26.3(2)二次函数的图象

合集下载

26.3_实际问题与二次函数_第1课时

26.3_实际问题与二次函数_第1课时

1 0.5( x 2 )2 2
例:某工厂大门是一抛物线形的水泥建筑物,大门底部宽 AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车 欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m.这辆汽 车能否顺利通过大门?若能,请你通过计算加以说明;若不能, 请简要说明理由.
(2).写出该专卖店当一次销售x(只)时,所获利润y(元)与x
之间的函数关系式,并写出自变量x的取值范围; (3)若店主一次卖的只数在10至50只之间,问一次卖多少 只获得的利润最大?其最大利润为多少?
【解析】(1)设一次购买x只,才能以最低价购买,则有: 0.1(x-10)=20-16,解这个方程得x=50. 答:一次至少买50只,才能以最低价购买 (2)
∴当水面下降1m时,水面宽 度增加了( 2 6 4 )m 返回
解三 如图所示,以抛物线和水面的两个交点的连线为x轴,以其中 的一个交点(如左边的点)为原点,建立平面直角坐标系.
此时,抛物线的顶点为(2,2) ∴可设这条抛物线所表示 的二次函数的解析式为:
y a( x 2 )2 2
a 0.5
a 0.5
2 a 2 2
∴这条抛物线所表示的二 次函数为: y 0.5 x 2 当水面下降1m时,水面的 纵坐标为y=-3,这时有:
这时水面宽度为 6 m 2
∴当水面下降1m时,水面宽 度增加了( 2 6 4 )m 返回
3 0.5 x 2 x 6
解二 如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线 的对称轴为y轴,建立平面直角坐标系. 此时,抛物线的顶点为(0,2) ∴可设这条抛物线所表示 的二次函数的解析式为:
一般地,因为抛物线y=ax2+bx+c的顶点是最低(高)

新课程课堂同步练习册(九年级数学下册人教版)答案

新课程课堂同步练习册(九年级数学下册人教版)答案

数学课堂同步练习册(人教版九年级下册)参考答案第二十六章 二次函数26.1 二次函数及其图象(一)一、 D C C 二、 1. ≠0,=0,≠0,=0,≠0 =0, 2. x x y 62+=3. )10(x x y -= ,二三、1. 23x y = 2.(1)1,0,1 (2)3,7,-12 (3)-2,2,0 3. 2161x y = §26.1 二次函数及其图象(二)一、 D B A 二、1. 下,(0,0),y 轴,高 2. 略 3. 答案不唯一,如22x y -= 三、1.a 的符号是正号,对称轴是y 轴,顶点为(0,0) 2. 略3. (1) 22x y -= (2) 否 (3)()6-;(),6-§26.1 二次函数及其图象(三)一、 BDD 二、1.下, 3 2. 略 三、1. 共同点:都是开口向下,对称轴为y 轴.不同点:顶点分别为(0,0);(0,2);(0,-2) .2. 41=a 3. 532+-=x y §26.1 二次函数及其图象(四)一、 DCB 二、1. 左,1, 2. 略 3. 向下,3-=x ,(-3,0) 三、1. 3,2a c ==- 2. 13a =3. ()2134y x =-§26.1 二次函数及其图象(五)一、C D B 二、1. 1=x ,(1,1) 2. 左,1,下,2 3.略三、1.略2.(1)()212y x =+- (2)略 3. (1)3)2(63262--=-===x y k h a(2)直线2223x =>-小2.(1)()212y x =+- (2)略 §26.1 二次函数及其图象(六) 一、B B D D 二、1.23)27,23(=x 直线 2. 5;5;41<-3. < 三、1. ab ac a b x a y x y x y 44)2(32)31(36)4(2222-++=---=--= 略2. 解:(1)设这个抛物线的解析式为2y ax bx c =++.由已知,抛物线过(20)A -,,(10)B ,,(28)C ,三点,得4200428a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩,,.解这个方程组,得 224a b c =⎧⎪=⎨⎪=-⎩.∴所求抛物线的解析式为2224y x x =+-.(2)222192242(2)222y x x x x x ⎛⎫=+-=+-=+- ⎪⎝⎭.∴该抛物线的顶点坐标为1922⎛⎫-- ⎪⎝⎭,. §26.2 用函数观点看一元二次方程一、 C D D 二、1.(-1,0);(2,0) (0,-2) 2. 一 3. 312-或; 231<<-x ; 312x x <->或 三、1.(1)1x =-或3x = (2)x <-1或x >3(3)1-<x <3 2.(1)()21232y x =--+ (2)()20和()20 §26.3 实际问题与二次函数(一)一、 A C D 二、1. 2- 大 18 2. 7 3. 400cm 2三、1.(1)当矩形的长与宽分别为40m 和10m 时,矩形场地的面积是400m 2(2)不能围成面积是800m 2的矩形场地.(3)当矩形的长为25m 、宽为25m 时,矩形场地的面积最大,是625m 22.m ,矩形的一边长为2x m .其相邻边长为((2041022xx -+=-+∴该金属框围成的面积(121022S x x ⎡⎤=⋅-++⎣⎦(2320x x =-++ (0<x<10-当30x ==-.此时矩形的一边长为)260x m =-,相邻边长为((()10210310m -+⋅-=.()21003300.S m =-=-最大26.3 实际问题与二次函数(二)一、A B A 二、1. 2 2. 250(1)x + 3.252或12.5 三、1. 40元 当5.7=x 元时,625=最大W 元 2. 解:(1)降低x 元后,所销售的件数是(500+100x ),y=-100x 2+600x+5500 (0<x ≤11 )(2)y=-100x 2+600x+5500 (0<x ≤11 )配方得y=-100(x -3)2+6400 当x=3时,y 的最大值是6400元。

