.解法一:设第二次购书x 本,则第一次购书(x -10)本.由题意,得xx 1502110100=+-, 整理得x 2-110x+3000=0,解得x 1=50,x 2=60. 经检验,x 1=50,x 2=60都是原方程的根.当x =50时,每本书的批发价为150÷50=3(元),高于书的定价,不合题意,舍去.当x =60时,每本书的批发价为150÷60=2.5(元),低于书的定价,符合题意.因此第二次购书60本.⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯218.2608.25460-150=151.2-150=1.2(元)答:该老板第二次售书赚了1.2元钱.解法二:设第一次购书的批发价为x 元,则第二次的批发价为(x +0.5)(元).由题意,得5.015010100+=+x x , 整理得2x 2-9x +10=0,解得x 1=2.5,x 2=2. 经检验,x 1=2.5,x 2=2都是原方程的根.当x =2.5时,第二次的批发价为2.5+0.5=3(元)高于书的定价,不舍题意,舍去.当x =2时,第二次的批发价为2+0.5=2.5(元)低于书的定价,符合题意. 因此第二次购书:150÷(2+0.5)x +60(本).以下解法同解法一.解法三:设第一次购书x 本,则第二次购书(x +10)本.由题意,得1015021100+=+x x , 整理得x 2-90 x +2000=0,解得x 1=40,x 2=50. 经检验,x 1=40,x 2=50都是原方程的根.当x =40每本书的批发价为100÷40=2.5(元), 第二次的批发价为2.5+0.5=3(元),高于书的定价,不合题意,舍去. 当x =50时,每本书的比发价为100÷50=2(元),第二次的比发价为2.0+0.5=2.5(元)低于书的定价,符合题意.因此第一次购书本.第二次购书50+10=60(本).以下解法同解法一.18.y 1=50+0.4x (x ≥0的整数).y 2=0.6x (x ≥0的整数). (2)若两种通讯费用相同,则50+0.4x =0.6.∴ x =250. 答:一个月内通话250分钟,两种移动通讯费用相同. (3)当y 1=200时,即200=50+0.4x ,则x =375(分). 当y 2=200时,即200=0.6x 则x =33331(分). ∴ “全球通”可通话375分钟,“神州行”可通话33331分钟. 答:选择“全球通”较合算. 19.∵ AB ⊥l ,EO ⊥l ,∴ AB ∥EO ,又∵ BE ∥l ,∴ 四边形AOEB 是矩形.∵ AF 1=F 1O =OF 2=f , ∴ BE =AO =2f , ∴ O F 2=21BE ,即BE OF 2=21.∵E B O O ''2=BE OF 2=21,即B 'O =BO , 又∠B 'O A '=∠BOA ,∴ Rt △B 'O A '≌Rt △BOA , ∴ A 'B '=AB .20.(1)设所求二次函数的解析式为y =ax 2+bx +c ,得⎪⎩⎪⎨⎧=++=++=++54168.3396.2c b a c b a c b a ,解这个方程组,得a =0.2,b =-0.2,c =2.6,因此,所求二次函数的解析式为:y =0.2x 2-0.2x +2.6.(*)(2)由(*)式,当x =2时,y =3,此时所求函数值与B 点纵坐标的误差为0(亿元). 当x =5时,y =6.6,此时所求函数值与E 点纵坐标的误差为0.3(亿元)(3)把x =6代入(*)式,得y =8.6,所以预测2002年该市的财政收入约为8.6亿元.21.(1)∵ 7336+=19>15, ∴ 王老师应选择绕道而行去学校. (2)设维持秩序时间为t .则⎪⎭⎫ ⎝⎛-+-9336336t t =6,解之得t =3(分). 答:维持好秩序的时间是3分钟.22.(1)①准确描出四点位置②猜测它是(3,18),(5,14)代入上式求得k =-2,b =24则有y =-2x+24时,(9,6),(11,2)代入知同样满足∴ 所求是y =-2x+24由实际意义知所求y =-2x+24(*) (0≤x <12和y =0(x ≥12)画出图象(2)①因为销售利润=售出价-进货价, 则P =xy -2y将(1)中(*)式代入,则P =y (x -2)=(24―2x )(x ―2)=-2x 2+28x -48=―2(x ―7)2+50. 当x =7时,日销售利润获得最大值为50元.又当x >12时,即销售单价大于是2元时,此时无人购买,所以此时利润P =0(x ≥12)由实际意义知,当销售价x =0,即亏本卖出此时利润P =-48,即为最小值.②根据实际意义,有:0≤x<2时亏本卖出当x=2或x=12时利润P=0,当x>12时,即高价卖出无人购买P=0 故作出图象,知:x≥0,-48≤P≤50。
数学建模思想

在小学数学教学中渗透、运用数学建模思想的一些课例《数学课程标准》指出:“数学教学应该从学生已有生活经验出发,让学生亲身经历将实际问题抽象成数学模型并理解运用。
”数学建模就是建立数学模型,是一种数学的思考方法,是利用数学语言、符号、式子或图象模拟现实的模型,是把现实世界中有待解决或未解决的问题,从数学的角度发现问题、提出问题、理解问题,通过转化过程,归结为一类已经解决或较易解决的问题,并综合运用所学的数学知识与技能求得解决的一种数学思想方法。
数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。
在小学数学教学活动中,教师应采取有效措施,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。
