2021学年必修2第三章直线与方程精品模拟试卷 数学(一) 学生版
2020-2021学年高中数学人教A版 必修2第三章直线与方程测试卷(一)-教师用卷

2020-2021学年必修2第三章测试卷直线与方程(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线1:320l x my +-=,2:280l x y ++=互相平行,则实数m 的值为( ) A .6- B .6C .32D .32-【答案】B【解析】因为直线1:320l x my +-=,2:280l x y ++=互相平行, 所以321m ⨯=⋅且82(2)m ⋅≠⨯-,解得6m =且12m ≠-,所以6m =, 故选B .2.已知两点()1,2A ,()3,6B ,动点M 在直线y x =上运动,则MA MB +的最小值为( ) A .25 B .26C .4D .5【答案】B【解析】根据题意画出图形,如图所示:设点A 关于直线y x =的对称点()2,1A ',连接A B ',则A B '即为MA MB +的最小值,且A B '故选B .3.下面说法正确的是( )A .经过定点()00,P x y 的直线都可以用方程()00y y k x x -=-表示B .不经过原点的直线都可以用方程1x ya b+=表示 C .经过定点(0,)A b 的直线都可以用方程y kx b =+表示D .经过任意两个不同的点()11,P x y ,()22,Q x y 的直线都可以用方程()()()()211211-⋅-=--x x y y y y x x 表示【答案】D【解析】经过定点()00,P x y 且斜率存在的直线才可用方程()00y y k x x -=-表示,所以A 错; 不经过原点且与两坐标轴都不垂直的直线才可以用方程1x ya b+=表示,所以B 错; 经过定点(0,)A b 且斜率存在的直线才可用方程y kx b =+表示,所以C 错; 当12x x ≠时,经过点()11,P x y ,()22,Q x y 的直线可以用方程()211121y y y y x x x x --=--,即()()()()211211-⋅-=--x x y y y y x x 表示;当12x x =时,经过点()11,P x y ,()22,Q x y 的直线可以用方程1x x =, 即()()()()211211-⋅-=--x x y y y y x x 表示,因此经过任意两个不同的点()11,P x y ,()22,Q x y 的直线都可以用方程()()()()211211-⋅-=--x x y y y y x x 表示,所以D 对,故选D .4.若两条平行直线()1:200l x y m m -+=>与2:260l x ny+-=,则m n +=( ) A .0 B .1C .2-D .1-【答案】C【解析】由12l l ,得122n-=,解得4n =-,即直线2:230l x y --=, 两直线之间的距离为d ==2m = (8m =-舍去),所以2m n +=-,故答案选C .5.过点(1,2)的直线l 与两坐标轴分别交于A 、B 两点,O 为坐标原点,当OAB △的面积最小时,直线l 的方程为( ) A .240x y +-= B .250x y +-= C .30x y +-=D .2380x y +-=【答案】A【解析】设l 的方程为1(0,0)x y a b a b +=>>,则有121a b+=, 因为0a >,0b >,所以12a b +≥,即1≥,所以8ab ≥, 当且仅当1212a b ==,即2a =,4b =时,取“=”. 即当2a =,4b =时,OAB △的面积最小, 此时l 的方程为124x y+=,即240x y +-=,故选A . 6.已知,m n ∈R ,则“直线10x my +-=与10nx y ++=平行”是“1mn =”的( )条件. A .充分不必要 B .必要不充分 C .充要D .既不充分又不必要【答案】A【解析】若直线10x my +-=与10nx y ++=平行, 则10mn -=,即1mn =,当1m =-,1n =-时,两直线方程为10x y --=,10x y -++=,此时两直线重合, 故“直线10x my +-=与10nx y ++=平行”是“1mn =”的充分不必要条件, 故选A .7.直线l 经过()2,1A ,()2(,)1B mm ∈R 两点,那么直线l 的倾斜角的取值范围为( )A.0,πB.π3 0,π,π44⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦C.0,π4⎡⎤⎢⎥⎣⎦D.ππ0,,π42⎡⎤⎛⎫⎪⎢⎥⎣⎦⎝⎭【答案】D【解析】直线l的斜率为2212121121y y mk mx x--===---,因为m∈R,所以(],1k∈-∞,所以直线的倾斜角的取值范围是ππ0,,π42⎡⎤⎛⎫⎪⎢⎥⎣⎦⎝⎭,故选D.8.已知直线20kx y-+=和以()3,2M-,()2,5N为端点的线段相交,则实数k的取值范围为()A.32k≤B.32k≥C.4332k-≤≤D.43k≤-或32k≥【答案】C【解析】因为直线20kx y-+=恒过定点(0,2)A,又因为43AMk=-,32ANk=,故直线的斜率k的范围为4332k-≤≤,故选C.9.已知点()2,3A-,()3,2B--,直线l的方程为10kx y k--+=,且与线段AB相交,则直线l 的斜率k 的取值范围为( )A .3(,4][,)4-∞-+∞B .13(,][,)44-∞-+∞C .3[4,]4-D .3[,4]4【答案】A【解析】直线:10l kx y k --+=整理为()()110k x y ---=, 即可知道直线l 过定点()1,1P , 作出直线和点对应的图象如图:(2,3)A -,(3,2)B --,(1,1)P ,31421PA k --∴==--,213314PB k --==--,要使直线l 与线段AB 相交,则直线l 的斜率k 满足PB k k ≤或PA k k ≤,4k ∴≤-或34k ≥, 即直线l 的斜率的取值范围是3(,4][,)4-∞-+∞,故选A .10.设m ∈R ,过定点A 的动直线10x my ++=和过定点B 的动直线230mx y m --+=交于点(),P x y ,则PA PB +的最大值( )A .25B .32C .6D .3【答案】C【解析】直线10x my ++=可整理为()1my x =-+,故恒过定点1,0,即为A 的坐标;直线230mx y m --+=整理为()32y m x -=-,故恒过定点()2,3,即为B 坐标,又两条直线垂直,故可得22218PA PB AB +==, 即()2218PA PBPA PB +-=,整理得()()2211924PA PB PA PB PA PB =+-≤+,解得 6PA PB +≤, 当且仅当PA PB =时取得最大值, 故选C .11.已知实数,a b 满足21a b +=,则直线30ax y b ++=必过定点,这个定点的坐标为( ) A .11(,)62B .11(,)26C .11(,)62D .11(,)26-【答案】D【解析】∵12=+b a ,∴b a 21-=,∵直线03=++b y ax ,∴03)21(=++-b y x b ,即0)3()21(=++-y x x b .12030x x y -=⎧⎨+=⎩,1216x y ⎧=⎪⎪∴⎨⎪=-⎪⎩,∴直线必过点11(,)26-, 本题选择D 选项.12.已知ABC △是等腰三角形,5AB AC ==,6BC =,点P 在线段AC 上运动,则PB PC +的取值范围是( ) A .[]3,4 B .12,65⎡⎤⎢⎥⎣⎦C .[]6,8D .24,85⎡⎤⎢⎥⎣⎦【答案】D【解析】以BC 的中点O 为坐标原点,BC 所在直线为x 轴,OA 所在直线为y 轴建立直角坐标系,如图:可得()3,0B -,()3,0C ,由5AC =,可得()0,4A , 直线AC 的方程为134x y+=,即4312x y +=, 可设()(),04P m n n ≤≤,,即有334n m =-, 则()()()3,3,2,2PB PC m n m n m n +=---+--=--====,当[]360,425n =∈, 可得PB PC +的最小值为122421655==⨯=, 当4n =时,可得PB PC +的最大值8,则PB PC +的取值范围是24,85⎡⎤⎢⎥⎣⎦,故选D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知点(1,3)A 与直线4:30x y l ++=,则点A 关于直线l 的对称点坐标为______. 【答案】(5,1)-【解析】设点(1,3)A 关于直线340x y ++=的对称点(,)A a b ',则由3(3)11133++4022b a a b -⎧⨯-=-⎪⎪-⎨++⎪⨯=⎪⎩,解得5a =-,1b =,故点(5,1)A '-,故答案为()5,1-.14.过直线1:230l x y -+=与直线2:2380l x y +-=的交点,且到点()0,4P 距离为2的直线方程为______.