一次函数方案选择

合集下载

一次函数复习(选择方案)

一次函数复习(选择方案)

14.3用函数观点看方程(组)与不等式知识要点:1.一次函数与一元一次方程将一次函数y=kx+b中的y值看作0,则kx+b=0即为一元一次方程,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值,从图像上看,相当于求已知直线y=kx+b与x轴的交点的横坐标的值。

2.任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,所以,解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。

从形的角度看,解不等式ax+b>0或ax+b<0(a、b为常数,a≠0)相当于直线y=ax+b在x轴上方或下方部分的点所对应的自变量的取值范围。

3. 二元一次方程与一次函数由于任意一个二元一次方程都可以转化为y=kx+b的形式,所以每个二元一次方程都对应一个一次函数,于是也对应一条直线。

一. 选择题1. 点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x +3图像上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( )A. y 1>y 2B. y 1>y 2>0C. y 1<y 2D. y 1=y 22. 直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图像如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )A. x >-1B. x <-1C. x <-2D. 无法确定3.已知一次函数y =kx +b 的图像,如图所示,当x <0时,y 的取值范围是( )A. y >0B. y <0C. -2<y <0D. y <-2拓:本题中,若y <0,则x 的取值范围是 。

4. 函数y =4x -2与y =-4x -2的交点坐标为( )A. (-2,0)B. (0,-2)C. (0,2)D. (2,0)5.若点A (2,4)在函数2y kx =-的图象上,则下列各点在此函数图象上的是( )A .(0,-2)B .(32,0)C .(8,20)D .(12,12) 6.已知关于x 的不等式01>+ax (0≠a )的解集是x<1,则直线1+=ax y 与x 轴的交点是( )A .(0,1)B .(-1,0)C .(0,-1)D .(1,0)7.方程412+-=+x x 的解是x=1,则直线12+=x y 与4+-=x y 的交点是( )A .(1,0)B .(1,3)C .(-1,-1)D .(-1,5)8.已知y 1=-x+1和y 2=-2x-1,当x>-2时y 1>y 2;当x<-2时y 1<y 2,则直线y 1=-x+1和直线y 2=-2x-1的交点是( )A .(-2,3)B .(-2,-5)C .(3,-2)D .(-5,-2)二. 填空题1. 已知y =2x -4,当__________时,y >0。

“一次函数实施方案选择“教学设计

“一次函数实施方案选择“教学设计

“一次函数实施方案选择“教学设计————————————————————————————————作者:————————————————————————————————日期:“一次函数”教学设计“聚焦教与学转型难点”的高效课堂教学设计课题名称:一次函数与方案选择问题姓名张发文工作单位墨江县文武镇初级中学年级学科八年级数学教材版本人教版一、教学难点内容分析(简要说明课题来源、学习内容、知识结构图以及学习内容的重要性)本课时内容为人教版八年级数学下册第十九章一次函数19.3节课题学习《选择方案》,是一次函数知识的综合运用,是运用函数知识解决实际问题。

同时是对一次函数知识的巩固。

其重点是学会利用一次函数知识解决实际问题,同时培养学生数学建模思想。

掌握一次函数的建模思想,体验数学源于生活,用于生活。

能够用数学知识解决生活中的实际问题。

难点是建立数学模型解决实际问题。

二、教学目标(从学段课程标准中找到要求,并细化为本节课的具体要求,目标要明晰、具体、可操作,并说明本课题的重难点)1.初步掌握一次函数解决实际问题——选择方案,培养学生初步建立数学模型思想。

2.通过问题探究,利用函数表示变量间的关系,利用方程、不等式反映相等或不等关系。

利用函数图像直观解决问题。

3.利用函数模型解决实际问题。

4.培养学生的建模思想,体会数学的实用性,渗透数形结合的思想,培养严谨科学的学习习惯。

三、学习者特征分析(学生对预备知识的掌握了解情况,学生在新课的学习方法的掌握情况,如何设计预习)1.学生已经掌握了一次函数的基本知识,具有一定的分析能力,大部分学生会用方程、不等式表示相等不等关系,本章开始认识函数表示变量之间的关系。

2.大部分学生能自主预习,会独立思考问题,能依据学案自主学习。

四、教学过程(设计本课的学习环节,明确各环节的子目标)本节课教学结合“1215”模式进行教学,分为四个阶段,六个环节:1.复习引入2.问题引3.依案自学4.反馈交流5.练习巩固6.小结提升五、教学策略选择与高效课堂融合的设计(针对学习流程,设计教与学的方式的变革,配置学习资源和数字化工具,设计高效课堂融合点)教师活动预设学生活动设计意图一、教师出示复习题组:1.一次函数解析式:2.一次函数的图像及性质有哪些?学生思考解答问题,并反馈。

运用一次函数选择最佳方案 教案

运用一次函数选择最佳方案 教案

课题:运用一次函数选择最佳方案教材:义务教育课程标准实验教科书八年级数学上册一、教学目标:(1)知识目标1、利用一次函数及其图像解决生活中实际问题;会用函数图像说话。

