高考数学 直接证明与间接证明 专题
高考数学复习第十二单元第60讲直接证明与间接证明课件理新人教A版

课堂考点探究
[总结反思] 分析法是逆向思维,当已知条件与结论之间的联系不够明显、直接,
或证明过程中需要用到的知识不太明确、具体时,往往采用分析法,特别是含有根
号、绝对值的等式或不等式,从正面不易推导时,常考虑用分析法.注意用分析法
证题时,通过反推,逐步寻找使结论成立的充分条件,正确把握转化方向是使问题
1 1
1
+ =
成立,
1 1 1 +1
则 y1(x1+y1)+x1(x1+y1)=x1y1,
1 2 3 2
x1+ + 1 =0,
2
4
1 2 3 2
x1+ + 1 >0,从而得出矛盾.
2
4
∴12 +12 +x1y1=0,即
但 x1≠0,y1≠0,即
故原命题成立.
课堂考点探究
考点四 放缩法
2
2
2
由题设得(a+b+c) =1,即 a +b +c +2ab+2bc+2ca=1,
2
所以 3(ab+bc+ca)≤1,即
2
2
2
1
ab+bc+ca≤ .
3
2
2
2
(2)因为 +b≥2a, +c≥2b, +a≥2c,当且仅当 a=b=c 时,
三个式子中的等号同时成立,
2 2 2
2 2 2
综合法证明时,易出现因果关系不明确,逻辑表达混乱的错误.
课堂考点探究
变式
在△ABC 中,内角 A,B,C 的对边分
高考数学一轮总复习 6.6直接证明与间接证明

h(x)在(-1,0)上为增函数,在(0,+∞)上为减函数. h(x)max=h(0)=0,h(x)≤h(0)=0, 即f(x)≤g(x).
.
【规律方法】 综合法是一种由因导果的证明方法,即由已 知条件出发,推导出所要证明的等式或不等式成立.因此,综合 法又叫做顺推证法或由因导果法.其逻辑依据是三段论式的演绎 推理方法,这就要保证前提正确,推理合乎规律,才能保证结论 的正确性.
A.充分条件 B.必要条件 C.充要条件 D.既不充分也不必要条件
解析 分析法证明的本质是证明结论成立的充分条件,即② ⇒①,所以①是②的必要条件.
答案 B
.
3.△ABC的三个内角A,B,C成等差数列,A,B,C的对边 分别为a,b,c.求证:a+1 b+b+1 c=a+3b+c.
证明 要证a+1 b+b+1 c=a+3b+c, 即证a+a+b+b c+a+b+b+c c=3也就是a+c b+b+a c=1, 只需证c(b+c)+a(a+b)=(a+b)(b+c), 需证c2+a2=ac+b2, 又△ABC三内角A,B,C成等差数列,故B=60°,
误,从而证明了原命题成立,这样的证明方法叫做反证法.
.
对点自测
知识点一
直接证明
1.要证明 3 + 7 <2 5 ,可选择的方法有以下几种,其中最
合理的是( )
A.综合法
B.分析法
C.反证法
D.归纳法
.
解析 要证明 3 + 7 <2 5 成立,可采用分析法对不等式两 边平方后再证明.
答案 B
.
2.用分析法证明:欲使①A>B,只需②C<D,这里①是②的 ()
.
J 基础回扣·自主学习
理教材 夯基础 厚积薄发
高考数学文一轮复习专题第五直接证明与间接证明

2.间接证明 (1)反证法:假设原命题_不__成__立__,经过正确的推理, 最后得出_矛__盾__,因此说明假设错误,从而证明了原 命题成立,这样的证明方法叫做反证法. (2)反证法中的矛盾主要是指: ①与_假__设_矛盾; ②与_数__学__公__理__ 、 _定__理__、 _公__式__、 _定__义__或 _已__被__证__明__了__的__结__论__矛盾; ③与公__认__的__简__单__事__实__矛盾; ④与题设矛盾.
【名师点评】 当一个命题的结论是以“至多”、 “至少”、“惟一”或以否定形式出现时,宜用反 证法来证,反证法的关键是在正确的推理下得 出矛盾,矛盾可以是与已知条件矛盾,与假设 矛盾,与定义、公理、定理矛盾,与事实矛盾 等,反证法常常是解决某些“疑难”问题的有力 工具,是数学证明中的一件有力武器.