【答案】2y =或4320x y -+=【解析】由2302380x y x y -+=⎧⎨+-=⎩,得12x y =⎧⎨=⎩,所以,直线1l 与2l 的交点为()1,2.当所求直线的斜率不存在时,所求直线的方程为1x =,点P 到该直线的距离为1,不合乎题意; 当所求直线的斜率存在时,设所求直线的方程为()21y k x -=-,即20kx y k --+=, 由于点()0,4P 到所求直线的距离为2,可得2=,整理得2340k k -=,解得0k =或43k =, 综上所述,所求直线的方程为2y =或4320x y -+=, 故答案为2y =或4320x y -+=.15.在平面直角坐标系xOy 中,直线1:40l kx y -+=与直线2:30l x ky +-=相交于点P ,则当实数k 变化时,点P 到直线43100x y -+=的距离的最大值为______.【答案】92【解析】设直线1l 与y 轴交于()0,4A ,直线2l 与x 轴交于()3,0B ,5AB ==.当0k =时,直线1l 为4y =,直线2l 为3x =,所以两条直线的交点为()13,4P . 当0k ≠时,两条直线的斜率分别为k 、1k-,斜率乘积为1-,故12l l ⊥, 所以P 点的轨迹是以AB 为直径的圆(除,A B 两点外).设以AB 为直径的圆的圆心为3,22C ⎛⎫⎪⎝⎭,半径522AB r ==, 圆的方程为()22235222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,点()13,4P 满足圆的方程.综上所述,点P 点的轨迹是以AB 为直径的圆(除,A B 两点外).圆心C 到直线43100x y -+=的距离为2d ==. 所以点P 到直线43100x y -+=的距离的最大值为59222d r +=+=, 故答案为92.16.直线2360x y +-=分别交,x y 轴于,A B 两点,点P 在直线1y x =--上,则PA PB +的最小值是______.【解析】直线2360x y +-=分别交,x y 轴于,A B 两点, 则()3,0A ,()0,2B ,设A 关于直线1y x =--对称的点为()1,A x y ,则133122y x y x ⎧=⎪⎪-⎨+⎪=--⎪⎩, 解得14x y =-⎧⎨=-⎩,11PA PB PA PB A B +=+≥=1A ,P ,B 三点共线时等号成立,.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知ABC △的顶点()2,4A ,()0,2B -,()4,2C -. 求:(1)AB 边上的中线CM 所在直线的方程; (2)求A 点关于直线BC 对称点坐标. 【答案】(1)560x y +-=;(2)()6,4--. 【解析】(1)由题设有()1,1M ,故211415CM k -==---, 故直线CM 的方程为()1115y x =--+,即560x y +-=. (2)()22104CB k --==---,故直线BC 的方程为2y x =--,设A 点关于直线BC 对称点坐标为(),a b ,则42222412b a b a ++⎧=--⎪⎪⎨-⎪=⎪-⎩,解得64a b =-⎧⎨=-⎩,故A 点关于直线BC 对称点坐标为()6,4--.18.(12分)己知直线l 的方程为210x y -+=. (1)求过点()3,2A ,且与直线l 垂直的直线1l 方程;(2)求与直线l 平行,且到点()3,0P2l 的方程. 【答案】(1)270x y +-=;(2)210x y --=或2110x y --=. 【解析】(1)∵直线l 的斜率为2,∴所求直线斜率为12-, 又∵过点()3,2A ,∴所求直线方程为()1232y x -=--, 即270x y +-=.(2)依题意设所求直线方程为20x y c -+=, ∵点()3,0P=解得1c =-或11c =-,所以,所求直线方程为210x y --=或2110x y --=.19.(12分)已知直线l 经过直线3420x y +-=与直线220x y ++=的交点P ,且垂直于直线210x y --=.(1)求直线l 的方程;(2)求直线l 与两坐标轴围成的三角形的面积S . 【答案】(1)220x y ++=;(2)1.【解析】(1)3420220x y x y +-=⎧⎨++=⎩,解得22x y =-⎧⎨=⎩,则点P 的坐标为()2,2-.由于点P 的坐标是()2,2-,且所求直线l 与直线210x y --=垂直, 可设所求直线l 的方程为20x y c ++=.将点P 坐标代入得()2220c ⨯-++=,解得2c =, 故所求直线l 的方程为220x y ++=.(2)由直线l 的方程知它在x 轴,y 轴上的截距分别是1-,2-, 所以直线l 与两坐标轴围成的三角形的面积11212S =⨯⨯=.20.(12分)已知直线方程为()()221340m x m y m -++++=.(1)证明:直线恒过定点;(2)m 为何值时,点()3,4Q 到直线的距离最大,最大值为多少?(3)若直线分别与x 轴,y 轴的负半轴交于,A B 两点,求AOB △面积的最小值及此时直线的方程.【答案】(1)证明见解析;(2)47m =,点()3,4Q 到直线的距离最大,最大值为(3)面积的最小值为4,240x y ++=.【解析】(1)证明:直线方程为()()221340m x m y m -++++=,可化为()()24230x y m x y +++-++=,对任意m 都成立,所以230240x y x y -++=⎧⎨++=⎩,解得12x y =-⎧⎨=-⎩,所以直线恒过定点()1,2--.(2)解:点()3,4Q 到直线的距离最大,可知点Q 与定点()1,2P --的连线的距离就是所求最大值,= 423312PQ k +==+, ()()221340m x m y m -++++=的斜率为23-, 可得22321m m --=-+,解得47m =. (3)解:若直线分别与x 轴,y 轴的负半轴交于,A B 两点,直线方程为()21y k x +=+,0k <,则21,0A k ⎛⎫- ⎪⎝⎭,()0,2B k -,()12122121222222AOB k S k k k k k -⎛⎫⎛⎫=--=--=++≥+ ⎪ ⎪-⎝⎭⎝⎭△4=,当且仅当2k =-时取等号,面积的最小值为4,此时直线的方程240x y ++=.21.(12分)已知ABC △的三个顶点(),A m n 、()2,1B 、()2,3C -.(1)求BC 边所在直线的方程;(2)BC 边上中线AD 的方程为2360x y -+=,且7ABC S =△,求点A 的坐标.【答案】(1)240x y +-=;(2)()3,4A 或()3,0A -.【解析】(1)由()2,1B 、()2,3C -,得BC 边所在直线方程为123122y x --=---, 即240x y +-=.(2)BC ==,A 到BC 边所在直线240x y +-=的距离为d =由于A 在直线2360x y -+=上,故1722360ABC S BC d m n ⎧=⋅⋅=⎪⎨⎪-+=⎩△, 即2472360m n m n ⎧+-=⎨-+=⎩,解得()3,4A 或()3,0A -.22.(12分)设直线l 的方程为()()1520a x y a a ++--=∈R .(1)求证:不论a 为何值,直线l 必过一定点P ;(2)若直线l 分别与x 轴正半轴,y 轴正半轴交于点(),0A A x ,()0,B B y , 当AOB △面积最小时,求AOB △的周长及此时的直线方程;(3)当直线l 在两坐标轴上的截距均为正整数且a 也为正整数时,求直线l 的方程.【答案】(1)证明见解析;(2)10+32120x y +-=;(3)390x y +-=.【解析】(1)由()1520a x y a ++--=,得()250a x x y -++-=,则2050x x y -=⎧⎨+-=⎩,解得23x y =⎧⎨=⎩, 所以不论a 为何值,直线l 必过一定点()2,3P .(2)由()1520a x y a ++--=得,当0x =时,52B y a =+;当0y =时,521A a x a +=+, 又由5205201B A y a a x a =+>⎧⎪+⎨=>⎪+⎩,得1a >-, ()()5252111941+12221AOB S a a a a a ++⎡⎤∴=⋅++⎢⎥+=⎣⋅+⎦△112122⎡⎤≥=⎢⎥⎣⎦, 当且仅当()9411a a +=+,即12a =时,取等号. ()4,0A ∴,()0,6B ,AOB∴△的周长为4610OA OB AB ++=+=+ 直线方程为32120x y +-=.(3)直线l 在两坐标轴上的截距均为正整数,即52a +,521a a ++均为正整数,而a 也为正整数, 523211a a a +=+++,2a ∴=, 所以直线l 的方程为390x y +-=.。
高中数学 第三章 直线与方程测试题 新人教A版必修2[1](2021年最新整理)