2、能一题多解,反映运用一次函数解题的优越性。

(2)能力目标1、能灵活运用一次函数及其图像具体问题具体分析。

2、通过一题多解,对比、归纳总结,提高学生的分析、对比能力和总结归纳能力。

3、提高对一次函数的我应用能力。

(3)情感态度与价值观1、通过探究,让学生切身体会生活中处处存在数学,了解数学知识的广泛性与重要性。

2、在合作研究过程中,增长学生的自我思考、动手能力,团队合作能力,达到学以致用的成功喜悦,提高学生学习的积极性和解决实际问题的能力。

体会一次函数的应用价值。

3、在作品展示中获得成功的体验,学会欣赏他人。

二、教学重点、难点:1、重点:作品展示、分析、讨论和对比。

2、难点:对展示作品的多种解法分析、对比、评价和总结。

三、教学方法与手段:1、参与----充分利用多媒体,积极参与作品的展示、讨论和对比分析。

2、自主探索----运用一次函数解决实际问题,敢于大胆创新。

3、合作交流----小组分工,学会表达与交流。

4、建模----建立合适的数学模型,解决实际问题。

总之,在教学方法上强调学生的自主探究、自主建构和团队合作。

四、教学过程:(一)情境导入:欣赏美景(播放图片)(二)说明本节课具体要求。

(三)回顾选题:四类问题1、购物问题①陈冠桥家盖起了一座六层楼房,现正在装修准备安装照明灯,他和他父亲一起去灯具店买灯具,灯具店老板介绍说:一种节能灯的功率是10瓦(即0.01千瓦),售价60元.一种白炽灯的功率是60瓦(即0.06千瓦),售价3元.两种灯的照明效果一样.使用寿命也相同(3000小时以上).(1)父亲说:“买白炽灯可以省钱”.(2)陈冠桥刚好读八年级,他在心里默算了一下说:“还是买节能灯吧”.父子二人争执不下。

如果电费为0.5元/(千瓦.时),请聪明的你帮助他们选择哪种灯更节省费用呢?②为了迎接2012年元旦,大润发和新一佳两家商场将以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在大润发累计购买100元商品后,再购买的商品按原价的90%收费;在新一佳累计购买50元商品后,再购买的商品按原价的95 %收费.顾客怎样选择商场购物能获得更大优惠呢?2、配送问题某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师。

“一次函数”课题学习方案选择教学设计

“一次函数”课题学习方案选择教学设计

数学 问题 . 我们一起看 看题 目中的数量关 系 ,师 画四 ( 点图 , 生读题并填充 四点图 )
他做几道题 . 同学们 , 我们也来做一做?
() 1购买一些饮 料 , 一瓶 饮料单 价 3 5元 , 买 . 购
瓶饮料需支付 Y元 . 可列函数解析式—
2 一 4



() 2购买 一些饮 料和 一些 面包 ( 饮料 和面 包共 1 O
质, 尤其问题 4让学 生进 一步 感悟并 总结 比例 系数 k
的 大 小 与 函数 值 的 最 值 的 关 系. 一
运用 四点图和表格分析 多个变量 的实 际问题 , 列 出函数关系式 , 运用 函数的性质得到最佳方案 .
四 、 学 难点 教
2 探索发现 , 出模 型. . 列 故事情节 2 小宋 也顺 利做 出了这 几道题 , 正当 他暗 自纳 闷: 数学题 和物流公 司有何相 干?叔叔 要他

中 小 学 数 学 ・中学版) (
思考 : ‘
初中 讨论 1 “ 当 为 一10时 总 运 费 y最 小 ” “ 为 0 ,
1 总运费 由哪几部分构成 ? .
5O时总运费 l最小” O , 是否 正确? 讨 论 2 计算 为 0 为 10 为 20时 y也就是总 、 0、 0 运 费等 于多少?这三种情况哪个总运费是最小 的?
大 而
这节课是人教 版八年级 教材 第 1 4章一 次函数 中 安排的最后一个内容. 为进 一步提 高学生实践 意识 与

个, 可列 函数解析式—
所 以 Y随 的 增



综合应用数学知识 的能力 , 教材安排 了这一内容. 这节

一次函数选择方案应用题

一次函数选择方案应用题

一次函数选择方案应用题
一次函数是数学中非常基础的一种函数形式,常被用于实际问题的建模和求解。

下面我们就来看一个应用一次函数的选择方案问题。

假设你正在考虑购买一部手机,现在市场上有两种手机可供选择。

第一款手机价格为1500元,每年需要花费200元进行维修保养;第二款手机价格为2000元,每年需要花费150元进行维修保养。

你需要计算出,如果你打算使用这部手机3年,那么应该选择哪一款手机更为合适。

我们可以用一次函数来表示这个问题,设第一款手机的总花费为
f1(x),其中x表示使用年限,f1(x) = 1500 + 200x;同理,设第二款手机的总花费为f2(x),f2(x) = 2000 + 150x。

那么我们只需要计算出f1(3)和f2(3),并比较两者大小即可。

f1(3) = 1500 + 200×3 = 2100元
f2(3) = 2000 + 150×3 = 2450元
从计算结果可以看出,如果你打算使用这部手机3年,那么应该选择第一款手机,因为它的总花费比第二款手机少350元。

这个问题展示了如何应用一次函数来进行选择方案,它的思路可以应
用于很多其他实际问题中,如购买家具、选择车型等等。

在实际生活中,我们可以通过建立适当的数学模型,利用一次函数来进行各种选择方案的分析和比较,从而做出最优的决策。

一次函数实施方案选择

一次函数实施方案选择

一次函数实施方案选择————————————————————————————————作者:————————————————————————————————日期:《课题学习选择方案》教学设计湖北省咸宁市温泉中学黄娟廖文一、内容和内容解析1.内容用函数思想解决方案选择问题—选择哪种上网收费方式省钱?2.内容解析本课是在学习了函数概念、一次函数有关知识后,通过学生熟悉的宽带上网收费方式的选择,让学生经历体会费用随时间的变化关系是一次函数的关系,确定实际数据整理成函数的模型,即建立了数学模型,从而利用函数图像求数学模型的解,还可以比较几个一次函数的变化率来解决方案选择问题,实现利用数学知识解决实际问题的方法.本课是明确给出多种方案,要求选择使问题解决最优的一种.综上所述,本节课教学的重点是:应用一次函数模型解决方案选择问题.二、目标和目标解析1.目标(1)会用一次函数知识解决方案选择问题,体会函数模型思想;(2)能从不同的角度思考问题,优化解决问题的方法;(3)能进行解决问题过程的反思,总结解决问题的方法.2.目标解析目标(1)要求能根据问题情景建立一次函数模型,并可以比较几个一次函数的变化率,应用一次函数的性质和图像解决问题,从而感受到函数模型的应用价值.目标(2)要求能从不同的角度感知问题中的数量关系,对实际问题中的数量关系既可以用函数的图像表示,也可以用方程和不等式表示,构建不同的模型,用不同的方法解决问题.目标(3)要求在解决问题中,能适时调整思路,解决问题后,能对解决问题步骤、程序和方法进行总结提炼.三、教学问题诊断分析八年级学生已经学会了用方程和不等式来解决生活中的简单的实际问题,但是用综合应用能力有待加强。