26.3(6)二次函数的图像

26.3(6)二次函数的图像

26.3(6)二次函数2)y-=+k的图像ax(m上海市市北初级中学吴沈刚一、教学内容分析进一步体验把实际问题转化为有关二次函数知识的过程,让学生积极参与数学学习和解决问题的活动.二、教学目标设计1.进一步体验把实际问题转化为有关二次函数知识的过程.2.通过观察、实验、猜想、总结和类比,进一步提高归纳问题的能力.3.通过积极参与数学学习和解决问题的活动,体现团队协作精神,树立数学学习的自信心.难点:会用二次函数的有关知识解决实际生活中的问题.重点:会结合二次函数的图像分析问题、解决问题,在运用中体会二次函数的实际意义,培养注重数形结合的思想方法四、教学用具准备教具、学具、多媒体设备(宋体四号)五、教学流程设计复习引入实践与探索回顾与反思当堂课内练习本课小结六、教学过程设计1、复习引入二次函数的有关知识在经济生活中的应用更为广阔,我们来看这样一个生活中常见的问题:某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.请你设计一个方案,使获得的设计费最多,并求出这个费用.你能解决它吗?2、实践与探索例题1 写出下列各函数关系,并判断它们是什么类型的函数.(1)写出正方体的表面积S (cm 2)与正方体棱长a (cm )之间的函数关系;(2)写出圆的面积y (cm 2)与它的周长x (cm )之间的函数关系. 解 (1)由题意,得 )0(62>=a a S ,其中S 是a 的二次函数;(2)由题意,得 )0(42>=x x y π,其中y 是x 的二次函数; 例题2 正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.解 (1))2150(4225415222<<-=-=x x x S ; (2)当x=3cm 时,189342252=⨯-=S (cm 2).例题3 某公司生产的某种产品,它的成本是2元,售价是3元,年销售量为100万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x (十万元)时,产品的年销售量将是原销售量的y 倍,且y 是x 的二次函数,它们的关系如下表:(1)求y 与x 的函数关系式; (2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S (十万元)与广告费x (十万元)的函数关系式;(3)如果投入的年广告费为10~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?解 (1)设二次函数解析式为c bx ax y ++=2.由表中数据,得⎪⎩⎪⎨⎧=++=++=.8.124,5.1,1c b a c b a c解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=.1,53,101c b a 所以所求二次函数解析式为1531012++-=x x y . (2)根据题意,得105)23(102++-=--=x x x y S .(3)465)25(10522+--=++-=x x x S . 由于1≤x ≤3,所以当1≤x ≤2.5时,S 随x 的增大而增大.3、当堂课内练习1.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价 ( )A 、5元B 、10元C 、15元D 、20元※※2.某公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件,为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x (万元)时,产品的年销售量将是原销售量的y 倍,且107107102++-=x x y ,如果把利润看作是销售总额减去成本费和广告费,试写出年利润S (万元)与广告费x (万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大,最大年利润是是多少万元?例题4 某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克.在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元,日均获利为y 元.(1)求y 关于x 的函数解析式,并注明x 的取值范围;(2)将(1)中所求出的二次函数配方成ab ac a b x a y 44)2(22-++=的形式,写出顶点坐标;在直角坐标系画出草图;观察图像,指出单价定为多少元时日均获利最多,是多少?分析 若销售单价为x 元,则每千克降低(70-x )元,日均多售出2(70-x )千克,日均销售量为[60+2(70-x )]千克,每千克获利为(x-30)元,从而可列出函数解析式.解 (1)根据题意,得-+=xx500y(--70)]60(2)[30-=x+x(30≤x≤70).650026022-(2)y6500=xx1950-+26022--=x.-65(22+)顶点坐标为(65,1950).二次函数草图略.经观察可知,当单价定为65元时,日均获利最多,是1950元.4、本课小结:会结合二次函数的图像分析问题、解决问题,在运用中体会二次函数的实际意义5、回家作业:练习册26.3(6)。