方法感悟
方法技巧 1.综合法是“由因导果”,即由已知条件出发, 推导出所要证明的等式或不等式成立.因此, 综合法又叫做顺推证法或由因导果法. 综合法格式:从已知条件出发,顺着推证,由 “已知”得“推知”,由“推知”得“未知”,逐步推 出求证的结论,这就是顺推法的格式,它的常 见书面表达是“∵,∴”或“⇒”.
例1 已知 a,b>0,且 a+b=1,求证:1a+1b≥4. 【思路分析】 解答本题可由已知条件出发, 结合基本不等式 a+b≥2 ab,(a,b>0),即 可得出结论. 【证明】 法一:∵a,b>0,且 a+b=1.
∴a+b≥2 ab,∴ ab≤12,∴1a+1b=a+ abb=a1b≥4.
【名师点评】 (1)综合法是数学证明中最常用 的一种方法,本题巧妙地应用了“1”的代换及基 本不等式. (2)综合法证明不等式常用“两个正数的算术平均 数不小于它们的几何平均数”这一结论,运用时 要结合题目条件,有时要适当变形.
专题6.6 直接证明、间接证明、数学归纳法(原卷版)

第六篇不等式、推理与证明专题6.6直接证明、间接证明、数学归纳法【考纲要求】1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点3.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题【命题趋势】1.直接证明与间接证明一般考查以不等式、数列、解析几何、立体几何、函数、三角函数为背景的证明问题.2.数学归纳法一般以数列、集合为背景,用“归纳—猜想—证明”的模式考查.【核心素养】本讲内容主要考查逻辑推理和数学运算的核心素养.【素养清单•基础知识】1.直接证明(1)综合法①定义:利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q(其中P表示已知条件、已有的定义、定理、公理等,Q表示所要证明的结论).(2)分析法①定义:从要证明的__结论__出发,逐步寻求使它成立的充分条件,直至最后把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件.2.间接证明间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.(1)反证法的定义一般地,假设原命题的结论不成立,经过正确的推理,最后得出矛盾,由此说明假设错误,从而证明了原命题的成立,这样的证明方法叫作反证法.(2)用反证法证明的一般步骤①反设——假设原命题的结论不成立;②归谬——根据假设进行推理,直到推理中出现矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.用反证法证明命题“若p ,则q ”的过程可以用框图表示为 肯定条件p ,否定结论q ―→推出逻辑矛盾―→“若p ,则非q ”为假―→“若p ,则q ”为真【真题体验】1.用分析法证明:欲使①A >B ,只需②C <D ,这里①是②的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件2.用反证法证明命题“三角形三个内角至少有一个不大于60°”时,应假设( )A .三个内角都不大于60°B .三个内角都大于60°C .三个内角至多有一个大于60°D .三个内角至多有两个大于60°3.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为__________.4.下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0,其中能使b a +a b ≥2成立的条件的个数是__________.5.(2019·湖北天门中学月考)设f (n )=1n +1+1n +2+…+12n (n ∈N *),那么f (n +1)-f (n )等于( )A.12n +1B.12n +2C.12n +1+12n +2D.12n +1-12n +26.(2019·黑龙江大庆一模)设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k +1成立时,总可推出f (k +1)≥k +2成立”.那么,下列命题总成立的是( )A .若f (1)<2成立,则f (10)<11成立B .若f (3)≥4成立,则当k ≥1时,均有f (k )≥k +1C .若f (2)<3成立,则f (1)≥2成立D .若f (4)≥5成立,则当k ≥4时,均有f (k )≥k +1成立7.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)时命题为真,进而需证n =__________时,命题亦真.【考法解码•题型拓展】考法一:分析法解题技巧:分析法证题的思路(1)先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时,命题得证.