特别是由于本节内容具有较强的实际背景,分析实际背景中所包含的变量及其对应关系较复杂,分析起来显的理不清头绪,易迷失解决问题的方向,时间一长就不愿意去尝试了.在这方面要给他们创造机会,降低问题的坡度,使他们不难成功,体验成功的乐趣,激发学习兴趣.本课内容是学生熟悉的宽带上网收费方式的选择,如何选择,用什么方法选择很重要,特别是如何从数学的角度去分析.本课教学的难点是:分析实际问题背景中所包含的变量和对应关系建立函数模型,解决实际问题,从而使选择方案优化.四、教学过程1.创设情境,提出问题做一件事情,有时有不同的实施方案,比较这些方案,从中选择最佳方案作为行动计划,是非常必要的。

一次函数应用及方案选择问题(含阶梯计费问题)

(升)(小时)6014504540302010876543210y t 一次函数应用题与方案选择问题一次函数图像及应用1.某企业有甲、乙两个长方体的蓄水池,两个蓄水池中水的深度y (m )与注水时间x (h )之间的函数图像如图所示,结合图像回答下列问题:(1)未注水前甲池水高____m ,乙池水高_____m(2)分别求出甲,乙两个蓄水池中水的深度y 与注水时间x 之间的函数关系式,并说明斜率表示的实际意义(2)求注水多长时间甲,乙两个蓄水池水的深度相同;(3)若甲池中的水以6立方米/小时的速度注入乙池,求注水多长时间甲,乙两个蓄水池水的体积相同.2.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示. 请根据图象回答下列问题: (1)汽车行驶 小时后加油,中途加油 升; (2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式; (3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.3.小明、小颖两名同学在学校冬季越野赛中的路程y(千米)与时间x(分)的函数关系如图所示。

(1)根据图象提供的数据,求比赛开始后,两人第一次相遇所用的时间;(2)根据图象提供的信息,请你设计一个问题,并给予解答4.小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min的速度从邮局沿同一条道路步行回家,小明在邮局停留2 min后沿原路以原速返回.设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间函数关系的图象。

(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?阶梯定价问题OA BCED F t(min) 24001012s(m)1.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2012年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时 a超过150千瓦时但不超过300千瓦时的部分 b超过300千瓦时的部分a+0.32012年5月份,该市居民甲用电100千瓦时,交电费60元;居民乙用电200千瓦时,交电费122.5元.该市一户居民在2012年5月以后,某月用电x千瓦时,当月交电费y元.(1)上表中,a=;b=;(2)请直接写出y与x之间的函数关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?2.为鼓励居民节约用水,某市决定对居民用水收费实行“阶梯价”,即当每月用水量不超过15吨时(包括15吨),采用基本价收费;当每月用水量超过15吨时,超过部分每吨采用市场价收费.小兰家4、5月份的用水量及收费(2)设每月用水量为n吨,应缴水费为m元,请写出m与n之间的函数关系式.(3)小兰家6月份的用水量为26吨,则她家要缴水费多少元?3.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?4.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)0.3超过30平方米不超过m(平方米)部分(45≤m≤60)0.5超过m平方米部分0.7根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.生产方案的设计1.某工厂有一种材料,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天内加工完成,并(2)如果加工每种配件的人数均不少于3人,那么加工配件的人数安排方案有几种?并写出每种安排方案.(3)要使此次加工配件的利润最大,应采用(2)中哪种方案?并求出最大利润值.2.某高科技公司根据市场需求,计划生产A.B两种型号的医疗器械,其部分信息如下:信息一:A.B两种型号的医疔器械共生产80台.信息二:该公司所筹生产医疗器械资金不少于1800万元,但不超过1810万元.且把所筹资金全部用于生产此两种医疗器械.根据上述信息.解答下列问题:(1)该公司对此两种医疗器械有哪几种生产方案?哪种生产方案能获得最大利润?(2)根据市场调查,每台A型医疗器械的售价将会提高a万元(a>0).每台B型医疗器械的售价不会改变.该公司应该如何生产可以获得最大利润?(注:利润=售价﹣成本)营销方案的设计1.某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台,三种家电的进价和售其中购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半.国家规定:农民购买家电后,可根据商场售价的13%领取补贴.设购进电视机的台数为x台,三种家电国家财政共需补贴农民y元.(1)求出y与x之间的函数关系;(2)在不超出现有资金的前提下,商场有哪几种进货方案?(3)在(2)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?2.两种T恤的相关信息如下表:根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季销售的过程中很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.优惠方案的设计1.实验学校计划组织共青团员372人到某爱国主义基地接受教育,并安排8们老师同行,经学校与汽车出租公司协商,有两种型号客车可供选择,它们的载客量和租金如下表,为保证每人都有座位,学校决定租8辆车。