](https://img.taocdn.com/s3/m/089a4a1faa00b52acec7ca2b.png)
2016-2017学年高中数学第三章直线与方程测试题新人教A版必修2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第三章直线与方程测试题新人教A版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第三章直线与方程测试题新人教A版必修2的全部内容。
直线与方程(时间:120分钟满分:150分)学号:______ 班级:______ 姓名:______ 得分:______一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.斜率为2的直线经过点(3,5),(a,7),(-1,b)三点,则a、b的值为( )A.a=4,b=0 B.a=-4,b=-3C.a=4,b=-3 D.a=-4,b=32.点(1,1)到直线x+y-1=0的距离为( )A.1 B.2 C。
错误! D.错误!3.如图,在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()4.若直线(a+2)x+(1-a)y=3与直线(a-1)x+(2a+3)y+2=0互相垂直,则a 等于()A.1 B.-1 C.±1 D.-25.过点P(4,-3)且在两坐标轴上的截距相等的直线有( )A.1条 B.2条 C.3条D.4条6.若直线y=x+2k+1与直线y=-错误!x+2的交点在第一象限,则实数k的取值范围是()A.51,22⎛⎫-⎪⎝⎭B.21,52⎛⎫-⎪⎝⎭C。
51,22⎡⎤--⎢⎥⎣⎦D.21,52⎡⎤-⎢⎥⎣⎦7。
直线kx-y+1-3k=0,当k变动时,所有直线都通过定点( )A.(0,0)B.(0,1) C.(3,1)D.(2,1)8。
高中数学必修2《第3章:直线与方程(3.3直线的交点坐标与距离公式1)》学生版

个 性 化 辅 导 教 案学员姓名 科 目 年 级 授课时间课 时3授课老师教学目标 1、掌握两直线交点坐标的求法,以及判断两直线位置的方法 2、掌握数形结合的学习方法重点难点重点:判断两直线是否相交,求交点坐标。
难点:两直线相交与二元一次方程的关系。
第三章:直线与方程3.3直线的交点坐标与距离公式3.3.1 & 3.3.2 两直线的交点坐标、两点间的距离 第一课时 两直线的交点坐标、两点间的距离(新授课)两条直线的交点坐标[导入新知]1.两直线的交点坐标几何元素及关系代数表示 点A A (a ,b ) 直线l l :Ax +By +C =0 点A 在直线l 上 Aa +Bb +C =0直线l 1与l 2的交点是A方程组⎩⎪⎨⎪⎧ A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0的解是⎩⎪⎨⎪⎧x =ay =b2.两直线的位置关系方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0的解一组 无数组 无解 直线l 1与l 2的公共点个数 一个 无数个 零个 直线l 1与l 2的位置关系相交重合平行[化解疑难]两直线相交的条件(1)将两直线方程联立解方程组,依据解的个数判断两直线是否相交.当方程组只有一解时,两直线相交.(2)设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2相交的条件是A 1B 2-A 2B 1≠0或A 1A 2≠B 1B 2(A 2,B 2≠0).(3)设两条直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,则l 1与l 2相交⇔k 1≠k 2.两点间的距离[导入新知] 两点间的距离公式(1)公式:点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2.(2)文字叙述:平面内两点的距离等于这两点的横坐标之差与纵坐标之差的平方和的算术平方根. [化解疑难]两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2. (2)当直线P 1P 2平行于x 轴时,|P 1P 2|=|x 2-x 1|. 当直线P 1P 2平行于y 轴时,|P 1P 2|=|y 2-y 1|. 当点P 1、P 2中有一个是原点时,|P 1P 2|=x 2+y 2.两条直线的交点问题[例1] 判断下列各组直线的位置关系.如果相交,求出交点的坐标: (1)l 1:5x +4y -2=0,l 2:2x +y +2=0; (2)l 1:2x -6y +3=0,l 2:y =13x +12;(3)l 1:2x -6y =0,l 2:y =13x +12.[解] (1)解方程组⎩⎪⎨⎪⎧5x +4y -2=0,2x +y +2=0,得⎩⎨⎧x =-103,y =143.所以l 1与l 2相交,且交点坐标为⎝⎛⎭⎫-103,143. (2)解方程组⎩⎪⎨⎪⎧2x -6y +3=0,①y =13x +12,②②×6整理得2x -6y +3=0.因此,①和②可以化成同一个方程,即①和②表示同一条直线,l 1与l 2重合. (3)解方程组⎩⎪⎨⎪⎧2x -6y =0,①y =13x +12,②②×6-①得3=0,矛盾.方程组无解,所以两直线无公共点,l 1∥l 2. [类题通法]判断两直线的位置关系,关键是看两直线的方程组成的方程组的解的情况.(1)解方程组的重要思想就是消元,先消去一个变量,代入另外一个方程能解出另一个变量的值. (2)解题过程中注意对其中参数进行分类讨论. (3)最后把方程组解的情况还原为直线的位置关系. [活学活用]1.判断下列各对直线的位置关系.若相交,求出交点坐标: (1)l 1:2x +y +3=0,l 2:x -2y -1=0; (2)l 1:x +y +2=0,l 2:2x +2y +3=0.直线恒过定点问题[例2] 求证:不论m 为何实数,直线(m -1)x +(2m -1)y =m -5都过某一定点. [证明] 法一:取m =1时,直线方程为y =-4;取m =12时,直线方程为x =9.两直线的交点为P (9,-4),将点P 的坐标代入原方程左边=(m -1)×9+(2m -1)×(-4)=m -5. 故不论m 取何实数,点P (9,-4)总在直线(m -1)x +(2m -1)y =m -5上, 即直线恒过点P (9,-4).法二:原方程化为(x +2y -1)m +(-x -y +5)=0. 若对任意m 都成立,则有⎩⎪⎨⎪⎧ x +2y -1=0,x +y -5=0,得⎩⎪⎨⎪⎧x =9,y =-4.所以不论m 为何实数,所给直线都过定点P (9,-4). [类题通法]解含有参数的直线恒过定点的问题(1)方法一:任给直线中的参数赋两个不同的值,得到两条不同的直线,然后验证这两条直线的交点就是题目中含参数直线所过的定点,从而问题得解.(2)方法二:含有一个参数的二元一次方程若能整理为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中λ是参数,这就说明了它表示的直线必过定点,其定点可由方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0解得.若整理成y -y 0=k (x -x 0)的形式,则表示的所有直线必过定点(x 0,y 0).[活学活用]2.求经过两直线l 1:3x +4y -2=0和l 2:2x +y +2=0的交点且过坐标原点的直线l 的方程.两点间距离公式的应用[例3] 已知点A (1,1),B (5,3),C (0,3),求证:△ABC 为直角三角形. [证明] 法一:∵|AB |=(5-1)2+(3-1)2=25, |AC |=(0-1)2+(3-1)2=5, 又|BC |=(5-0)2+(3-3)2=5, ∴|AB |2+|AC |2=|BC |2, ∴△ABC 为直角三角形. 法二:∵k AB =3-15-1=12,k AC =3-10-1=-2,∴k AB ·k AC =-1,∴AB ⊥AC ,∴△ABC 是以A 为直角顶点的直角三角形.[类题通法]1.计算两点间距离的方法(1)对于任意两点P 1(x 1,y 1)和P 2(x 2,y 2),则|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)对于两点的横坐标或纵坐标相等的情况,可直接利用距离公式的特殊情况求解. 2.解答本题还要注意构成三角形的条件. [活学活用]3.已知点A (-1,2),B (2,7),在x 轴上求一点P ,使|P A |=|PB |,并求|P A |的值.8.两条直线相交求参数中的误区[典例] 若三条直线l 1:ax +y +1=0,l 2:x +ay +1=0 ,l 3:x +y +a =0能构成三角形,则a 应满足的条件是( )A .a =1或a =-2B .a ≠±1C .a ≠1且a ≠-2D .a ≠±1且a ≠-2[解析] 为使三条直线能构成三角形,需三条直线两两相交且不共点.