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.【例1】 已知a >0,求证:a 2+1a 2-2≥a +1a -2.考法二:综合法归纳总结 :综合法证题的思路(1)分析条件选择方向:分析题目的已知条件及已知与结论之间的联系,选择相关的定理、公式等,确定恰当的解题方法.(2)转化条件组织过程:把已知条件转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.(3)适当调整回顾反思:回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取.【例2】 (1)设a ,b ,c ,d 均为正数,且a +b =c +d ,若ab >cd ,证明:①a +b >c +d ;②|a -b |<|c -d |.(2)(2019·长沙调考)已知函数f (x )=log 2(x +2),a ,b ,c 是两两不相等的正数,且a ,b ,c 成等比数列,试判断f (a )+f (c )与2f (b )的大小关系,并证明你的结论.考法三:反证法归纳总结(1)适用范围:①“结论”的反面比“结论”本身更简单、更具体、更明确的题目;②否定性命题、唯一性命题、存在性命题、“至多”“至少”型命题;③有的肯定形式命题,由于已知或结论涉及无限个元素,用直接证明法比较困难,往往用反证法.(2)推理关键:在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等,推导出的矛盾必须是明显的.【例3】 等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.考法四:数学归纳法证明等式归纳总结:数学归纳法证明等式的思路和注意点(1)思路:用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n 0是多少.(2)注意点:由n=k时等式成立,推出n=k+1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确地写出证明过程,不利用归纳假设的证明,就不是数学归纳法.【例1】求证:12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1)(n∈N*).考法五:数学归纳法证明不等式归纳总结(1)当遇到与正整数n有关的不等式证明时,应用其他办法不容易证明,则可考虑应用数学归纳法.(2)数学归纳法证明不等式的关键是由n=k成立,推证n=k+1时也成立,证明时用上归纳假设后,可采用分析法、综合法、作差(作商)比较法、放缩法等方法证明.【例2】已知数列{a n},a n≥0,a1=0,a2n+1+a n+1-1=a2n,求证:当n∈N*时,a n<a n+1.考法六:归纳—猜想—证明归纳总结:“归纳—猜想—证明”的模式,是不完全归纳法与数学归纳法综合应用的解题模式.其一般思路是:通过观察有限个特例,猜想出一般性的结论,然后用数学归纳法证明.这种方法在解决与正整数n有关的探索性问题、存在性问题中有着广泛的应用,其关键是归纳、猜想出公式.【例3】(2019·湖北孝感检测)数列{a n}满足S n=2n-a n(n∈N*).(1)计算a1,a2,a3,并猜想a n的通项公式;(2)用数学归纳法证明(1)中的猜想.【易错警示】易错点一:反证法中未用到反设的结论【典例】设{a n}是公比为q的等比数列.设q≠1,证明:数列{a n+1}不是等比数列.【错解】:假设{a n+1}是等比数列.则{a n+1}的前三项为a1+1,a2+1,a3+1,即a1+1,a1q+1,a1q2+1.(a1+1)(a1q2+1)-(a1q+1)2=a21q2+a1+a1q2+1-a21q2-2a1q-1=a1(q2-2q+1)=a1(q-1)2≠0,所以(a1+1)(a1q2+1)≠(a1q+1)2,所以数列{a n+1}不是等比数列.(推理中未用到结论的反设)【错因分析】:错解在解题的过程中并没有用到假设的结论,故不是反证法.利用反证法进行证明时,首先对所要证明的结论进行否定性假设,并以此为条件进行归谬,得到矛盾,则原命题成立.【正解】:假设{a n+1}是等比数列.则对任意的k∈N*,(a k+1+1)2=(a k+1)(a k+2+1),a2k+1+2a k+1+1=a k a k +2+a k+a k+2+1,a21q2k+2a1q k=a1q k-1·a1q k+1+a1q k-1+a1q k+1,因为a1≠0,所以2q k=q k-1+q k+1.又q≠0,所以q2-2q+1=0,所以q=1,这与已知q≠1矛盾.所以假设不成立,故数列{a n+1}不是等比数列.【误区防范】利用反证法证明数学问题时,要假设结论错误,并用假设的命题进行推理,如果没有用假设命题推理而推出矛盾结果,其推理过程是错误的.