一次函数方案选择问题

一次函数方案选择问题(2)根据一次函数的增减性来确定最佳方案:例3、博雅书店准备购进甲、乙两种图书共100本,购书款不高于2224元,预计这100本图书全部售完的利润不低于1100元,两种图书的进价、售价如下表所示:请解答下列问题:(1)有哪几种进书方案?(2)在这批图书全部售出的条件下,(1)中的哪种方案利润最大?最大利润是多少?(3)博雅书店计划用(2)中的最大利润购买单价分别为72元、96元的排球、篮球捐给贫困山区的学校,那么在钱恰好用尽的情况下,最多可以购买排球和篮球共多少个?请你直接写出答案。

例4、某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师。

现有甲、乙两种大客车,它们的载客量和租金如表:(1)共需租多少辆汽车?(2)给出最节省费用的租车方案。

例5、某市的A县和B县春季育苗,急需化肥分别为90吨和60100吨和50吨,全部调配给A A、B两县的运费(元/(1)设C县运到A县的化肥为x吨,求总运费W(元)与x(吨)的函数关系式,并写出自变量x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案。

一、生产方案的设计例1 (镇江市)在举国上下众志成城,共同抗击非典的非常时期,某医药器械厂接受了生产一批高质量医用口罩的任务.要求在8天之内(含8天)生产A型和B型两种型号的口罩共5万只,其中A型口罩不得少于1.8万只,该厂的生产能力是:若生产A型口罩每天能生产0.6万只,若生产B型口罩每天能生产0.8万只,已知生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元.(1)设该厂在这次任务中生产了A型口罩x万只.问:(1)该厂生产A型口罩可获利润_____万元,生产B型口罩可获利润_____万元;(2)设该厂这次生产口罩的总利润是y万元,试写出y 关于x的函数关系式,并求出自变量x的取值范围;(3)如果你是该厂厂长:①在完成任务的前提下,你如何安排生产A型和B型口罩的只数,使获得的总利润最大?最大利润是多少?②若要在最短时间内完成任务,你又如何来安排生产A型和B型口罩的只数?最短时间是多少?分析:(1)0.5x,0.3(5-x);(2)y=0.5x+0.3(5-x)=0.2x+1.5,首先,1.8≤x≤5,但由于生产能力的限制,不可能在8天之内全部生产A型口罩,假设最多用t天生产A型,则(8-t)天生产B型,依题意,得0.6t+0.8(8-t)=5,解得t=7,故x最大值只能是0.6×7=4.2,所以x的取值范围是1.8(万只)≤x≤4.2(万只);(3)○1要使y取得最大值,由于y=0.2x+1.5是一次函数,且y随x增大而增大,故当x取最大值4.2时,y取最大值0.2×4.2+1.5=2.32(万元),即按排生产A型4.2万只,B型0.8万只,获得的总利润最大,为2.32万元;○2若要在最短时间完成任务,全部生产B型所用时间最短,但要求生产A型1.8万只,因此,除了生产A型1.8万只外,其余的3.2万只应全部改为生产B型.所需最短时间为1.8÷0.6+3.2÷0.8=7(天).二、营销方案的设计例2(湖北)一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以0.20元的价格退回报社.在一个月内(以30天计算),有20天每天可卖出100份,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同.若以报亭每天从报社订购的份数为自变量x,每月所获得的利润为函数y.(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?分析:(1)由已知,得x应满足60≤x≤100,因此,报亭每月向报社订购报纸30x份,销售(20x+60×10)份,可得利润0.3(20x+60×10)=6x+180(元);退回报社10(x-60)份,亏本0.5×10(x-60)=5x-300(元),故所获利润为y=(6x+180)-(5x-300)=x+480,即y=x+480.自变量x的取值范围是60≤x≤100,且x为整数.(2)因为y是x的一次函数,且y随x增大而增大,故当x取最大值100时,y最大值为100+480=580(元).三、优惠方案的设计例3(南通市)某果品公司急需将一批不易存放的水果从A市运到B市销售.现有三家运输公司可供选择,这三家运输公司提供的信息如下:解答下列问题:(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A,B两市的距离(精确到个位);(2)如果A,B两市的距离为s千米,且这批水果在包装与装卸以及运输过程中的损耗为300元/小时,那么要使果品公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家运输公司?分析:(1)设A,B两市的距离为x千米,则三家运输公司包装与装卸及运输的费用分别是:甲公司为(6x+1500)元,乙公司为(8x+1000)元,丙公司为(10x+700)元,依题意,得(8x+1000)+(10x+700)=2×(6x+1500),解得x=21632≈217(千米);(2)设选择甲、乙、丙三家公司的总费用分别为1y,2y ,3y (单位:元),则三家运输公司包装及运输所需的时间分别为:甲(60s +4)小时;乙(50s +2)小时;丙(100s +3)小时.从而1y =6s +1500+(60s+4)×300=11s +2700, 2y =8s +1000+(50s +2)×300=14s +1600, 3y =10s+700+(100s +3)×300=13s+1600,现在要选择费用最少的公司,关键是比较1y ,2y ,3y 的大小.∵s >0,∴2y >3y 总是成立的,也就是说在乙、丙两家公司中只能选择丙公司;在甲和丙两家中,究竟应选哪一家,关键在于比较1y 和3y 的大小,而1y 与3y 的大小与A,B两市的距离s 的大小有关,要一一进行比较.当1y >3y 时,11s +2700>13s +1600,解得s <550,此时表明:当两市距离小于550千米时,选择丙公司较好;当1y =3y 时,s =550,此时表明:当两市距离等于550千米时,选择甲或丙公司都一样;当1y <3y 时,s >550,此时表明:当两市的距离大于550千米时,选择甲公司较好.四.调运方案的设计例4A城有化肥200吨,B城有化肥300吨,现要把化肥运往C,D两农村,如果从A城运往C,D两地运费分别是20元/吨与25元/吨,从B城运往C,D两地运费分别是15元/吨与22元/吨,现已知C地需要220吨,D地需要280吨,如果个体户承包了这项运输任务,请你帮他算一算,怎样调运花钱最小?分析:根据需求,库存在A,B两城的化肥需全部运出,运输的方案决定于从某城运往某地的吨数.也就是说.如果设从A城运往C地x吨,则余下的运输方案便就随之确定,此时所需的运费y(元)也只与x(吨)的值有关.因此问题求解的关键在于建立y与x之间的函数关系.解:设从A城运往x吨到C地,所需总运费为y元,则A城余下的(200-x)吨应运往D地,其次,C地尚欠的(220-x)吨应从B城运往,即从B城运往C地(220-x)吨,B城余下的300-(220-x)=15(220-x)+22(80+x),即y=2x+10060,因为y随x增大而增大,故当x取最小值时,y的值最小.而0≤x≤200,故当x=0时,y最小值=10060(元).因此,运费最小的调运方案是将A城的200吨全部运往D地,B城220吨运往C地,余下的80吨运往D地.练习题:1.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A,B两种产品,共50件.已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.(1)要求安排A,B两种产品的生产件数,有哪几种方案?请你设计出来;(2)生产A,B两种产品获总利润是y (元),其中一种的生产件数是x,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大?最大利润是多少?2.北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台.如果从北京运往汉口、重庆的运费分别是4百元/台、8百元/台,从上海运往汉口、重庆的运费分别是3百元/台、5百元/台.求:(1)若总运费为8400元,上海运往汉口应是多少台?(2)若要求总运费不超过8200元,共有几种调运方案?(3)求出总运费最低的调运方案,最低总运费是多少元?3.某校校长暑假将带领该校市级“三好生”去北京旅游.甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优待.”乙旅行社说:“包括校长在内,全部按全票价的6折(即按全票价的60%收费)优惠.”若全票价为240元.(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(建立表达式);(2)当学生数是多少时,两家旅行社的收费一样;(3)就学生数x讨论哪家旅行社更优惠.4.下表所示为装运甲、乙、丙三种蔬菜的重量及利润.某汽车运输公司计划装运甲、乙、丙三种蔬菜到外地销售(每辆汽车按规定满载,并且每辆汽车只装一种蔬菜)(1)若用8辆汽车装运乙、丙两种蔬菜11吨到A地销售,问装运乙、丙两种蔬菜的汽车各多少辆?(2)公司计划用20辆汽车装运甲、乙、丙三种蔬菜36吨到B 地销售(每种蔬菜不少于一车),如何安排装运,可使公司获得最大利润?最大利润是多少?5.某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套,已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元;做一套M型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利润30元.设生产L型号的童装套数为x,用这批布料生产这两种型号的童装所获利润为y (元).(1)写出y (元)关于x (套)的函数解析式;并求出自变量x的取值范围;(2)该厂在生产这批童装中,当L型号的童装为多少套时,能使该厂所获的利润最大?最大利润为多少?。