(1)若三条直线交于一点,由⎩⎪⎨⎪⎧ x +ay +1=0,x +y +a =0,解得⎩⎪⎨⎪⎧x =-a -1,y =1,将l 2,l 3的交点(-a -1,1)代入l 1的方程解得a =1或a =-2①;(2)若l 1∥l 2,则由a ×a -1×1=0,得a =±1②, 当a =1时,l 1与l 2重合;(3)若l 2∥l 3,则由1×1-a ×1=0,得a =1,当a =1时,l 2与l 3重合; (4)若l 1∥l 3,则由a ×1-1×1=0,得a =1,当a =1时,l 1与l 3重合. 综上,当a =1时,三条直线重合;当a =-1时,l 1∥l 2;当a =-2时,三条直线交于一点, 所以要使三条直线能构成三角形,需a ≠±1且a ≠-2. [答案] D [易错防范]①处,解题过程中,由a =1或a =-2得a ≠1且a ≠-2,此种错误只考虑了三条直线相交于一点不能构成三角形,而忽视了任意两条平行或重合的直线也不能构成三角形.②处,若得到a ≠±1,只考虑了直线的斜率不相等的条件,而忽视了三条直线相交于一点也不能构成三角形.解答此类问题由条件不易直接求参数,可考虑从反面入手,同时考虑问题要全面,不要漏掉某些情形. [成功破障](2013·银川高一检测)直线y =2x +10,y =x +1,y =ax -2交于一点,则a 的值为( ) A.12B .-12C.23 D .-23[随堂即时演练]1.直线3x +2y +6=0和2x +5y -7=0的交点的坐标为( ) A .(-4,-3) B .(4,3) C .(-4,3)D .(3,4)2.已知点A (-2,-1),B (a,3),且|AB |=5,则a 的值为( ) A .1 B .-5 C .1或-5D .1-或53.设Q (1,3),在x 轴上有一点P ,且|PQ |=5,则点P 的坐标是________.4.若p ,q 满足p -2q =1,直线px +3y +q =0必过一个定点,该定点坐标为________.5.(2012·山东德州高一检测)分别求经过两条直线2x +y -3=0和x -y =0的交点,且符合下列条件的直线方程.(1)平行于直线l 1:4x -2y -7=0; (2)垂直于直线l 2:3x -2y +4=0.第二课时 两直线的交点坐标、两点间的距离(习题课)1.两条直线的交点坐标如何求?2.如何根据方程组的解判断两直线的位置关系?3.平面内两点间的距离公式是什么?4.过定点的直线系方程有什么特点?5.如何用坐标法解决几何问题?6.点关于点的对称点,点关于线的对称点如何求?两直线交点问题的综合应用[例1] 过点M (0,1)作直线,使它被两已知直线l 1:x -3y +10=0和l 2:2x +y -8=0所截得的线段恰好被M 所平分,求此直线的方程.[解] 法一:过点M 与x 轴垂直的直线显然不合要求,故设所求直线方程为y =kx +1.若与两已知直线分别交于A ,B 两点,则解方程组⎩⎪⎨⎪⎧ y =kx +1,x -3y +10=0,和⎩⎪⎨⎪⎧y =kx +1,2x +y -8=0,可得x A =73k -1,x B =7k +2.由题意73k -1+7k +2=0, ∴k =-14.故所求直线方程为x +4y -4=0.法二:设所求直线与两已知直线分别交于A 、B 两点,点B 在直线2x +y -8=0上,故可设B (t,8-2t ),由中点坐标公式得A (-t,2t -6).又因为点A 在直线x -3y +10=0上,所以(-t )-3(2t -6)+10=0,得t =4,即B (4,0).由两点式可得所求直线方程为x +4y -4=0.[类题通法]两条直线的交点坐标就是联立两条直线方程所得的方程组的解. 解法一体现了方程思想,要学会利用. [活学活用]1.若直线5x +4y -2m -1=0与直线2x +3y -m =0的交点在第四象限,求m 的取值范围.解:由方程组⎩⎪⎨⎪⎧5x +4y -2m -1=0,2x +3y -m =0,得⎩⎨⎧x =2m +37,y =m -27,即两直线的交点坐标为⎝⎛⎭⎫2m +37,m -27.∵此交点在第四象限,∴⎩⎨⎧2m +37>0,m -27<0,解得-32<m <2.故所求m 的取值范围是⎝⎛⎭⎫-32,2.对称问题[例2] 一束光线从原点O (0,0)出发,经过直线l :8x +6y =25反射后通过点P (-4,3),求反射光线的方程. [解] 设原点关于l 的对称点A 的坐标为(a ,b ),由直线OA 与l 垂直和线段AO 的中点在l 上得⎩⎨⎧b a ·(-43)=-1,8×a 2+6×b2=25,解得⎩⎪⎨⎪⎧a =4,b =3,∴A 的坐标为(4,3).∵反射光线的反向延长线过A (4,3), 又由反射光线过P (-4,3),两点纵坐标相等, 故反射光线所在直线方程 为y =3.由方程组⎩⎪⎨⎪⎧y =3,8x +6y =25,解得⎩⎪⎨⎪⎧x =78,y =3,由于反射光线为射线,故反射光线的方程为y =3(x ≤78).[类题通法]1.点关于直线对称的点的求法点N (x 0,y 0)关于直线l :Ax +By +C =0的对称点M (x ,y )可由方程组⎩⎪⎨⎪⎧y -y 0x -x 0·⎝⎛⎭⎫-A B =-1(AB ≠0)A ·x +x 02+B ·y +y2+C =0求得.2.直线关于直线的对称的求法求直线l 1:A 1x +B 1y +C 1=0关于直线l :Ax +By +C =0对称的直线l 2的方程的方法是转化为点关于直线对称,在l 1上任取两点P 1和P 2,求出P 1、P 2关于直线l 的对称点,再用两点式求出l 2的方程.[活学活用]2.与直线2x +3y -6=0关于点(1,-1)对称的直线方程是( ) A .3x -2y +2=0 B .2x +3y +7=0 C .3x -2y -12=0 D .2x +3y +8=0坐标法的应用[例3] 一长为3 m ,宽为2 m 缺一角A 的长方形木板(如图所示),长缺0.2 m ,宽缺0.5 m ,EF 是直线段,木工师傅要在BC 的中点M 处作EF 延长线的垂线(直角曲尺长度不够),应如何画线?[解] 以AB 所在直线为x 轴,AD 所在的直线为y 轴建立直角坐标系, 则E (0.2,0),F (0,0.5),B (3,0),D (0,2),M (3,1), 所以EF 所在直线斜率k =0.5-0.2=-52.∵所求直线与EF 垂直,∴所求直线斜率为k ′=25,又直线过点M (3,1),所以所求直线方程为y -1=25(x -3).令y =0,则x =0.5,所以所求直线与x 轴交点为(0.5,0),故应在EB 上截|EN |=0.3 m ,得点N ,即得满足要求的直线MN . [类题通法]1.坐标法解决实际应用题,首先通过建立模型将它转化为数学问题.2.用坐标法解决几何问题,首先要建立适当的坐标系,用坐标表示有关量,然后进行代数运算,最后把代数运算的结果“翻译”成几何关系.[活学活用]3.已知等腰梯形ABCD ,建立适当的坐标系,证明:对角线|AC |=|BD |.9.利用转化思想求最值[典例] 在x 轴上求一点P ,使得(1)P 到A (4,1)和B (0,4)的距离之差最大,并求出最大值; (2)P 到A (4,1)和C (3,4)的距离之和最小,并求出最小值.[解题流程]在求有关距离之和最小或距离之差最大时,需利用对称性和几何性质求解.①三角形的两个顶点知道,第三个顶点在x 轴上;②三角形两边之差小于 第三边,两边之和大于第三边.在x 轴上求点P ,使|P A |-|PB |或|PB |-|P A |最大,以及|P A |+|PC |最小,应首先画出图形,利用对称性及三角形三边关系求解.[规范解答]如图,(1)直线BA 与x 轴交于点P ,此时P 为所求点,(2分) 且|PB |-|P A |=|AB |=(0-4)2+(4-1)2=5.(3分) ∵直线BA 的斜率k BA =1-44=-34,(4分) ∴直线BA 的方程为y =-34x +4.令y =0得x =163,即P ⎝⎛⎭⎫163,0.故距离之差最大值为5,此时P 点的坐标为⎝⎛⎭⎫163,0,(6分) (2)作A 关于x 轴的对称点A ′,则A ′(4,-1),连接CA ′,则|CA ′|为所求最小值,直线CA ′与x 轴交点为所求点.(7分)又|CA ′|=(4-3)2+(-1-4)2=26,(9分)直线CA ′的斜率k CA ′=-1-44-3=-5,则直线CA ′的方程为y -4=-5(x -3).令y =0得x =195,即P ⎝⎛⎭⎫195,0.(11分)故距离之和最小值为26,此时P 点的坐标为⎝⎛⎭⎫195,0.(12分)[名师批注]若在x 轴上另取一点P ′,则|P ′B |-|P ′A |<|BA |,因此,|AB |为最大值由点斜式写出直线AB 方程,再令y =0即可由A 、C 点在x 轴同侧,可作A 关于x 轴的对称点A ′(也可作C 关于x 轴对称点C ′),转化为|CA ′|为最小值,若再找一点P 0,则|P 0A |+|P 0C |=|P 0A ′|+|P 0C |>|A ′C |[活学活用]求函数f (x )=x 2-8x +20+x 2+1的最小值.