最新华师大版九年级数学下册电子课本课件【全册】

最新华师大版九年级数学下册电子课本课件【全册】
最新华师大版九年级数学下册电子 课本课件【全册】
1. 圆的基本元素
最新华师大版九年级数学下册电子 课本课件【全册】
2. 圆的对称性
最新华师大版九年级数学下册电子 课本课件【全册】
最新华师大版九年级数学下册电子 课本课件【全册】
26.3 实践与探索
最新华师大版九年级数学下册电子 课本课件【全册】
第27章 圆
最新华师大版九年级数学下册电子 课本课件【全册】
27.1 圆的认识
最新华师大版九年级数学下册电 子课本课件【全册】目录
0002页 0062页 0100页 0158页 0229页 0261页 0285页 0322页 0336页 0387页 0443页 0466页 0497页 0 2. 二次函数y=ax2+bx+c的图象与性质 26.3 实践与探索 27.1 圆的认识 2. 圆的对称性 27.2 与圆有关的位置关系 2. 直线与圆的位置关系 27.3 圆中的计算问题 第28章 样本与总体 1. 普查和抽样调查 28.2 用样本估计总体 2. 简单随机抽样调查可靠吗 1. 借助调查作决策
第26章 二次函数
最新华师大版九年级数学下册电子 课本课件【全册】
26.1 二次函数
最新华师大版九年级数学下册电子 课本课件【全册】
26.2 二次函数的图象与性质
最新华师大版九年级数学下册电子 课本课件【全册】
1. 二次函数y=ax2的图象与性质
最新华师大版九年级数学下册电子 课本课件【全册】
2. 二次函数y=ax2+bx+c的图象 与性质
最新华师大版九年级数学下册电子 课本课件【全册】
3. 求二次函数的表达式

内蒙古化德县第三中学:26.3.1 实际问题与二次函数1 课件 (人教版九年级下册)