现结合我校的教学实践谈一些这方面的做法:一、《植树问题》模型的构建与运用1、创设情境,感知数学建模思想。
数学来源于生活,又服务于生活。
因此在新课引入中,将教材上的内容通过生活中熟悉的事例,以情境的方式在课堂上展示给学生,如县城街道旁整齐的桂花树图片、摆花盆图片等,让学生感到真实、新奇、有趣,这样去激活学生已有的生活经验,使学生用积累的经验来感受其中隐含的数学问题,促使学生将生活问题抽象成数学问题,感知数学模型的存在。
2、参与探究,主动建构数学模型。
第一,大胆猜测,产生解决问题的欲望。
猜想是一种带有一定直觉性的比较高级的思维方式,对于探索或发现性学习来说,猜想是一种非常重要的思维方法。
在找规律之前,我先让学生猜猜要用多少棵树苗?你是怎么猜的?想知道自己答案对不对吗?让学生产生要验证自己答案的欲望。
第二,动手实践探究,主动建构数学模型。
动手实践、自主探索与合作交流是学生学习数学的重要方式。
学生的数学学习活动应当是一个主动、活泼的、富有个性的过程。
因此,我为学生提供了小棒、磁片、实验表格等实验材料,让学生在主动探索过程中,自主发现“棵数=间隔数+1”这个规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 - 构建数学模型 解决实际问题 “能够运用所学知识解决简单的实际问题”是九年义务教育数学教学大纲规定的初中数学教学目的之一。能够解决实际问题是学习数学知识、形成技能和发展能力的结果,也是对获得知识、技能和能力的检验。构建数学模型 解决实际问题基本程序如下:
解题步骤如下: 1、阅读、审题: 要做到简缩问题,删掉次要语句,深入理解关键字句;为便于数据处理,最好运用表格(或图形)处理数据,便于寻找数量关系。 2、建模: 将问题简单化、符号化,尽量借鉴标准形式,建立数学关系式。 3、合理求解纯数学问题 4、解释并回答实际问题 中学阶段主要求解下面几类应用题,本文以2004年全国各地中考试题为例供同学们学习。 一、 数与式模型 例1、(2004台州)水是生命之源,水资源的不足严重制约我市的工业发展,解决缺水的根本在于节约用水,提高工业用水的重复利用率、降低每万元工业产值的用水量都是有力举措。据《台州日报》4月26日报导,目前,我市工业用水每天只能供应10万吨, - 2 -
重复利用率为45℅,先进地区为75℅,工业每万元产值平均用水25吨,而先进地区为10吨,可见我市节水空间还很大。 (1) 若我市工业用水重复利用率(为方便,假设工业用水只重复利用一次)由目前的45℅增加到60℅,那么每天还可以增加多少吨工业用水? (2) 写出工业用水重复利用率由45℅增加到x℅(45<x<100),每天所增加的工业用水y(万吨)与之间的函数关系式。 (3) 如果我市工业用水重复利用率及每万元工业产值平均用水量都达到先进地区水平,那么与现有水平比较,仅从用水的角度我市每天能增加多少万元工业产值? 解:(1)100000×(1+60%)-100000×(1+45%)=100000×15%=15000(吨) 答:每天还可以增加15000吨工业用水 (2) y=10(x%-45%)=0.1x-4.5(45<x<100) (3)1170025)45.01(10000010)75.01(100000(万元) 答:每天能增加11700万元工业产值。 二、方程模型 例2、(2004 陕西)足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分. 请问: (1)前8场比赛中,这支球队共胜了多少场? (2)这支球队打满14场比赛,最高能得多少分? (3)通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标.请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标? 解:(1)设这个球队胜x场,则平了(8-1-x)场. 根据题意,得3x+(8-1-x)=17. 解之,得x=5. - 3 -
答:前8场比赛中,这个球队共胜了5场. (2)打满14场比赛最高能得17+(14-8)×3=35分. (3)由题意知,以后的6场比赛中,只要得分不低于12分即可. ∴胜不少于4场,一定达到预期目标,而胜3场、平3场,正好达到预期目标. ∴在以后的比赛中这个球队至要胜3场. 例3、(2004 南通)小刚为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009千瓦)的节能灯,售价49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏。假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小刚家所在地的电价是每千瓦0.5元。 ⑴设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯的费用和用一盏白炽灯的费用(注:费用=灯的售价+电费) ⑵小刚想在这两种灯中选购一盏: ①当照明时间是多少时,使用两种灯的费用一样多; ②试用特殊值推断: 照明时间在什么范围内,选用白炽灯费用低; 照明时间在什么范围内,选用节能灯费用低; ⑶小刚想在这两种灯中选购两盏 假定照明时间是3000小时,使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由。 解:(1)用一盏节能灯的费用是(49+0.0045x)元, 用一盏白炽灯的费用是(18+0.02x)元. (2)①由题意,得49+0.0045x=18+0.02x,解得x=2000, 所以当照明时间是2000小时时,两种灯的费用一样多. ②取特殊值x=1500小时, 则用一盏节能灯的费用是49+0.0045×1500=55.75(元), 用一盏白炽灯的费用是18+0.02×1500=48(元), - 4 -