【跟踪训练】设a>0,b>0,且a2+b2=1a2+1b2.证明:a2+a<2与b2+b<2不可能同时成立.【答案】见解析【解析】证明 假设a 2+a <2与b 2+b <2同时成立,则有a 2+a +b 2+b <4.而由a 2+b 2=1a 2+1b 2得a 2b 2=1,因为a >0,b >0,所以ab =1.因为a 2+b 2≥2ab =2(当且仅当a =b =1时,等号成立),a +b ≥2ab =2(当且仅当a=b =1时,等号成立),所以a 2+a +b 2+b ≥2ab +2ab =4(当且仅当a =b =1时,等号成立),这与假设矛盾,故假设错误.所以a 2+a <2与b 2+b <2不可能同时成立.易错点二:证明过程未用到归纳假设【典例】用数学归纳法证明:12+122+123+…+12n -1+12n =1-12n (n ∈N *).【错解】:证明:(1)当n =1时,左边=12,右边=1-12=12,等式成立.(2)假设当n =k (k ∈N *,且k ≥1)时,等式成立,即12+122+123+…+12k -1+12k =1-12k .那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=12×⎣⎡⎦⎤1-⎝⎛⎭⎫12k +11-12=1-12k +1.这就是说,当n =k +1时,等式也成立.根据(1)和(2),可知等式对任意n ∈N *都成立.【错因分析】:错误的原因在第二步,它是直接利用了等比数列的求和公式求出了当n =k +1时,式子12+122+…+12k -1+12k +12k +1的和,而没有利用“归纳假设”,不符合数学归纳法证明的步骤. 【正解】:证明:(1)当n =1时,左边=12,右边=1-12=12,等式成立.(2)假设当n =k (k ∈N *,且k ≥1)时,等式成立,即12+122+123+…+12k -1+12k =1-12k ,那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=1-12k +12k +1=1-12k +1=右边.这就是说,当n =k +1时,等式也成立.根据(1)和(2),可知等式对任意n ∈N *都成立.【误区防范】(1)用数学归纳法证明命题时常出现两种错误:一是n 0的值找错.二是证明命题n =k +1也成立时,没有用到n =k 时的归纳假设.(2)确定由n =k 变化到n =k +1的过程中项的变化情况时,要把握好项的变化规律以及首末项.【跟踪训练】 设a 1=1,a n +1=a 2n -2a n +2+1(n ∈N *),求a 2,a 3,a n ,并用数学归纳法证明你的结论.【答案】见解析【解析】a 2=2,a 3=2+1,可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1.下面用数学归纳法证明上式:当n =1时结论成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1+11 1.这就是说,当n =k +1时结论也成立.综上可知,a n =n -1+1(n ∈N *).【递进题组】1.欲证a 2+b 2-1-a 2b 2≤0,只需证明( )A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0 C.a +b22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥02.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( )A .a 1b 1+a 2b 2B .a 1a 2+b 1b 2C .a 1b 2+a 2b 1 D.123.设a ,b ,c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.4.已知a ≠0,证明:关于x 的方程ax =b 有且只有一个根.5.设f (n )=1+12+13+…+1n (n ∈N *),求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).6.用数学归纳法证明:1+n2≤1+12+13+…+12n≤12+n(n∈N*).7.(2019·湖北部分重点中学联考)已知数列{x n}满足x1=12,且x n+1=x n2-x n(n∈N*).(1)用数学归纳法证明:0<x n<1;(2)设a n=1x n,求数列{a n}的通项公式.8.(2019·武穴中学月考)试证:n 为正整数时,f (n )=32n +2-8n -9能被64整除.【考卷送检】一、选择题1.用反证法证明命题“若a +b +c 为偶数,则自然数a ,b ,c 恰有一个偶数”时,正确的反设为( ) A .