[随堂即时演练]1.(2012·济宁高一检测)已知点A (x,5)关于点(1,y )的对称点为(-2,-3),则点P (x ,y )到原点的距离是( ) A .2 B .4 C .5D.172.已知集合M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么集合M ∩N 为( ) A .{3,-1} B .3,-1 C .(3,-1)D .{(3,-1)}3.经过两直线2x -3y -3=0和x +y +2=0的交点且与直线3x +y -1=0垂直的直线l 的方程为________. 4.点A (4,5)关于直线l 的对称点为B (-2,7),则直线l 的方程为________.5.已知△ABC 是直角三角形,斜边BC 的中点为M ,建立适当的平面直角坐标系,证明:|AM |=12|BC |.3.3.3 & 3.3.4 点到直线的距离 两条平行线间的距离[导入新知]点到直线的距离与两条平行线间的距离点到直线的距离 两条平行直线间的距离 定义点到直线的垂线段的长度 夹在两条平行直线间公垂线段的长度 公式点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B2两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0(C 1≠C 2)之间的距离 d =|C 1-C 2|A 2+B 2[化解疑难]1.点到直线的距离公式需注意的问题(1)直线方程应为一般式,若给出其他形式,应先化成一般式再用公式.例如,求P 0(x 0,y 0)到直线y =kx +b 的距离,应先把直线方程化为kx -y +b =0,得d =|kx 0-y 0+b |k 2+1.2.点到几种特殊直线的距离 (1)点P 0(x 0,y 0)到x 轴的距离d =|y 0|; (2)点P (x 0,y 0)到y 轴的距离d =|x 0|;(3)点P (x 0,y 0)到与x 轴平行的直线y =b (b ≠0)的距离d =|y 0-b |; (4)点P (x 0,y 0)到与y 轴平行的直线x =a (a ≠0)的距离d =|x 0-a |. 3.对平行线间的距离公式的理解(1)利用公式求平行线间的距离时,两直线方程必须是一般式,且x ,y 的系数对应相等. (2)当两直线都与x 轴(或y 轴)垂直时,可利用数形结合来解决 ①两直线都与x 轴垂直时,l 1:x =x 1,l 2:x =x 2,则d =|x 2-x 1|; ②两直线都与y 轴垂直时,l 1:y =y 1,l 2:y =y 2,则d =|y 2-y 1|.点到直线的距离[例1] 求点P (3,-2)到下列直线的距离:(1)y =34x +14;(2)y =6;(3)x =4.[解] (1)直线y =34x +14化为一般式为3x -4y +1=0,由点到直线的距离公式可得d =|3×3-4×(-2)+1|32+(-4)2=185. (2)因为直线y =6与y 轴垂直,所以点P 到它的距离d =|-2-6|=8. (3)因为直线x =4与x 轴垂直,所以点P 到它的距离d =|3-4|=1. [类题通法]应用点到直线的距离公式应注意的三个问题(1)直线方程应为一般式,若给出其他形式应化为一般式. (2)点P 在直线l 上时,点到直线的距离为0,公式仍然适用.(3)直线方程Ax +By +C =0中,A =0或B =0公式也成立,但由于直线是特殊直线(与坐标轴垂直),故也可用数形结合求解.[活学活用]1.已知点A (a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =( ) A.2 B .2- 2 C.2-1D.2+12.点P (2,4)到直线l :3x +4y -7=0的距离是________.两平行线间的距离[例2] 求与直线l :5x -12y +6=0平行且到l 的距离为2的直线方程. [解] 法一:设所求直线的方程为5x -12y +C =0. 在直线5x -12y +6=0上取一点P 0(0,12),则点P 0到直线5x -12y +C =0的距离为|-12×12+C |52+(-12)2=|C -6|13,由题意,得|C -6|13=2,所以C =32,或C =-20.故所求直线的方程为5x -12y +32=0,或5x -12y -20=0. 法二:设所求直线的方程为5x -12y +C =0, 由两平行直线间的距离公式得2=|C -6|52+(-12)2,解得C =32,或C =-20.故所求直线的方程为5x -12y +32=0,或5x -12y -20=0. [类题通法]求两平行线间的距离,一般是直接利用两平行线间的距离公式,当直线l 1:y =kx +b 1,l 2:y =kx +b 2,且b 1≠b 2时,d =|b 1-b 2|k 2+1;当直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0且C 1≠C 2时,d =|C 1-C 2|A 2+B 2.但必须注意两直线方程中x ,y 的系数对应相等.[活学活用]3.(2012·岳阳高一检测)两直线3x +y -3=0和6x +my -1=0平行,则它们之间的距离为________.距离的综合应用[例3] 求经过点P (1,2),且使A (2,3),B (0,-5)到它的距离相等的直线l 的方程.[解] 法一:当直线斜率不存在时,即x =1,显然符合题意.当直线斜率存在时,设所求直线的斜率为k ,则直线方程为y -2=k (x -1).由条件得|2k -3-k +2|k 2+1=|5-k +2|k 2+1,解得k =4,故所求直线方程为x =1或4x -y -2=0.法二:由平面几何知识知l ∥AB 或l 过线段AB 的中点. ∵直线AB 的斜率k AB =4,若l ∥AB ,则l 的方程为4x -y -2=0.若l 过AB 的中点(1,-1),则直线方程为x =1, 故所求直线方程为x =1或4x -y -2=0. [类题通法]解这类题目常用的方法是待定系数法,即根据题意设出方程,然后由题意列方程求参数.也可以综合应用直线的有关知识,充分发挥几何图形的直观性,判断直线l 的特征,然后由已知条件写出l 的方程.[活学活用]4.求经过两直线l 1:x -3y -4=0与l 2:4x +3y -6=0的交点,且和点A (-3,1)的距离为5的直线l 的方程.9.漏掉直线斜率不存在的情况[典例] 直线l 1过点A (0,1),l 2过点B (5,0),如果l 1∥l 2,且l 1与l 2的距离为5,求l 1,l 2的方程. [解] (1)若直线l 1,l 2的斜率存在①,设直线的斜率为k ,由斜截式得l 1的方程y =kx +1,即kx -y +1=0.由点斜式可得l 2的方程为y =k (x -5),即kx -y -5k =0.因为直线l 1过点A (0,1),则点A 到直线l 2的距离d =|-1-5k |(-1)2+k 2=5,∴25k 2+10k +1=25k 2+25,∴k =125,∴l 1的方程为12x -5y +5=0,l 2的方程为12x -5y -60=0.(2)若l 1,l 2的斜率不存在①,则l 1的方程为x =0,l 2的方程为x =5,它们之间的距离为5,同样满足条件. 综上所述,满足条件的直线方程有两组:l 1:12x -5y +5=0,l 2:12x -5y -60=0;或l 1:x =0,l 2:x =5.[易错防范]1.①处容易漏掉l 1,l 2的斜率都不存在的情形而导致错误.2.用待定系数法求直线方程时,一定要对斜率是否存在的情况进行讨论. [成功破障]经过点A (1,2)且到原点的距离等于1的直线方程为________.[随堂即时演练]1.原点到直线x +2y -5=0的距离为( ) A .1 B. 3 C .2D. 52.已知直线l 1:x +y +1=0,l 2:x +y -1=0,则l 1,l 2之间的距离为( ) A .1 B. 2 C. 3D .2。
必修2第三章《直线与方程》单元测试题