一次函数应用及方案选择问题.doc

一次函数应用题与方案选择问题一次函数图像及应用1. 某企业有甲、乙两个长方体的蓄水池,两个蓄水池中水的深度y( m)与注水时间x( h)之间的函数图像如图所示,结合图像回答下列问题:( 1)未注水前甲池水高____m,乙池水高 _____m( 2)分别求出甲,乙两个蓄水池中水的深度y 与注水时间x 之间的函数关系式,并说明斜率表示的实际意义(2)求注水多长时间甲,乙两个蓄水池水的深度相同;(3)若甲池中的水以 6 立方米 / 小时的速度注入乙池,求注水多长时间甲,乙两个蓄水池水的体积相同.2. 张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油 50 升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量 y (升)与行驶时间t(小时)之间的关系如图所示.y(升)请根据图象回答下列问题:( 1)汽车行驶小时后加油,中途加油升;( 2)求加油前油箱剩余油量y 与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70 千米 / 小时匀速行驶,如果加油站距目的地 210 千米,要到达目的地,问油箱中的油是否够用请说明理由.60504540302014100 1 2 3 4 5 6 7 8t (小时)3. 小明、小颖两名同学在学校冬季越野赛中的路程y(千米)与时间x(分)的函数关系如图所示。

(1)根据图象提供的数据,求比赛开始后,两人第一次相遇所用的时间;(2)根据图象提供的信息,请你设计一个问题,并给予解答4. 小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/ min 的速度从邮局沿同一条道路步行回家,小明在邮局停留 2 min 后沿原路以原速返回.设他们出发后经过t min时,小明与家之间的距离为 s1m,小明爸爸与家之间的距离为s2m,图中折线 OABD、线段 EF分别表示 s1、 s2与 t 之间函数关系的图象。