自然数a ,b ,c 都是奇数B .自然数a ,b ,c 都是偶数C .自然数a ,b ,c 中至少有两个偶数D .自然数a ,b ,c 都是奇数或至少有两个偶数2.分析法又称执果索因法,若用分析法证明“设 a >b >c ,且a +b +c =0,求证b 2-ac <3a ”,索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<03.(2019·焦作一中月考)若a ,b ∈R ,则下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2D.a b <a +1b +1 4.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( ) A .恒为负值 B .恒等于零C .恒为正值D .无法确定正负5.已知a >b >0,且 ab =1,若 0<c <1,p =log c a 2+b 22,q =log c ⎝ ⎛⎭⎪⎫1a +b 2,则p ,q 的大小关系是( )A .p >qB .p <qC .p =qD .p ≥q6.设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +x y ( )A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2二、填空题7.设a =3+22,b =2+7,则a ,b 的大小关系为________.8.用反证法证明命题“若实数a ,b ,c ,d 满足a +b =c +d =1,ac +bd >1,则a ,b ,c ,d 中至少有一个是非负数”时,第一步要假设结论的否定成立,那么结论的否定是________________.9.(2019·郑州一模)某题字迹有污损,大致内容是“已知|x |≤1,,用分析法证明|x +y |≤|1+xy |”.估计污损部分的文字内容为________.三、解答题10.(2019·永州一中月考)已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .证明 欲要证2a 3-b 3≥2ab 2-a 2b 成立,只需证2a 3-b 3-2ab 2+a 2b ≥0,即证2a (a 2-b 2)+b (a 2-b 2)≥0,即证(a +b )(a -b )(2a +b )≥0.因为a ≥b >0,所以a -b ≥0,a +b >0,2a +b >0,从而(a +b )(a -b )(2a +b )≥0成立,所以2a 3-b 3≥2ab 2-a 2b .11.(2019·黄石二中期中)已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定点F 的位置;若不存在,请说明理由.12.已知数列{a n }满足a 1=12,且a n +1=a n 3a n +1(n ∈N *).(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)设b n =a n a n +1(n ∈N *),数列{b n }的前n 项和记为T n ,证明:T n <16.13.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2 +b 2>2;⑤ab >1.其中能推出“a ,b 中至少有一个大于1”的条件是________(填序号).14.求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).15.用数学归纳法证明1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2).16.(2019·衡水高中调研)首项为正数的数列{a n }满足a n +1=14(a 2n +3),n ∈N *.证明:若a 1为奇数,则对一切n ≥2,a n 都是奇数.17.已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1),试比较11+a 1+11+a 2+11+a 3+…+11+a n 与1的大小,并说明理由.。
直接证明与间接证明 高考大一轮复习ppt课件 人教版

基础诊断
考点突破
课堂总结
【训练3】 已知a≠0,证明关于x的方程ax=b有且只有一个根.
b 证明 由于 a≠0,因此方程至少有一个根 x=a. 假设x1,x2是它的两个不同的根,即ax1=b,
①
ax2=b,
由①-②得a(x1-x2)=0, 因为x1≠x2,所以x1-x2≠0, 所以a=0,这与已知矛盾,故假设错误. 所以当a≠0时,方程ax=b有且只有一个根.
基础诊断
考点突破
课堂总结
b 2 1 2 2 a· = |a| |b| 1-|a||b| 4 1 2 2 = [|a| |b| -(a· b)2] 4 1 ∴S△ABC= |a|2|b|2-(a· b)2. 2