所以当照明时间小于2000小时时,选用白炽灯费用低; 取特殊值x=2500小时, 则用一盏节能灯的费用是49+0.0045×2500=60.25(元), 用一盏白炽灯的费用是18+0.02×2500=68(元), 所以当照明时间超过2000小时时,选用节能灯费用低. (3)分下列三种情况讨论: ①如果选用两盏节能灯,则费用是98+0.0045×3000=111.5元; ②如果选用两盏白炽灯,则费用是36+0.02×3000=96元; ③如果选用一盏节能灯和一盏白炽灯,由(2)可知,当照明时间大于2000小时时,用节能灯比白炽灯费用低,所以节能灯用足2800小时时,费用最低. 费用是67+0.0045×2800+0.02×200=83.6元 综上所述,应各选用一盏灯,且节能灯使用2800小时,白炽灯使用200小时时,费用最低. 例4、(2004 绍兴市)初三(2)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学交流的情况.根据他们的对话,请你分别求出A,B两个超市今年“五一节” 期间的销售额.
解:设去年A超市销售额为x万元,B 超市销售额为y万元, 由题意得,170%101%151,150yxyx - 5 -
解得.50,100yx 100(1+15%)=115(万元),50(1+10%)=55(万元). 答:A,B两个超市今年“五一节” 期间的销售额分别为115万元,55万元. 例5、(重庆市2004年)某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元,为了减少环境污染,市场推出一种叫“CNG”的改烧汽油为天然汽的装置,每辆车改装价格为4000元。公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下末改装车辆每天燃料费用的203,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下末改装车辆每天燃料费用的52。问: (1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少? (2)若公司一次性将全部出租车改装,多少天后就可以从节省的燃料费中收回成本? 解:(1)设公司第一次改装了y辆车,改装后的每辆出租车每天的燃料费比改装前的燃料费下降的百分数为x
依题意得方程组:80210052801280100203801yxyyxy 化简得:)2100(51)100(203yy 解得:20%4052yx 答:公司共改装了40辆车,改装后的每辆出租车每天的燃料费比改装前的燃料费下降了40%。 (2)设一次性改装后,m天可以收回成本,则: 100×80×40%×m=4000×100 - 6 -
解得:m=125(天) 答:125天后就可以从节省的燃料费中收回成本。 例6、(2004 哈尔滨) “利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元. (1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买. (2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量. 解:(1)设甲种型号手机要购买x部,乙种型号手机购买y部,丙种型号手机购买z部,根据题意,得:
…
答:有两种购买方法:甲种手机购买30部,乙种手机购买10部;或甲种手机购买20部,乙种手机购买20部. (2)根据题意,得:
解得: …………
答:若甲种型号手机购买26部手,则乙种型号手机购买6部,丙种型号手机购买8部; 若甲种型号手机购买27部手,则乙种型号手机购买7部,丙种型号手机购买6部; 若甲种型号手机购买28部手,则乙种型号手机购买8部,丙种型号手机购买4部; 例7、(2004 万州)小明家、王老师家、学校在同一条路上,小明家到王老师家的路 - 7 -
程为3千米,王老师家到学校的路程为0.5千米,由于小明的父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学。已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车速度各是多少千米/时?
解:设王老师的步行速度为x千米/时,则骑自行车速度为3x千米/时。 依题意得:315.035.033xx 20分钟=31小时 解得:x=5 经检验:x=5是所列方程的解 ∴3x=3×5=15
答:王老师的步行速度及骑自行车速度各为5千米/时 和15千米/时 例8、(2004 朝阳)某校初三(2)班的师生到距离10千米的山区植树,出发1个半小时后,张锦同学骑自行车从学校按原路追赶队伍,结果他们同时到达植树地点.如果张锦同学骑车的速度比队伍步行的速度的2倍还多2千米. (1)求骑车与步行的速度各是多少? (2)如果张锦同学要提前10分钟到达植树地点,那么他骑车的速度应比原速度快 多少? 解:(1)设步行的速度为x千米/时. 根据题意得23221010xx. 解得 41x,352x. 经检验 41x,352x都是原方程的解, 但35x不合题意,舍去. 当x=4时,2x+2=10.