内蒙古化德县第三中学:26.3.1 实际问题与二次函数1 课件 (人教版九年级下册)
小结:
26.3实际问题与二次函数
1.什么样的函数叫二次函数? 形如y=ax2+bx+c(a、b、c是常数,a≠0)
的函数叫二次函数
2.如何求二次函数y=ax2+bx+c(a≠0) 的最值?有哪几种方法?写出求二 次函数最值的公式zxxk
(1)配方法求最值(2)公式法求最值
b 4ac-b 当x=- 时,y有最大(小)值 2a 4a
20x 2 100x 6000(0≤x≤20)
2
由(1)(2)的讨论及现在的销售 情况,你知道应该如何定价能 使利润最大了吗?
答:综合以上两种情况,定价为65元时可 获得最 大利润为6250元.
(1)列出二次函数的解析式,并根据自变量的 实际意义,确定自变量的取值范围; (2)在自变量的取值范围内,运用公式法或通 过配方求出二次函数的最大值或最小值。
2
课前练习
1.当x= 1 有最大值. 2.已知二次函数y=x2-6x+m的最小值为1,那 么m的值为 10 . 时,二次函数y=-x2+2x-2
在日常生活中存在着许许多多的与数学知识有关的 实际问题。如繁华的商业城中很多人在买卖东西。
如果你去买商品,你会选买哪一家的?如果你是商场经理, 如何定价才能使商场获得最大利润呢? Zx.xk
解:设降价x元时利润最大,则每星期可多卖20x件,实际卖出 (300+20x)件,销售额为(60-x)(300+20x)元,买进商品需付 40(300+20x)元,因此,得利润
y 60 x 300 20x 40300 20x
当x b 5 5 5 时,y最大 20 100 6000 6125 2a 2 2 2 所以定价为60-2.5=57.5时利润最大,最大值为6125元.

华东师大版数学九年级下册教材分析

华东师大版数学九年级下册教材分析

华东师大版数学九年级下册教材分析第26xx 二次函数一、课时安排本章的教学课时为14 课时,建议分配如下:§ 26.1二次函数1课时§ 26.2二次函数的图象和性质7 课时§26.3实践与探索4课时复习2 课时二、教学目标1、探索具体问题中的数量关系和变化规律,体会二次函数是刻画现实世界的有效的数学模型.2、结合具体情境体会二次函数的意义,了解二次函数的有关概念.3、会用描点法画出二次函数的图象,能通过图象认识二次函数的性质.4、通过具体例子在探索二次函数图象的过程中,学会利用配方法将数字系数的二次函数表达式表示成:y=a(x-h)2+k的形式,从而确定二次函数图象的顶点和对称轴。

(不要求推导、记忆一般的公式。

) [课程标准原来提法是:会根据公式确定图象的顶点、开口方向和对称轴。

]5、会利用二次函数的图象求一元二次方程的近似解.6、学会通过对现实情景的分析,确定二次函数的表达式,并能应用二次函数的相关知识解决简单的实际问题.三、教材特点1、教材注重引入二次函数概念的现实背景,让学生感受其实际意义,激发学生的学习兴趣;并注意让学生在学习的过程和实际应用中逐步深化对概念的理解和认识。

2、教材注重与学生已有知识的联系,引导学生与一次函数的学习联系、比较,经历对知识拓展、归纳、更新的过程。

3、教材注意内容的呈现方式,让学生参与知识的发生、发展过程。

注重在具体二次函数的研究中掌握方法,理解原理(如图象的变换)。

4、教材注意沟通二次函数和一元二次方程、不等式的联系和相互转化,提供学生进行探究性学习的题材,重视学生对知识综合应用能力的培养。

四、教学建议1、注意与学生已有知识的联系,减少对新概念接受的困难。

(一次函数知识、待定系数法和整式配方、方程和不等式的知识等)2、创设丰富的现实情境,重视学生直观感知的作用.(重视学生对基本概念的理解和接受,防止形式化的罗列概念,再举例说明的做法)3、重视解决实际问题的教学,引导学生感受数学的价值观。