必修 2 第三章《直线与方程》单元测试题(时间: 60 分钟,满分: 100 分)班别座号姓名成绩一、选择题(本大题共10 小题,每题 5 分,共 50 分)1. 若直线过点(1,2),(4,2+ 3 ),则此直线的倾斜角是()A30°B45°C60°D90°2. 假如直线ax+2y+2=0 与直线 3x-y-2=0 平行,则系数 a=A、 -3 B 、 -6 C 、 3 D 、22 33. 点 P( -1 , 2)到直线 8x-6y+15=0 的距离为()(A)2 (B)1(C)1 (D)7 2 24. 点M(4, m)对于点N(n, - 3 )的对称点为P(6,-9),则()Am=-3, n=10Bm=3, n=10Cm=-3, n=5Dm=3, n=55. 以A(1,3),B(-5,1)为端点的线段的垂直均分线方程是()A3x-y-8=0 B 3x+y+4=0C 3x-y+6=0D 3x+y+2=06.过点M(2 , 1)的直线与X轴,Y轴分别交于P, Q两点,且|MP|=|MQ| ,则L的方程是()Ax-2y+3=0 B 2x-y-3=0C 2x+y-5=0D x+2y-4=07.直线 mx-y+2m+1=0经过必定点,则该点的坐标是A(-2 ,1) B (2,1) C (1,-2 ) D ( 1,2)8. 直线2 x y m 0和 x 2 y n 0 的地点关系是(A)平行( B)垂直( C)订交但不垂直( D)不可以确立9. 如图 1,直线 l 、 l 、l3 的斜率分别为 k 、k 、k ,1 2 1 2 3则必有A. k1<k3<k2B. k 3<k1<k2C. k 1<k2<k3D. k 3<k2<k110. 已知 A( 1, 2)、B( -1 , 4)、 C( 5,2),则ABC的边AB上的中线所在的直线方程为()(A) x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0选择题答题表题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题 (本大题共 4 小题,每题5 分,共 20 分)11. 已知点 A( 5,4) 和B(3,2), 则过点C( 1,2) 且与 A,B 的距离相等的直线方程为.12.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是.13.直线 5x+12y+3=0 与直线 10x+24y+5=0 的距离是 .14.原点O在直线L上的射影为点H(-2,1) ,则直线L的方程为.三、解答题 (本大题共 3 小题,每题10 分,共 30 分)15. ①求平行于直线 3x+4y-12=0, 且与它的 16. 直线 x+m 2y+6=0 与直线( m-2) x+3my+2m=0距离是 7 的直线的方程 ;没有公共点,务实数 m 的值 .②求垂直于直线 x+3y-5=0, 且与点 P(-1,0)的距离是310 的直线的方程 . 5*17. 已知直线 l 被两平行直线 3x y 6 0 和 3x y 3 0 所截得的线段长为 3,且直线过点( 1, 0),求直线 l 的方程 .参照答案:1.A ;2.B ;3.B ;4.D ;5.B ;6.D ;7.A ;8.C ;9.A ; 10.A.11.x+4y-7=0或x=-1;12.x+y-3=0或2x-y=0;13.1;14.2x-y+5=0;26 15. (1)3x+4y+23=0或16.m=0 或 m=-1;17.x=13x+4y-47=0;(2)3x-y+9=0 或 3x-4y-3=0.或3x-y-3=0.。
高中数学必修2第3章《直线与方程》单元测试题

必修2第3章《直线的方程》单元测试题、选择题3.设点A (2 , -3) , B (_3 ,,2),直线过P (1,1)且与线段 AB 相交,贝U I 的斜率k 的取值范围是( )3 、3 3 A. k 》或 k w -4 B . -4 w k w c. w k w 4 D .以上都不对 4 4 44.直线(a - 2)x - (1「a)y 「3 =0 与直线(a 「1)x • (2a 3)y 2=0互相垂直,则 a =( ) 6.到两条直线3x-4y ,5=0与5x-12y ,13=0的距离相等的点 P (x, y )必定满足方程()A. x 「4y 4=0B. 7x 4y=0c. x-4y 4=0 或 4x-8y 9=0 D. 7x 4y=0 或 32x - 56y 65 = 07. 已知直线3x • 2y -3 =0和6x my ^0互相平行,则它们之间的距离是()A. 4B.C. 5 .13D. 7131326268. 已知等腰直角三角形 ABC 的斜边所在的直线是 3x - y • 2 = 0,直角顶点是C(3, - 2),则两条直角边AC - BC 的方程是()A. 3x -y 5=0, x 2y -7=0B. 2x y -4 = 0 - x -2y -7=0C. 2x-y 4=0, 2x y-7=0D. 3x-2y-2=0, 2x-y 2=0A 3 JT5亠5A.B.—二C.—或一二444 4D.b )三点,则a , b 的值是(c. a = 4 , b = -3 D . a = -4 , b = 3 B . 1c. _1D.5.直线|过点AI 的斜率的取值范围是(A. [0,2 1B. 01 11.直线I 经过原点和点(一 1,1),则它的倾斜角是( )2.斜率为2的直线过 3, 5), ( a , 7) , ( — 1 , A. a -4 , b = 0 B . a = -4, b = -39. 入射光线线在直线h: 2x-y-3=0上,经过x轴反射到直线l2上,再经过y轴反射到直线l3上,则直线l3的方程为(A. x_2y・3=0B. 2x_y 3=0C. 2x y_3=0D. 2x _ y • 6 = 0'x 一y + 5 £010. 已知x, y满足《x兰3 ,且z=2x+4y的最小值为-6,则常数k=( )x+y +k >0A. 2B. 9C. ,3D. 0二、填空题k11. 已知三点(2,一3) , (4,3)及(5,仝)在同一条直线上,则k的值是212. 在y轴上有一点m,它与点连成的直线的倾斜角为120,则点m的坐标为____________________________ .13. 设点P在直线x 3^0上,且P到原点的距离与P到直线x • 3y - 2 = 0的距离相等,则点P坐标是.114. 直线I过直线2x「y • 4 = 0与x「3y *5=0的交点,且垂直于直线y x,则直线I的方程2是_____________ .x y -3 _ 015. 若x,y满足灯―y+1K0 ,设y = kx,则k的取值范围是 ___________________ .Qx -y _5 兰0三、解答题16. 已知:ABC中,点A(1,2),AB边和AC边上的中线方程分别是5x-3y-3 = 0和7x-3y-5 = 0,求BC所在的直线方程的一般式。
2021-2022年高中数学 第三章 直线与方程质量评估检测 新人教A版必修2

2021-2022年高中数学 第三章 直线与方程质量评估检测 新人教A 版必修2一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(xx·嘉兴高一检测)点A (2,-3)关于点B (-1,0)的对称点A ′的坐标是( )A .(-4,3)B .(5,-6)C .(3,-3) D.⎝ ⎛⎭⎪⎫12,-32解析:设A ′(x ′,y ′),由题意得⎩⎪⎨⎪⎧2+x ′2=-1,-3+y ′2=0,即⎩⎨⎧x ′=-4,y ′=3.答案:A2.2014·茂名模拟过点(-1,3)且平行于直线x -2y +3=0的直线方程为( ) A .x -2y +7=0 B .2x +y -1=0 C .x -2y -5=0 D .2x +y -5=0解析:∵直线x -2y +3=0的斜率为12,∴所求直线的方程为y -3=12(x +1),即x -2y +7=0. 答案:A3.2014·大连高一检测若直线ax +2y +a -1=0与直线2x +3y -4=0垂直,则a 的值为( )A .3B .-3 C.43 D .-43解析:由a ·2+2·3=0,得a =-3. 答案:B4.光线从点A (-2,1)射到y 轴上,经反射以后经过点B (-1,-2),则光线从A 到B 的路程为( )A .3B .2 3C .3 2 D. 6 答案:C5.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3),则点B 的坐标可能是( )A .(2,0)或(4,6)B .(2,0)或(6,4)C .(4,6)D .(0,2) 解析:设B 为(x ,y ),根据题意可得⎩⎪⎨⎪⎧k AC ·k BC =-1,|BC |=|AC |,即⎩⎪⎨⎪⎧3-43-0·y -3x -3=-1,x -32+y -32=0-32+4-32,解得⎩⎪⎨⎪⎧x =2,y =0,或⎩⎪⎨⎪⎧x =4,y =6,所以B (2,0)或B (4,6).答案:A6.2014·兰州高一检测若直线l 与直线y =1和x -y -7=0分别交于A 、B 两点,且AB 的中点为P (1,-1),则直线l 的斜率等于( )A.32 B .-32 C.23 D .-23解析:设A (m,1),B (a ,b ),则⎩⎪⎨⎪⎧1=a +m2,-1=1+b2,∴b =-3,又点B 在直线x -y -7=0上,∴a -(-3)-7=0. ∴a =4,∴m =2-a =-2,故A (-2,1),B (4,-3).∴直线l 的斜率k =1--3-2-4=-23.答案:D7.若点M ⎝ ⎛⎭⎪⎫a ,1b 和N ⎝ ⎛⎭⎪⎫b ,1c 都在直线l :x +y =1上,则点P ⎝ ⎛⎭⎪⎫c ,1a ,Q ⎝ ⎛⎭⎪⎫1c ,b 和直线l的关系是( )A .P 和Q 都在l 上B .P 和Q 都不在l 上C .P 在l 上,Q 不在l 上D .P 不在l 上,Q 在l 上解析:∵M ⎝⎛⎭⎪⎫a ,1b 和N ⎝⎛⎭⎪⎫b ,1c都在直线l :x +y =1上,∴⎩⎪⎨⎪⎧a +1b=1,b +1c =1,⇒B .b =a 3+1aC .