s(m)( 1)求s2与t之间的函数关系式;2400 EA B( 2)小明从家出发,经过多长时间在返回途中追上爸爸这时他们距离家还有多远CO 1012 D F t (min) 阶梯定价问题1. 根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2012 年5 月1 日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/ 千瓦时)不超过 150 千瓦时 a超过 150 千瓦时但不超过300 千瓦时的部分 b超过 300 千瓦时的部分a+2012 年 5 月份,该市居民甲用电100 千瓦时,交电费60 元;居民乙用电200 千瓦时,交电费元.该市一户居民在 2012 年 5 月以后,某月用电x 千瓦时,当月交电费y 元.( 1)上表中, a=;b=;(2)请直接写出 y 与 x 之间的函数关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过元2. 为鼓励居民节约用水,某市决定对居民用水收费实行“阶梯价”,即当每月用水量不超过15 吨时(包括 15 吨),采用基本价收费;当每月用水量超过15 吨时,超过部分每吨采用市场价收费.小兰家4、 5 月份的用水量及收费情况如下表:月份用水量(吨)水费(元)4 22 515 20 45( 2)设每月用水量为n 吨,应缴水费为 m元,请写出 m与 n 之间的函数关系式.( 3)小兰家 6 月份的用水量为 26 吨,则她家要缴水费多少元3.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元 / 吨单价:元/吨17 吨以下 a超过 17 吨但不超过30 吨的部分 b超过 30 吨的部分(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用 +污水处理费用)已知小王家2012 年 4 月份用水20 吨,交水费66 元; 5 月份用水25 吨,交水费91 元.( 1)求 a、 b 的值;2%.若( 2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把 6 月份的水费控制在不超过家庭月收入的小王家的月收入为9200 元,则小王家 6 月份最多能用水多少吨4.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元 / 平方米)不超过 30(平方米)超过 30 平方米不超过m(平方米)部分( 45≤m≤60)超过 m平方米部分根据这个购房方案:( 1)若某三口之家欲购买120 平方米的商品房,求其应缴纳的房款;( 2)设该家庭购买商品房的人均面积为x 平方米,缴纳房款y 万元,请求出y 关于 x 的函数关系式;( 3)若该家庭购买商品房的人均面积为50 平方米,缴纳房款为y 万元,且57<y≤60 时,求m的取值范围.生产方案的设计1. 某工厂有一种材料,可加工甲、乙、丙三种型号机械配件共240 个.厂方计划由20 个工人一天内加工完成,并要求每人只加工一种配件.根据下表提供的信息,解答下列问题:配件种类甲乙丙每人可加工配件的数量(个)16 12 10每个配件获利(元) 6 8 5( 1)设加工甲种配件的人数为x,加工乙种配件的人数为y,求 y 与 x 之间的函数关系式.(2)如果加工每种配件的人数均不少于3 人,那么加工配件的人数安排方案有几种并写出每种安排方案.(3)要使此次加工配件的利润最大,应采用(2)中哪种方案并求出最大利润值.2.某高科技公司根据市场需求,计划生产 A.B 两种型号的医疗器械,其部分信息如下:信息一: A. B 两种型号的医疔器械共生产 80 台.信息二:该公司所筹生产医疗器械资金不少于1800 万元,但不超过1810 万元.且把所筹资金全部用于生产此两种医疗器械.信息三: A. B 两种医疗器械的生产成本和售价如下表:型号 A B成本(万元 / 台)20 25售价(万元 / 台)24 30根据上述信息.解答下列问题:( 1)该公司对此两种医疗器械有哪几种生产方案哪种生产方案能获得最大利润( 2)根据市场调查,每台 A 型医疗器械的售价将会提高 a 万元( a> 0).每台 B 型医疗器械的售价不会改变.该公司应该如何生产可以获得最大利润(注:利润=售价﹣成本)营销方案的设计1. 某家电商场计划用32400 元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15 台,三种家电的进价和售价如下表所示:价格种类进价(元/ 台)售价(元/ 台)电视机 2 000 2 100冰箱 2 400 2 500洗衣机 1 600 1 700其中购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半.国家规定:农民购买家电后,可根据商场售价的13%领取补贴.设购进电视机的台数为x 台,三种家电国家财政共需补贴农民y 元.(1)求出 y 与 x 之间的函数关系;(2)在不超出现有资金的前提下,商场有哪几种进货方案(3)在( 2)的条件下,如果这 15 台家电全部销售给农民,国家财政最多需补贴农民多少元2. 某个体小服装准备在夏季来临前,购进甲、乙两种T恤,在夏季到来时进行销售.两种T恤的相关信息如下表:品牌甲乙进价(元 / 件)3570售价(元 / 件)65110根据上述信息,该店决定用不少于6195 元,但不超过6299 元的资金购进这两种T 恤共 100 件.请解答下列问题:(1)该店有哪几种进货方案(2)该店按哪种方案进货所获利润最大,最大利润是多少( 3)两种 T 恤在夏季销售的过程中很快销售一空,该店决定再拿出385 元全部用于购进这两种T 恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.优惠方案的设计甲种客车乙种客车1. 实验学校计划组织共青团员372 人到某爱国主义基地接载客量(人 / 辆)50 30受教育,并安排 8 们老师同行,经学校与汽车出租公司协租金(元 / 辆)400 200商,有两种型号客车可供选择,它们的载客量和租金如下表,为保证每人都有座位 , 学校决定租 8 辆车。