26.3实际问题与二次函数

第十三课时、实际问题与二次函数【教学内容】实际问题与二次函数【教学目标】知识与能力:能根据实际问题列出函数关系式,会运用二次函数求实际问题中的最大值或最小值。

过程与方法:经历体会二次函数是一类最优化问题的重要数学模型,感受数学的应用价值。

情感与态度:培养学生积极参与的态度、乐于探索增强数形结合的思想意识。

语言积累:实际问题、二次函数。

【教学重点】根据实际问题建立二次函数的数学模型,幵确定二次函数自变量的范围,二次函数在最优化问题中的应用。

【教学难点】从现实问题中建立二次函数模型,学生较难理解数形结合的思想与方法。

【教学用具】课件、学具。

【教学过程】一、创设情境,导入新课:1、通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。

(1)y=6x2+12x;(2)y=-4x2+8x-10方法:课件出示题目;学生独立计算,教师巡视;指名回答,教师小结。

y=6(x+1)2-6,抛物线开口向上,对称轴x=-1,顶点坐标(-1,-6);y=-4(x-1)2-6,抛物线开口向下,对称轴x=1,顶点坐标(1,-6)。

2、以上两个函数,哪个函数有最大值,哪个函数有最小值?说出两个函数的最大值、最小值分别是多少?方法:课件出示题目;学生独立计算,教师巡视;指名回答,教师小结。

函数y=6x2+12x有最小值,最小值y=-6,函数y=-4x2+8x-10有最大值,最大值y=-6。

二、合作交流,解读探究:1、某商店现有的售价为每件60元,每星期售出300件。

市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期要多卖出20件. 已知商品的每件进价为40元,如何定价才能使销售利润最大?方法:课件出示题目;学生分组讨论,教师巡视;指名回答,教师小结。

分析:调整价格包括涨价和降价两种情况。

设每件涨价x元,则每星期售出商品的利润y随乊变化。

先确定y与x的函数关系式。

涨价x元,每星期要少卖出10x件。

实际卖出(300-10x),销售额为(60+x) (300-10x)元。

26.3实际问题与二次函数(第3课时)

(2)卡车可以通过.
-3
O
1 3
提示:当x=±2时,y =3, 3+2>4.
-3
例:某工厂大门是一抛物线形的水泥建筑物, 大门底部宽AB=4m,顶部C离地面的高度为 4.4m,现有载满货物的汽车欲通过大门,货物顶 部距地面2.7m,装货宽度为2.4m.这辆汽车能否 顺利通过大门?若能,请你通过计算加以说明;若 不能,请简要说明理由.
A
B
问题2 一个涵洞成抛物线形,它的截面如图 , 现测 得,当水面宽AB=1.6 m时,涵洞顶点与水面 的距离为2.4 m.这时,离开水面1.5 m处,涵 洞宽ED是多少?是否会超过1 m?
探究3
图中是抛物线形拱桥,当水面在 L 时,拱 顶离水面2m,水面宽4m,水面下降1m时,水面宽度 增加了多少? 解一 解二 解三
这时水面宽度为 2 6m
∴当水面下降1m时,水面宽 度增加了( 2 6 4 )m 返回
3 0.5 x 2 x 6
解二 如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线 的对称轴为y轴,建立平面直角坐标系. 此时,抛物线的顶点为(0,2) ∴可设这条抛物线所表示 的二次函数的解析式为:
A
如图,隧道的截面由抛物线和长方形构成,长方形的 长是8m,宽是2m,抛物线可以用
1 2 y x 4 4
表示.(1)一辆货运卡车高4m,宽2m,它能通过该隧 道吗?(2)如果该隧道内设双行道,那么这辆货运卡 车是否可以通过?
(1)卡车可以通过.
3 1 -1 -1
提示:当x=±1时,y =3.75, 3.75+2>4.
例1.某涵洞是抛物线形,它的截面如图所 示,现测得水面宽1.6m,涵洞顶点O到水 面的距离为 2 . 4m ,在图中直角坐标系内, 涵洞所在的抛物线的函数关系式是什么?

专题26.3.2 几何图形面积最值问题-九年级数学同步精讲精练之二次函数(华师大版)