(b -a 3)⎝ ⎛⎭⎪⎫b -a 3-1a =0D .|b -a 3|+|b -a 3-1a|=0解析:根据直角三角形的直角的位置求解.若以O 为直角顶点,则B 在x 轴上,则a 必为0,此时O ,B 重合,不符合题意;若∠A =π2,则b =a 3≠0.若∠B =π2,根据斜率关系可知a 2·a 3-b a =-1,所以a (a 3-b )=-1,即b -a 3-1a=0.以上两种情况皆有可能,故只有C 满足条件. 答案:C12.已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝⎛⎭⎪⎫1-22,12C.⎝⎛⎦⎥⎤1-22,13 D.⎣⎢⎡⎭⎪⎫13,12解析:根据题意画出图形,根据面积相等得出a ,b 的关系式,然后求出b 的取值范围. 由题意画出图形,如图(1).由图可知,直线BC 的方程为x +y =1. 由⎩⎪⎨⎪⎧x +y =1,y =ax +b ,解得M ⎝ ⎛⎭⎪⎫1-b a +1,a +b a +1. 可求N (0,b ),D ⎝ ⎛⎭⎪⎫-ba ,0.∵直线y =ax +b 将△ABC 分割为面积相等的两部分,∴S △BDM =12S △ABC .又S △BOC =12S △ABC ,∴S △CMN =S △ODN , 即12×|-b a |×b =12(1-b )×⎝ ⎛⎭⎪⎫1-b a +1. 整理得b 2a =1-b 2a +1.∴1-b 2b 2=1+a a, ∴1b-1=1+1a ,∴1b=1+1a+1,(1)(2)即b =11+1a+1,可以看出,当a 增大时,b 也增大.当a →+∞时,b →12,即b <12.当a →0时,直线y =ax +b 接近于y =b .当y =b 时,如图(2),S △CDM S △ABC =CN 2CO 2=1-b212=12. ∴1-b =22,∴b =1-22. ∴b >1-22. 由上分析可知1-22<b <12,故选B. 答案:B二、填空题:本大题共4小题,每小题5分,共20分.13.已知,a ,b ,c 为某一直角三角形的三边长,c 为斜边,若点(m ,n )在直线ax +by+2c =0上,则m 2+n 2的最小值为________.解析:点(m ,n )在直线ax +by +2c =0上,且m 2+n 2为直线上的点到原点的距离的平方,当两直线垂直时,距离最小.故d =|a ·0+b ·0+2c |a 2+b 2=2c a 2+b 2=2c c=2,∴m 2+n 2≥4. 答案:414.已知点A (-1,1),B (2,-2),若直线l :x +my +m =0与线段AB 相交(包含端点的情况),则实数m 的取值范围是__________.解析:直线l :x +my +m =0恒过定点M (0,-1),而k AM =-1-10--1=-2,k BM =-1--20-2=-12.要使直线l :x +my +m =0与线段AB 相交,观察图象(图略),当m =0时,l 与线段AB 相交;当m ≠0时,显然有k ≥-12或k ≤-2,而k =-1m ,得m ≥2或0<m ≤12或m <0.所以m ≥2或m ≤12.答案:⎝⎛⎦⎥⎤-∞,12∪[2,+∞) 15.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则|PA |2+|PB |2=__________.解析:由动直线x +my =0知定点A 的坐标为(0,0),由动直线mx -y -m +3=0知定点B 的坐标为(1,3),且两直线相互垂直,故△PAB 是直角三角形,且PA ⊥PB ,因此|PA |2+|PB |2=|AB |2=10.答案:1016.在函数y =4x 2的图象上求一点P ,使P 到直线y =4x -5的距离最短,则P 点坐标为__________.解析:直线方程化为4x -y -5=0.设P (a,4a 2),则点P 到直线的距离为d =|4a -4a 2-5|42+-12=|-4⎝ ⎛⎭⎪⎫a -122-4|17 =4⎝ ⎛⎭⎪⎫a -122+417.当a =12时,点P ⎝ ⎛⎭⎪⎫12,1到直线的距离最短,最短距离为41717.20.(本小题满分12分)已知△ABC 的三个顶点为A (4,0),B (8,10),C (0,6). (1)求过A 点且平行于BC 的直线方程;(2)求过B 点且与点A ,C 距离相等的直线方程.解析:(1)k BC =12,过A 点且平行于BC 的直线方程为y -0=12(x -4),即x -2y -4=0.(5分)(2)设过B 点的直线方程为y -10=k (x -8), 即kx -y -8k +10=0,由|4k -0-8k +10|1+k 2=|0-6-8k +10|1+k 2, 即k =76或k =-32.所求的直线方程为y -10=76(x -8)或y -10=-32(x -8),即7x -6y +4=0或3x +2y-44=0.(12分)21.(本小题满分12分)如图,在平行四边形OABC 中,点C (1,3),过点C 作CD ⊥AB 于点D .(1)求CD 所在直线的方程; (2)求D 点坐标.解析:(1)直线OC 的斜率为3,因为CD ⊥OC ,所以直线CD 的斜率是-13,直线CD 的方程为:y -3=-13(x -1),化简得x +3y -10=0.(5分)(2)A (3,0),因为OC ∥AB ,所以AB 斜率与OC 斜率相等, 所以直线AB 的方程为:y =3(x -3),联立方程⎩⎪⎨⎪⎧x +3y -10=0,y =3x -9,解得⎩⎪⎨⎪⎧x =3710,y =2110.∴D ⎝ ⎛⎭⎪⎫3710,2110.(12分)22.(本小题满分12分)在平面直角坐标系中,四边形OPQR 的顶点按逆时针顺序依次是O (0,0),P (1,t ),Q (1-2t,2+t ),R (-2t,2),其中t ∈(0,+∞),试判断四边形OPQR 的形状,并给出证明.解析:四边形OPQR 是矩形, OP 边所在直线的斜率k OP =t ,QR 边所在直线的斜率k QR =t +2-21-2t --2t =t ,OR 边所在直线的斜率k OR =-1t,PQ 边所在直线的斜率k PQ =2+t -t 1-2t -1=-1t.∴k OP =k QR ,k OR =k PQ ,∴OP ∥QR ,OR ∥PQ ,∴四边形OPQR 是平行四边形.又k QR ·k OR =t ×⎝ ⎛⎭⎪⎫-1t =-1,∴QR ⊥OR ,∴四边形OPQR 是矩形.(6分)又∵k OQ =2+t 1-2t ,k PR =t -21+2t,令k OQ ·k PR =-1,得t 不存在,∴OQ 与PR 不垂直,四边形OPQR 不能为菱形. ∴四边形OPQR 不为正方形,故四边形OPQR 是矩形.(12分)j22550 5816 堖 31842 7C62 籢u"f22912 5980 妀40325 9D85 鶅 28185 6E19 渙34883 8843 衃38008 9478 鑸a33543 8307 茇。
数学必修2A 第三章 直线与方程 综合练习 试题
心尺引州丑巴孔市中潭学校第三章 直线与方程 综合练习一、选择题〔本大题共10小题,每题5分,共50分〕1.假设直线过点〔1,2〕,〔4,2+3〕,那么此直线的倾斜角是〔 〕 A 30° B 45° C 60° D 90°2. 如果直线ax+2y+2=0与直线3x-y-2=0平行,那么系数a=A 、 -3B 、-6C 、23D 、323.点P 〔-1,2〕到直线8x-6y+15=0的距离为〔 〕〔A 〕2 〔B 〕21 〔C 〕1 〔D 〕274. 点M〔4,m 〕关于点N〔n, - 3〕的对称点为P〔6,-9〕,那么〔 〕 A m =-3,n =10 B m =3,n =10C m =-3,n =5 D m =3,n =55.以A〔1,3〕,B〔-5,1〕为端点的线段的垂直平分线方程是〔 〕 A 3x-y-8=0 B 3x+y+4=0C 3x-y+6=0D 3x+y+2=06.过点M〔2,1〕的直线与X轴,Y轴分别交于P,Q两点,且|MP|=|MQ|, 那么L的方程是〔 〕A x-2y+3=0 B 2x-y-3=0C 2x+y-5=0D x+2y-4=07. 直线mx-y+2m+1=0经过一定点,那么该点的坐标是A 〔-2,1〕B 〔2,1〕C 〔1,-2〕D 〔1,2〕8. 直线0202=++=++n y x m y x 和的位置关系是 〔A 〕平行 〔B 〕垂直 〔C 〕相交但不垂直 〔D 〕不能确定9. 如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,那么必有A. k 1<k 3<k 2B. k 3<k 1<k 2C. k 1<k 2<k 3D. k 3<k 2<k 110.A 〔1,2〕、B 〔-1,4〕、C 〔5,2〕,那么ΔABC 的边AB 上的中线所在的直线方程为〔 〕〔A 〕x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0二、填空题〔本大题共4小题,每题5分,共20分〕11.