基础诊断
考点突破
课堂总结
考点二 证明
分析法的应用 要证明2a3-b3≥2ab2-a2b成立,
叙述较繁;综合法从条件推出结论,较简捷地解决问 题,但不便于思考.实际证题时常常两法兼用,先用分 析法探索证明途径,然后再用综合法叙述出来.
基础诊断 考点突破 课堂总结
3.利用反证法证明数学问题时,要假设结论不成立,并用 假设的命题进行推理,不用假设命题推理而推出矛盾结 果,其推理过程是错误的. [易错防范] 注意推理的严谨性,在证明过程中每一步推理都要有充 分的依据,这些依据就是命题的已知条件和已经掌握了 的数学结论,不可盲目使用正确性未知的自造结论.在
基础诊断
考点突破
课堂总结
2. 间接证明
间接证明是不同于直接证明的又一类证明方法,反证法是
一种常用的间接证明方法. 不成立 即在原命题的条件 (1)反证法的定义:假设原命题_______( 下,结论不成立),经过正确的推理,最后得出矛盾,因此
高中数学中常见的证明方法

高中数学中常见的证明方法一、直接证明法直接证明法是最基本也是最常见的证明方法之一。
它通过对所要证明的命题进行逻辑推理和分析,直接给出证明的过程和结论。
要使用直接证明法,一般需要明确以下几个步骤:1. 提出所要证明的命题:首先,明确所要证明的命题,即要证明的结论。
2. 建立前提条件:在进行证明前,需要明确前提条件,即已知条件或已知命题。
3. 逻辑推理:通过逻辑推理和分析,根据已知条件和逻辑关系,逐步推导出结论。
4. 结论:最后,根据已有的证明过程,给出结论。
二、间接证明法间接证明法又称反证法,它是通过假设所要证明的命题不成立,然后推导出与已知事实矛盾的结论,从而证明所要证明的命题是正确的。
间接证明法的一般步骤如下:1. 假设反命题:首先,假设所要证明的命题的反命题是正确的。
2. 推导过程:根据假设和已知条件,通过逻辑推理进行推导,尽可能多地得到信息。
3. 矛盾结论:最终推导出一个与已知事实矛盾的结论。
4. 否定假设:由于假设的反命题与已知事实矛盾,所以可以否定假设,即所要证明的命题是正确的。
间接证明法常用于证明一些数学定理、存在性证明和最大最小值的存在性等问题。
三、数学归纳法数学归纳法是一种常用的证明方法,特别适用于证明一类命题或定理,如整数性质、等差数列的性质等。
它基于两个基本步骤:基本情况的验证和归纳假设的使用。
数学归纳法的一般步骤如下:1. 基本情况的验证:首先,验证当命题成立的最小情况,通常是n=1或n=0的情况。
2. 归纳假设的使用:假设当n=k时命题成立,即假设命题对于某个特定的正整数k是成立的。
3. 归纳步骤的推理:在归纳假设的基础上进行推理和分析,证明当n=k+1时命题也成立。
4. 归纳法的结论:根据归纳步骤的推理和基本情况的验证,可以得出结论,即所要证明的命题对于所有正整数都成立。
数学归纳法在数学推理和定理证明中有着广泛的应用,尤其适用于证明具有递推性质的命题。
四、逆否命题证明法逆否命题证明法是通过对命题的逆否命题进行证明,从而间接地证明所要证明的命题。
高考数学总复习考点知识专题讲解34---直接证明与间接证明

以上三式相加得 43a1+1+3b1+1+3c+1 1≥9-3(a+b+c)=6, ∴3a1+1+3b1+1+3c+1 1≥32, 当且仅当a=b=c=13时取“=”.
角度2:分析法 【例1-2】 (1)已知a≥b>0,求证:2a3-b3≥2ab2- a2b. (2)已知a>0,求证: a2+a12- 2≥a+12-2.
[证明] (1)要证明2a3-b3≥2ab2-a2b,
只需证2a3-b3-2ab2+a2b≥0, 即证2a(a2-b2)+b(a2-b2)≥0, 即证(a+b)(a-b)(2a+b)≥0. ∵a≥b>0,∴a-b≥0,a+b>0,2a+b>0, 从而(a+b)(a-b)(2a+b)≥0成立, ∴2a3-b3≥2ab2-a2b.
[证明] ①当n=1时,左边=12-22=-3,右边=- 3,等式成立.
②假设n=k(k≥1,k∈N*)时,等式成立,即12-22+32 -42+…+(2k-1)2-(2k)2=-k(2k+1).
当n=k+1时,12-22+32-42+…+(2k-1)2-(2k)2+ (2k+1)2-(2k+2)2=-k(2k+1)+(2k+1)2-(2k+2)2=- k(2k+1)-(4k+3)=-(2k2+5k+3)=-(k+1)[2(k+1)+1],
1.分析法与综合法的应用特点 对较复杂的问题,常常先从结论进行分析,寻求结论 与条件的关系,找到解题思路,再运用综合法证明;或两 种方法交叉使用. 2.反证法证明的应用特点 要假设结论错误,并用假设的命题进行推理,如果没 有用假设命题推理而推出矛盾结果,其推理过程是错误 的.
3.数学归纳法的应用特点 归纳假设就是已知条件,在推证n=k+1时,可以通过 凑、拆、配项等方法,但必须用上归纳假设.