26.3.2 几何图形面积最值问题【同步测试】一.选择题(共2小题)1.用长40m的篱笆围成一个矩形菜园,则围成的菜园的最大面积为()A.400m2B.300m2C.200m2D.100m2【答案】D【解析】解:设矩形的面积为S平方米,长为xm,由题意,得S=x(20﹣x),s最大=100.故选:D.【点睛】本题考查了运用待定系数法求二次函数的解析式的运用,抛物线的顶点式的运用,矩形的面积公式,解答时求出矩形的面积表达式是关键.2.如图,一边靠校园围墙,其他三边用总长为40米的铁栏杆围成一个矩形花圃,设矩形ABCD的边AB为x米,面积为S平方米,要使矩形ABCD面积最大,则x的长为()A.10米B.15米C.20米D.25米【答案】A【解析】解:设矩形ABCD的边AB为x米,则宽为(40﹣2x)米,S=(40﹣2x)x=﹣2x2+40x.要使矩形ABCD面积最大,则x10米,即x的长为10米.故选:A.【点睛】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.二.填空题(共3小题)3.如图,用长20m的篱笆,一面靠墙(墙足够长)围成一个长方形的园子,最大面积是________m2.【答案】50m2【解析】解:设与墙平行的一边长为xm,则另一面为,其面积x x2﹣10x,∴最大面积为50即最大面积是50m2.【点睛】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.4.周长为13cm的矩形铁板上剪去一个等边三角形(这个等边三角形的一边是矩形的宽),则矩形宽为_____cm,长为____cm时,剩下的面积最大,这个最大面积是_________.【答案】见解析经整理,得:y x2x,当x4时,y取得最大值,y最大(4),此时长为().【点睛】本题考查了二次函数在实际生活中的运用,重点是求最值问题.5.如图,在△ABC中,∠B=90°,AB=8cm,BC=6cm,点P从点A开始沿AB向B以2cm/s的速度移动,点Q从点B开始沿BC向C点以1cm/s的速度移动,如果P,Q分别从A,B同时出发,当△PBQ的面积为最大时,运动时间t为______s.【答案】2∵由以上函数图象知∴当t=2时,△PBQ的面积最大为4cm2.【点睛】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.三.解答题(共3小题)6.一养鸡专业户计划用长116m的竹篱笆靠墙(如图)围成一个长方形鸡舍,怎样设计才能使围成的长方形鸡舍的面积最大?最大面积为多少?【答案】见解析【解析】解:∵四边形ABCD是矩形,∴AB=CD.设BC=xm,则AB=CD(116﹣x)m,矩形的面积为S.由题意,得S=x•x2+58x(x﹣58)2+1682.∴当x=58m时,S最大=1682m2.【点睛】本题考查了矩形的性质的运用,矩形的面积公式的运用,二次函数的解析式的顶点式的运用.解答时求出S与x之间的关系式是关键.7.如图等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中以个动点到达端点时,另一个动点也随之停止运动(1)求AD的长;(2)设CD=x,问当x为何值时△PDQ的面积达到最大?并求出最大值.【答案】见解析【解析】解:(1)如图1在Rt△ADE中,AD2=5;(2)如图1∵CP=x,h为PD边上的高,依题意,△PDQ的面积S可表示为:(x)2.(0≤x≤5)∴a0,∴当x时(满足0≤x≤5),S最大值.学科&网【点睛】本题考查了学生的分析作图能力和考查学生综合运用平行线、等腰梯形、等边三角形、菱形、二次函数等知识.这里设计了一个开放的、动态的数学情境,为学生灵活运用基础知识、分析问题、解决问题留下了广阔的探索、创新的思维空间.8.如图等腰梯形花圃ABCD的底边AD靠墙,另三边用长为40m的铁栏围成,设AB的长为xm,该花圃的面积为Sm2(1)求出底边BC的长.(用含x的代数式表示)(2)若∠BAD=60°,求S与x之间的函数关系式;(3)在(2)的条件下,若墙长为24m,试求S的最大值.【答案】见解析【解析】解:(1)∵AB=CD=x米,∴BC=40﹣AB﹣CD=(40﹣2x)米.(2)如图,过点B、C分别作BE⊥AD于E,CF⊥AD于F,在Rt△ABE中,AB=x,∠BAE=60°∴AE x,BE x,∴S(40﹣2x+40﹣x)•x x(80﹣3x)(0<x<20),当S=93时,,解得:x1=6,x2=20(舍去).∴x=6(3)由题意,得40﹣x≤24,解得x≥16,结合(2)得16≤x<20.由(2),S∵a∴函数图象为开口向下的抛物线的一段(附函数图象草图如左).其对称轴为x,∵16,由左图可知,当16≤x<20时,S随x的增大而减小,∴当x=16时,S取得最大值,此时S最大值162+2016=128m2.【点睛】本题考查了二次函数的性质的运用,等腰梯形的性质的运用.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题主要考查二次函数的运用,运算较复杂,难度偏难.。