一次函数学习选择方案教案新版新人教版

19.3 课题学习选择方案1.巩固一次函数知识,灵活运用变量关系解决相关实际问题;(重点)2.有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.(难点)一、情境导入某校打算组织八年级师生进行春游,负责组织春游的老师了解到本地有甲乙两家旅行社满足要求,针对团体出游,两家旅行社的优惠方案各不相同,甲旅行社表示可在原价基础上打八折优惠,乙旅行社则推出学生半价,教师九折的优惠,经统计得知有300名学生和24名老师将参加此次春游,你能帮忙分析出如何选择旅行社更划算吗?二、合作探究探究点:运用一次函数解决方案选择性问题【类型一】利用一次函数解决自变量是非负实数的方案选择问题小刚和他父亲一起去灯具店买灯具,灯具店老板介绍说,一种节能灯的功率是10瓦(即0.01千瓦)的,售价60元;一种白炽灯的功率是60瓦(即0.06千瓦)的,售价为3元.两种灯的照明效果是一样的.使用寿命也相同(3000小时以上).如果当地电费为0.5元/千瓦·时,请你帮助他们选择哪种灯可以省钱?解析:设照明时间是x个小时,节能灯的费用为y1元,白炽灯的费用为y2元.根据“费用=灯的售价+电费”,分别列出y1、y2与x的函数解析式;然后根据y1=y2,y1>y2,y2>y1三种情况进行讨论即可求解.解:设照明时间是x个小时,节能灯的费用为y1元,白炽灯的费用为y2元,由题意可知y1=0.01×0.5x+60=0.005x+60,y2=0.06×0.5x+3=0.03x+3.①当使用两灯费用相等时,y1=y2,即0.005x +60=0.03x+3,解得x=2280;②当使用节能灯的费用大于白炽灯的费用时,y1>y2,即0.005x+60>0.03x+3,解得x<2280;③当使用节能灯的费用小于白炽灯的费用时,y2>y1,即0.03x+3>0.005x+60,解得x>2280.所以当照明时间小于2280小时,应买白炽灯;当照明时间大于2280小时,应买节能灯;当照明时间等于2280小时,两种灯具费用一样.本题中两种灯的照明效果是一样的.使用寿命也相同(3000小时以上),所以买节能灯可以省钱.方法总结:解题的关键是要分析题意,根据实际意义求解.注意要把所有的情况都考虑进去,分情况讨论问题是解决实际问题的基本能力.【类型二】利用一次函数解决自变量是非负整数的方案选择问题某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的物资种类食品药品生活用品每辆汽车运载量(吨)65 4每吨所需运费(元/吨)120160100数为y.求y与x的函数关系式;(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.解析:(1)装运生活用品的车辆为(20-x-y)辆,根据三种救灾物资共100吨列出关系式;(2)根据题意求出x的取值范围并取整数值从而确定方案;(3)分别表示装运三种物资的费用,求出表示总运费的表达式,运用函数性质解答.解:(1)根据题意,装运食品的车辆为x辆,装运药品的车辆为y辆,那么装运生活用品的车辆数为(20-x-y)辆,则有6x+5y+4(20-x-y)=100,整理得,y=-2x+20;(2)由(1)知,装运食品,药品,生活用品三种物资的车辆数分别为x,20-2x,x,由题意得⎩⎪⎨⎪⎧x≥5,20-2x≥4,解得5≤x≤8.因为x为整数,所以x 的值为5,6,7,8.所以安排方案有4种:方案一:装运食品5辆、药品10辆,生活用品5辆;方案二:装运食品6辆、药品8辆,生活用品6辆;方案三:装运食品7辆、药品6辆,生活用品7辆;方案四:装运食品8辆、药品4辆,生活用品8辆;(3)设总运费为W(元),则W=6x×120+5(20-2x)×160+4x×100=16000-480x.因为k=-480<0,所以W的值随x的增大而减小.要使总运费最少,需x最大,则x=8.故选方案四,W最小=16000-480×8=12160(元).答:选方案四,最少总运费为12160元.方法总结:解答此类问题往往通过解不等式(组)求出自变量的取值范围,然后求出自变量取值范围内的非负整数,进而得出每种方案,最后根据一次函数的性质求出最佳方案.【类型三】利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题已知A、B两地的路程为240千米.某经销商每天都要用汽车或火车将x吨保鲜品一次性由A地运往B地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图①)、上周货运量折线统计图(如图②)等信息如下:货运收费项目及收费标准表运输工具运输费单价:元/(吨·千米)冷藏单价:元/(吨·时)固定费用:元/次汽车25200火车1.652280货运收费项目及收费标准表:(1)汽车的速度为______千米/时,火车的速度为______千米/时;(2)设每天用汽车和火车运输的总费用分别为y汽(元)和y火(元),分别求y汽、y火与x的函数关系式(不必写出x的取值范围),当x为何值时,y汽>y火(总费用=运输费+冷藏费+固定费用);(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?解析:(1)根据图①上两点的坐标分别为(2,120),(2,200),直接得出两车的速度即可;(2)根据图表得出货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象,得出关系式即可;(3)根据平均数的求法以及折线图走势两个角度分析得出运输总费用较省方案.解:(1)60 100(2)根据题意得y汽=240×2x+24060×5x+200=500x+200;y火=240×1.6x+240100×5x+2280=396x+2280.若y汽>y火,得出500x+200>396x+2280.解得x>20,当x>20时,y汽>y火;(3)上周货运量x=(17+20+19+22+22+23+24)÷7=21>20,从平均数分析,建议预定火车费用较省.从折线图走势分析,上周货运量周四(含周四)后大于20且呈上升趋势,建议预订火车费用较省.方法总结:解答方案选择问题,要注意根据具体情境适当调整方法,如解统计有关的方案选择问题时,要注意从统计图表中读取信息,然后利用这些信息解决问题.三、板书设计1.利用一次函数解决自变量是非负实数的方案选择问题2.利用一次函数解决自变量是非负整数的方案选择问题3.利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题教学时,突出重点把握难点.能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例.同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
2020年4月19日

一次函数方案选择
文档仅供参考,不当之处,请联系改正。
2
2020年4月19日

《课题学习 选择方案》教学设计
湖北省咸宁市温泉中学 黄 娟 廖 文
一、内容和内容解析
1.内容
用函数思想解决方案选择问题—选择哪种上网收费方式省钱?
2.内容解析
本课是在学习了函数概念、一次函数有关知识后,经过学生熟
悉的宽带上网收费方式的选择,让学生经历体会费用随时间的变
化关系是一次函数的关系,确定实际数据整理成函数的模型,即
建立了数学模型,从而利用函数图像求数学模型的解,还能够比
较几个一次函数的变化率来解决方案选择问题,实现利用数学知
识解决实际问题的方法. 本课是明确给出多种方案,要求选择使
问题解决最优的一种.
综上所述,本节课教学的重点是:应用一次函数模型解决方案
选择问题.
二、目标和目标解析
1.目标
(1)会用一次函数知识解决方案选择问题,体会函数模型思
想;
(2)能从不同的角度思考问题,优化解决问题的方法;
(3)能进行解决问题过程的反思,总结解决问题的方法.
2.目标解析
文档仅供参考,不当之处,请联系改正。
3
2020年4月19日