江苏高考直接证明与间接证明专题练习(附答案)

江苏高考直接证明与间接证明专题练习(附答案)直接证明是相关于直接证明说的,综合法和剖析法是两种罕见的直接证明。
以下是直接证明与直接证明专题练习,请考生查缺补漏。
【典例1】 (2021天津高考)q和n均为给定的大于1的自然数.设集合M={0,1,2,,q-1},集合A={x|x=x1+x2q++xnqn-1,xiM,i=1,2,,n}.(1)当q=2,n=3时,用罗列法表示集合A.(2)设s,tA,s=a1+a2q++anqn-1,t=b1+b2q++bnqn-1,其中ai,biM,i=1,2,,n.证明:假定an1及a0可知0,只需证1,只需证1+a-b-ab1,只需证a-b-ab1,即-1.这是条件,所以原不等式得证.考向3 反证法(高频考点) 【典例3】 (1)(2021山东高考改编)用反证法证明命题设a,b为实数,那么方程x3+ax+b=0至少有一个实根时,要做的假定是________.(2)(2021陕西高考)设{an}是公比为q的等比数列.推导{an}的前n项和公式;设q1,证明数列{an+1}不是等比数列.[思绪点拨] (1)至少的否认是少于.(2)分q=1和q1两种状况求解.用反证法证明.[解析] (1)a,b为实数,那么方程x3+ax+b=0至少有一个实根的否认为方程x3+ax+b=0没有实根.[答案] 方程x3+ax+b=0没有实根(2)设{an}的前n项和为Sn,当q=1时,Sn=a1+a1++a1=na1;当q1时,Sn=a1+a1q+a1q2++a1qn-1,qSn=a1q+a1q2++a1qn,①-得,(1-q)Sn=a1-a1qn,Sn=,Sn=证明:假定{an+1}是等比数列,那么对恣意的kN+,(ak+1+1)2=(ak+1)(ak+2+1),a+2ak+1+1=akak+2+ak+ak+2+1,aq2k+2a1qk=a1qk-1a1qk+1+a1qk-1+a1qk+1,a10,2qk=qk-1+qk+1.q0,q2-2q+1=0,q=1,这与矛盾.直接证明与直接证明专题练习及答案就分享到这里,查字典数学网预祝考生可以考上自己理想的大学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学 直接证明与间接证明 专题
1.(2010·青岛模拟)已知函数f (x )=(12)x ,a ,b ∈R +,A =f (a +b 2),B =f (ab ),C =f (2ab a +b
),则A 、B 、C 的大小关系为 ( )
A .A ≤
B ≤
C B .A ≤C ≤B
C .B ≤C ≤A
D .C ≤B ≤A
解析:a +b 2≥ab ≥2ab a +b ,又f (x )=(12)x 在R 上是单调减函数,∴f (a +b 2)≤f (ab )≤f (2ab a +b
). 答案:A
2.函数y =f (x )在(0,2)上是增函数,函数y =f (x +2)是偶数,则f (1),f (2.5),f (3.5)的大小关系是
( )
A .f (2.5)<f (1)<f (3.5)
B .f (2.5)>f (1)>f (3.5)
C .f (3.5)>f (2.5)>f (1)
D .f (1)>f (3.5)>f (2.5)
解析:因为函数y =f (x )在(0,2)上是增函数,函数y =f (x +2)是偶函数,所以x =2是对称轴,在(2,4)上为减函数,由图象知f (2.5)>f (1)>f (3.5).
答案:B 3.在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,若1a +b +1b +c =3a +b +c
,试问A 、B 、C 是否成等差数列,若不成等差数列,请说明理由.若成等差数列,请给出证明.
证明:A 、B 、C 成等差数列,下面用综合法给出证明:
∵
1a +b +1b +c =3a +b +c , ∴
a +
b +
c a +b +a +b +c b +c =3, ∴c a +b +a b +c
=1, ∴c (b +c )+a (a +b )=(a +b )(b +c ),
∴b 2=a 2+c 2-ac .
在△ABC 中,由余弦定理,得
cos B =a 2+c 2-b 22ac =ac 2ac =12
, ∵0°<B <180° ∴B =60°.
∴A +C =2B =120°,
∴A 、B 、C 成等差数列.
4.若P =a +a +7,Q ( )
A .P >Q
B .P =Q
C .P <Q
D .由a 的取值确定
解析:∵要证P <Q ,只要证P 2<Q 2,
只要证:2a +7+2a (a +7)<2a +7+2(a +3)(a +4),
只要证:a 2+7a <a 2+7a +12,
只要证:0<12,
∵0<12成立,∴P <Q 成立.
答案:C
5.设a ,b 均为正数,且a ≠b ,求证:a 3+b 3>a 2b +ab 2.
证明:法一:(分析法)
要证a 3+b 3>a 2b +ab 2成立,
只需证(a +b )(a 2-ab +b 2)>ab (a +b )成立.