二次函数的图像和性质

二次函数的图像和性质知识点一:图像函数性质a>0定义域x∈R(个别题目有限制的,由解析式确定)值域a>0 a<0y∈[4ac-b24a,+∞) y∈(-∞,4ac-b24a]奇偶性b=0时为偶函数,b≠0时既非奇函数也非偶函数a<0单调性a>0a<0x∈(-∞,-b2a]时递减,x∈[-b2a,+∞)时递增x∈(-∞,-b2a]时递增,x∈[-b2a,+∞)时递减图像特点①对称轴:x=-b2a;②顶点:(-b2a,4ac-b24a)例:1、求函数1352++-=xxy图象的顶点坐标、对称轴、最值及它的单调区间。

2、如果cbxxxf++=2)(对于任意实数t都有)3()3(tftf-=+,那么()(A))4()1()3(fff<<(B))4()3()1(fff<<(C))1()4()3(fff<<(D))1()3()4(fff<<3、求函数522--=xxy在给定区间]5,1[-上的最值。

4、已知函数1)2(2-+-=nxxny是偶函数,试比较)2(f,)2(f,)5(-f的大小。

5、求当k为何值时,函数kxxy++-=422的图象与x轴(1)只有一个公共点;(2)有两个公共点;(3)没有公共点.6、抛物线642--=xaxy的顶点横坐标是-2,则a=7、已知二次函数bxay+-=2)1(有最小值–1,则a与b之间的大小关系是()A .a <bB .a=bC .a >bD .不能确定 8、二次函数y=(x-k )2与直线y=kx(k>0)的图像大致是( )知识点二:(1)当Δ=b2-4ac=0,方程有两个相等的实根,这时图象与x 轴只有一个公共点; (2)当Δ=b2-4ac>0,方程有两个不相等的实根,这时图象与x 轴有两个公共点; (3)当Δ=b2-4ac<0,方程有两个不相等的实根,这时图象与x 轴无公共点;课堂练习: 一.选择题1.二次函数522+-=x x y 的值域是( )A.)4∞+, [ B.),4(∞+ C.(4, ∞-] D.)4,( -∞2.如果二次函数452++=mx x y 在区间)1,(--∞上是减函数,在区间),1[+∞-上是增函数,则=m ( )A.2 B.-2 C.10 D.-103.如果二次函数)3(2+++=m mx x y 有两个不相等的实数根,则m 的聚值范围是( ) A.),6()2,(+∞⋃--∞ B.)6,2(- C.)6,2[- 0 D.}6,2{- 4.函数3212-+=x x y 的最小值是( ) A.-3. B..213- C.3 D..2135.函数2422---=x x y 具有性质( ) A.开口方向向上,对称轴为1-=x,顶点坐标为(-1,0)B.开口方向向上,对称轴为1=x ,顶点坐标为(1,0) C.开口方向向下,对称轴为1-=x ,顶点坐标为(-1,0) D.开口方向向下,对称轴为1=x,顶点坐标为(1,0)6.函数(1)3422-+=x x y ;(2)3422++=x x y ;(3)3632---=x x y ;(4)3632-+-=x x y 中,对称轴是直线1=x 的是( )A.(1)与(2) B.(2)与(3) C.(1)与(3) D.(2)与(4) 7.对于二次函数x x y 822+-=,下列结论正确的是( )A.当2=x 时,y 有最大值8 B.当2-=x 时,y 有最大值8 C.当2=x 时,y 有最小值8 D.当2-=x 时,y 有最小值8 8.如果函数)0(2≠++=a c bx ax y ,对于任意实数t 都有)2()2(t f t f -=+,那么下列选项中正确的是( )A.)4()1()2(f f f <-< B.)4()2()1(f f f <<- C.)1()4()2(-<<f f f D.)1()2()4(-<<f f f二.填空1.若函数12)(2-+=x x x f ,则)(x f 的对称轴是直线2.若函数322++=bx x y 在区间]2,(-∞上是减函数,在区间],2(+∞是增函数,则=b3.函数9322--=x x y 的图象与y 轴的交点坐标是 ,与x 轴的交点坐标是 、 4.已知6692+-=x x y ,则y 有最 值为 5.已知12842++-=x x y ,则y 有最 值为 三.解答题1.已知二次函数342-+-=x x y(1)指出函数图象的开口方向;(2)当x 为何值时0=y ;(3)求函数图象的顶点坐标、对称轴和最值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