目标(1)要求能根据问题情景建立一次函数模型,并能够比
较几个一次函数的变化率,应用一次函数的性质和图像解决问
题,从而感受到函数模型的应用价值.
目标(2)要求能从不同的角度感知问题中的数量关系,对实
际问题中的数量关系既能够用函数的图像表示,也能够用方程和
不等式表示,构建不同的模型,用不同的方法解决问题.
目标(3)要求在解决问题中,能适时调整思路,解决问题
后,能对解决问题步骤、程序和方法进行总结提炼.
三、教学问题诊断分析
八年级学生已经学会了用方程和不等式来解决生活中的简单的
实际问题,可是用综合应用能力有待加强。特别是由于本节内容
具有较强的实际背景,分析实际背景中所包含的变量及其对应关
系较复杂,分析起来显的理不清头绪,易迷失解决问题的方向,
时间一长就不愿意去尝试了.在这方面要给她们创造机会,降低
问题的坡度,使她们不难成功,体验成功的乐趣,激发学习兴
趣. 本课内容是学生熟悉的宽带上网收费方式的选择,如何选
择,用什么方法选择很重要,特别是如何从数学的角度去分析.
本课教学的难点是:分析实际问题背景中所包含的变量和对应
关系建立函数模型,解决实际问题,从而使选择方案优化.
四、教学过程
1.创设情境,提出问题
文档仅供参考,不当之处,请联系改正。
4
2020年4月19日

做一件事情,有时有不同的实施方案,比较这些方案,从中选
择最佳方案作为行动计划,是非常必要的。应用数学的知识和方
法对各种方案进行比较分析,能够帮助我们清楚地认识各种方
案,作出合理的选择。
问题:你能说说生活中需要选择方案的例子吗?
师生活动:学生各抒已见,引出如何选择上网收费方式的问题
设计意图:经过这一环节,让学生体会到选择方案问题在生活
中普遍存在,对各种方案运用数学方法作出分析,理性选择最佳
方案是必要的,具有现实意义。
2.实例分析,规划思路
在选择方案时,怎样从数学角度进行分析,这就涉及变量的问
题,常会用到函数. 请看下面问题:
例:怎样选取上网收费方式?下表给出A、B、C三种上宽带网
的收费方式
收费方式 月使用费/元 包时上网时间/h
超时费/
(元.min)
A 30 25
0.05
B 50 50
0.05
C 120 不限时

问题1:“选择哪种方式上网”的依据是什么?

师生活动:学生讨论得出需要知道三种方式的上网费分别是多
少,费用最少的就是最佳方案.
设计意图:让学生明确问题的目标.
问题2:哪种方式上网费是会变化的?哪种不变?
师生活动:学生讨论得出方式A、B会变化;方式C不变.
文档仅供参考,不当之处,请联系改正。
5
2020年4月19日

追问1:方式C上网费是多少钱?
追问2:方式A、B中,上网费由哪些部分组成的?
师生活动:老师引导学生分析得出:
(1)当上网时间不超过规定时间时,上网费用=月使用费;
(2)当上网时间超过规定时间时,上网费用=月使用费+超时
费.
追问4:影响方式A、B上网费用的因素是什么?
师生活动:学生独立思考得出上网时间是影响上网费用的因
素.
问题3:你能用适当的方法表示出方式A的上网费用吗?
师生活动:学生小组讨论得出结论.
方式A:当上网时间不超过25h时,上网费=30元;
当上网时间超过25h时,上网费=30+超时费
即上网费=30+0.05×60×(上网时间-25)
追问1:设上网时间为t h,上网费用为y元,你能用数学关系
式表示y与t的关系吗?
师生活动:老师引导,注意时间单位统一,得出结论:当0≤t
≤25时,y=30;
当t>25时,y=30+0.05×60(t-25)即y=3t-45


问题4:类比喻式A,你能用数学关系式表示出方式B中上网
费用y与上网时间t的关系吗?
文档仅供参考,不当之处,请联系改正。
6
2020年4月19日

师生活动:学生思考后,小组讨论,得出结论,老师适时引导
评价.


设计意图:让学生从粗到细的感知问题的整体结构和数量关
系,感知上网费用随上网时间的变化而变化,并把这两个变量作
为研究对象,教师引导学生最终把问题转化为一次函数问题.
3.建立模型,解决问题
问题4:你能把上面的问题描述为函数问题吗?
师生活动:学生讨论后建立函数模型,把实际问题转化为函数
问题.
设上网时间为t h,方式 A上网费用为元,方式B上网费用

为元,方式C上网费用为元,则;
;,比较、、的大小.
设计意图:让学生在感知问题、分析问题基础上建立一次函数
模型,把实际问题转化为一次函数的问题.
追问1:用什么方法比较函数、、的大小呢?
师生活动:学生独立思考. 有的学生会提出用不等式或方程
考虑当t满足什么条件时,>,=,<,分组讨论
后,学生会发现由于、是分段函数,用不等式比较麻烦,此
时教师引导学生借助函数图象来分析问题.
文档仅供参考,不当之处,请联系改正。
7
2020年4月19日

由函数图象可知:
(1)当时,函数、的图像有一个交点,求出此

交点的横坐标,即=时, 3t-45=50,解方程,得;
(2)当时,函数的图像在函数图像的下方,
即<时,方式A比喻式B省钱;

(3)当时,函数的图像在函数图像的上方,即>
,方式B比喻式A省钱;
(4)当时,函数、的图像有一个交点,求出此交点
的横坐标,即

=时, 3t-100=120,解方程,得t=;
(5)当t>时,函数的图像在函数图像的上方,即
>,方式C比喻式B省钱.
设计意图:上述分段函数问题,需要在画出函数图象观察函数
图象的基础上对上网时间进行分段讨论,让学生感受函数图象与
方程、不等式数形结合的方法.

相关文档
最新文档