又因为a +b >0,
只需证a 2-ab +b 2>ab 成立.
又需证a 2-2ab +b 2>0成立,
即需证(a -b )2>0成立.
而依题设a ≠b ,则(a -b )2>0显然成立,由此命题得证.
法二:(综合法)
a ≠
b ⇒a -b ≠0⇒(a -b )2>0⇒a 2-2ab +b 2>0
⇒a 2-ab +b 2>ab .(*)
而a ,b 均为正数,∴a +b >0,
由(*)式即得(a +b )(a 2-ab +b 2)>ab (a +b ),
∴a 3+b 3>a 2b +ab 2.
6.用反证法证明:a 、b 、c 中至少有一个偶数时,下列假设正确的是 ( )
A .假设a 、b 、c 都是偶数
B .假设a 、b 、c 都不是偶数
C .假设a 、b 、c 至多有一个偶数
D .假设a 、b 、c 至多有两个偶数
解析:“至少有一个”的否定“都不是”.
答案:B
7.设a ,b ,c ∈(-∞,0),则a +1b ,b +1c ,c +1a
( ) A .都不大于-2
B .都不小于-2
C .至少有一个不大于-2
D .至少有一个不小于-2
解析:假设a +1b ,b +1c ,c +1a
都小于或等于-2, 即a +1b ≤-2,b +1c ≤-2,c +1a
≤-2, 将三式相加,得a +1b +b +1c +c +1a
≤-6, 又因为a +1a ≤-2,b +1b ≤-2,c +1c
≤-2, 三式相加,得a +1b +b +1c +c +1a
≤-6, 所以a +1b +b +1c +c +1a
≤-6成立. 答案:C
8.某同学准备用反证法证明如下一个问题:函数f (x )在上有意义,且f (0)=f (1),如果对于不同的x 1,x 2∈,都
有|f (x 1)-f (x 2)|<|x 1-x 2|,求证:|f (x 1)-f (x 2)|<12
.那么他的反设应该是________. 解析:该命题为全称命题,其否定为特称命题.
答案:“存在x 1,x 2∈,使得|f (x 1)-f (x 2)|<|x 1-x 2|且|f (x 1)-f (x 2)|≥12
” 9.已知a ,b ,c 是互不相等的实数.
求证:由y =ax 2+2bx +c ,y =bx 2+2cx +a 和y =cx 2+2ax +b 确定的三条抛物线至少有一条与x 轴有两个不同的交点.
证明:假设题设中的函数确定的三条抛物线都不与x 轴有两个不同的交点(即任何一条抛物线与x 轴没有两个不同的交点),
由y =ax 2+2bx +c ,
y =bx 2+2cx +a ,
y =cx 2+2ax +b ,
得Δ1=(2b )2-4ac ≤0,
Δ2=(2c )2-4ab ≤0,
Δ3=(2a )2-4bc ≤0.
上述三个同向不等式相加得,
4b 2+4c 2+4a 2-4ac -4ab -4bc ≤0,
∴2a 2+2b 2+2c 2-2ab -2bc -2ca ≤0,
∴(a -b )2+(b -c )2+(c -a )2≤0,
∴a =b =c ,这与题设a ,b ,c 互不相等矛盾,
因此假设不成立,从而命题得证.
10.设a ,b ,c ,d ∈(0 ( )
A .ad =bc
B .ad <bc
C .ad >bc
D .ad ≤bc
解析:|a -d |<|b -c |⇔(a -d )2<(b -c )2⇔a 2+d 2-2ad <b 2+c 2-2bc, 又∵a +d =b +c ⇔(a +d )2=(b +c )2⇔a 2+d 2+2ad =b 2+c 2+2bc ,∴-4ad <-4bc ,∴ad >bc .
答案:C
11.已知a ,b ,μ∈(0,+∞)且1a +9b
=1,则使得a +b ≥μ恒成立的μ的取值范围是________. 解析:∵a ,b ∈(0,+∞)且1a +9b
=1, ∴a +b =(a +b )(1a +9b )=10+(9a b +b a
)≥10+29=16,∴a +b 的最小值为16. ∴要使a +b ≥μ恒成立,需16≥μ,∴0<μ≤16.
答案:(0,16]。