26.3 二次函数y=a(x+m)2+k的图像(2)
学习目标:
1、掌握抛物线y=a(x+m)2+k平移的规律.同时感悟类比、转化思想;
2、掌握画抛物线y=a(x+m)2+k图像的方法,并能运用图像检验抛物线的对称性.
学习重难点:
掌握画抛物线y=a(x+m)2+k图像的方法.感悟类比思想.

学习过程:
一、课前预习

(1)把二次函数y=6(x+3)2的图像,沿y轴向下平移2个单位,向左平移3个
单位,得到_______ _____的图像.

(2)把二次函数_____________的图像,沿x轴向右平移2个单位,沿y轴向下
平移3个单位,得到y=6(x-3)2+5的图像.

(3)把二次函数y=6(x-3)2+5的图像,沿x轴_______平移______个单位,再沿
y轴向______平移_______个单位,图像过原点.

(4)与二次函数y=2(x+3)2-1的图像形状相同,方向相反,且过点(-2,0)
的是函数_______ ____ __的图像.

问题1 :抛物线22yx 、221yx与2211yx的图像都是形状、开口
方向和开口大小都相同的抛物线,位置有何不同?
抛物线的22yx顶点坐标是________;

抛物线221yx向右平移1个单位后,顶点坐标是________;
抛物线2211yx的顶点坐标是________.

问题2: 将抛物线22yx通过_____平移_____单位,得到抛物线221yx的
图像,再_____平移_____单位得到抛物线2211yx的图像.

二、课堂学习
例题1 、已知抛物线1122xy.
(1)指出它的开口方向、对称轴和顶点坐标;
(2)在平面直角坐标系xOy中画出这条抛物线.
解 :(1)
-4
-3
-2
2
1
-1
O

y
x

(2)列表:
x … -1 -0.5 0 1 2 2.5 3 …


1122xy
… 7 3.5 1 -1 1 3.5 7 …

从图形运动的角度认识图像与抛物线22yx的关
系,然后先画出抛物线22(1)1yx的对称轴和顶
点位置,然后描出其他的点;观察列表中的数据可
以发现,纵坐标相等的点,它们的横坐标的平均数

是1,如1,21,0与、7,37,1与等.一般地,自
变量x所取的值应包括m,其他的值成对出现且
每一对值的平均数是m.

例题2 、在平面直角坐标系xOy中画出二次函数21(2)32yx的图像.
提示: 用描点法画图之前,一定要先确定
抛物线的开口方向、对称轴和顶点坐标,
然后从顶点开始,左右取几个对称点.

例题3 已知抛物线23yx,将这条抛物线平移,当它的顶点移到点M(2,4)
的位置时,所得新抛物线的表达式是什么?

三、课堂练习
1、指出抛物线22(1)3yx的开口方向、顶点坐标和对称轴,并画出这条抛
物线.
4
3
2

2
1
1

O

y

x

2、画出二次函数21(2)13yx的图象.

3、将抛物线22yx平移,使顶点移到点P(-3,1)的位置,求所得新抛物线
的表达式.

4、抛物线23yx先向 平移 个单位,再向 平移 个单位就
得到抛物线23(2)5yx.

5、把抛物线22(1)3yx先向左平移5个单位,再向下平移5个单位,那么就
得到抛物线 .

6、与抛物线y=-4x2形状相同,开口方向相反,且顶点为(-2,1)的抛物线表
达式为 .

7、已知:抛物线2yxbxc向上平移2个单位,再向左平移4个单位,得到
抛物线2yx,求b、c的值.

四、课堂小结
本节课你有什么收获和体会?你还有什么疑惑吗?

相关文档
最新文档