点)4,5(-A 和),2,3(B 那么过点)2,1(-C 且与B A ,的距离相等的直线方程为 . 12.过点P〔1,2〕且在X轴,Y轴上截距相等的直线方程是 .13.直线5x+12y+3=0与直线10x+24y+5=0的距离是 .14.原点O在直线L上的射影为点H〔-2,1〕,那么直线L的方程为 .三、解答题〔本大题共3小题,每题10分,共30分〕15. ①求平行于直线3x+4y-12=0,且与它的 16.直线x+m 2y+6=0与直线〔m-2〕x+3my+2m=0 距离是7的直线的方程; 没有公共点,求实数m 的值.②求垂直于直线x+3y-5=0, 且与点P(-1,0) 的距离是1053的直线的方程. *17.直线l 被两平行直线063=-+y x 033=++y x 和所截得的线段长为3,且直线过点〔1,0〕,求直线l 的方程.参考答案:1.A ;2.B ;3.B ;4.D ;5.B ;6.D ;7.A ;8.C ;9.A ;10.A.11.x+4y-7=0或x=-1;12.x+y-3=0或2x-y=0;13.261;1x-y+5=0; 15. (1)3x+4y+23=0或3x+4y-47=0;(2)3x-y+9=0或3x-y-3=0.16.m=0或m=-1;17.x=1或3x-4y-3=0.。
高中数学必修二第三章《直线与方程》单元测试卷及答案
高中数学必修二第三章《直线与方程》单元测试卷及答案((2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,直线l1、l2、l3的斜率分别为k1、k2、k3,则必有()A.k1<k3<k2 B.k3<k1<k2 C.k1<k2<k3 D.k3<k2<k12.直线x+2y-5=0与2x+4y+a=0之间的距离为5,则a等于()A.0 B.-20 C.0或-20 D.0或-103.若直线l1:ax+3y+1=0与l2:2x+(a+1)y+1=0互相平行,则a的值是()A.-3 B.2 C.-3或2 D.3或-24.下列说法正确的是()A.经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示B.经过定点A(0,b)的直线都可以用方程y=kx+b表示C.不经过原点的直线都可以用方程xa+yb=1表示D.经过任意两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示5.点M(4,m)关于点N(n,-3)的对称点为P(6,-9),则()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=56.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是()A.3x-y-8=0 B.3x+y+4=0C.3x-y+6=0 D.3x+y+2=07.过点M(2,1)的直线与x轴,y轴分别交于P,Q两点,且|MP|=|MQ|,则l的方程是()A.x-2y+3=0 B.2x-y-3=0C .2x +y -5=0D .x +2y -4=08.直线mx -y +2m +1=0经过一定点,则该点的坐标是( ) A .(-2,1)B .(2,1)C .(1,-2)D .(1,2)9.如果AC <0且BC <0,那么直线Ax +By +C =0不通过( ) A .第一象限B .第二象限C .第三象限D .第四象限10.直线2x +3y -6=0关于点(1,-1)对称的直线方程是( ) A .3x -2y +2=0 B .2x +3y +7=0 C .3x -2y -12=0D .2x +3y +8=011.已知点P (a ,b )和Q (b -1,a +1)是关于直线l 对称的两点,则直线l 的方程是( ) A .x +y =0 B .x -y =0C .x +y -1=0D .x -y +1=012.设x +2y =1,x ≥0,y ≥0,则x 2+y 2的最小值和最大值分别为( ) A .15,1B .0,1C .0,15D .15,2二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.不论a 为何实数,直线(a +3)x +(2a -1)y +7=0恒过第________象限. 14.原点O 在直线l 上的射影为点H (-2,1),则直线l 的方程为______________. 15.经过点(-5,2)且横、纵截距相等的直线方程是____________________. 16.与直线3x +4y +1=0平行且在两坐标轴上截距之和为73的直线l 的方程为______________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知直线2x +(t -2)y +3-2t =0,分别根据下列条件,求t 的值: (1)过点(1,1);(2)直线在y 轴上的截距为-3.18.(12分)直线l 过点(1,4),且在两坐标轴上的截距的积是18,求此直线的方程.19.(12分)光线从A(-3,4)点出发,到x轴上的点B后,被x轴反射到y轴上的C点,又被y轴反射,这时反射光线恰好过D(-1,6)点,求直线BC的方程.20.(12分)如图所示,某县相邻两镇在一平面直角坐标系下的坐标为A(1,2),B(4,0),一条河所在的直线方程为l:x+2y-10=0,若在河边l上建一座供水站P,使之到A,B两镇的管道最省,那么供水站P应建在什么地方?21.(12分)已知△ABC的顶点A为(3,-1),AB边上的中线所在直线方程为6x+10y-59=0,∠B的平分线所在直线方程为x-4y+10=0,求BC边所在直线的方程.22.(12分)已知直线l过点P(3,1),且被两平行直线l1:x+y+1=0和l2:x+y+6=0截得的线段长度为5,求直线l的方程.答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】A【解析】由于直线1l 向左倾斜,故10k <,直线2l 与直线3l 均向右倾斜,且2l 更接近y 轴,所以:1320k k k <<<,故选A . 2.【答案】C 3.【答案】A 4.【答案】D【解析】斜率有可能不存在,截距也有可能不存在.故选D . 5.【答案】D【解析】由对称关系462n =+,239m -=-,可得m =3,n =5.故选D . 6.【答案】B【解析】所求直线过线段AB 的中点(-2,2),且斜率k =-3, 可得直线方程为3x +y +4=0.故选B . 7.【答案】D【解析】由题意可知M 为线段PQ 的中点,Q (0,2),P (4,0), 可求得直线l 的方程x +2y -4=0.故选D . 8.【答案】A【解析】将原直线化为点斜式方程为y -1=m (x +2), 可知不论m 取何值直线必过定点(-2,1).故选A . 9.【答案】C【解析】将原直线方程化为斜截式为A Cy x B B=--,由AC <0且BC <0,可知AB >0,直线斜率为负,截距为正,故不过第三象限.故选C . 10.【答案】D【解析】所求直线与已知直线平行,且和点(1,-1)等距, 不难求得直线为2x +3y +8=0.故选D . 11.【答案】D 【解析】∵k PQ =11a bb a+---=-1,∴k l =1.显然x -y =0错误,故选D .12.【答案】A【解析】x 2+y 2为线段AB 上的点与原点的距离的平方,由数形结合知, O 到线段AB 的距离的平方为最小值,即d 2=15,|OB |2=1为最大值.故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】二【解析】直线方程可变形为:(3x -y +7)+a (x +2y )=0.由⎩⎪⎨⎪⎧ 3x -y +7=0x +2y =0得,⎩⎪⎨⎪⎧x =-2y =1. ∴直线过定点(-2,1).因此直线必定过第二象限. 14.【答案】2x -y +5=0【解析】所求直线应过点(-2,1)且斜率为2,故可求直线为2x -y +5=0. 15.【答案】y =-25x 或x +y +3=0【解析】不能忽略直线过原点的情况. 16.【答案】3x +4y -4=0【解析】所求直线可设为3x +4y +m =0,再由-3m -4m =73,可得m =-4.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)3;(2)95.【解析】(1)代入点(1,1),得2+(t -2)+3-2t =0,则t =3.(2)令x =0,得y =232t t --=-3,解得t =95.18.【答案】2x +y -6=0或8x +y -12=0. 【解析】设直线l 的方程为x a +yb =1,则18141ab a b=⎧⎪⎨+=⎪⎩,解得36a b =⎧⎨=⎩或3212a b ⎧=⎪⎨⎪=⎩ 则直线l 的方程2x +y -6=0或8x +y -12=0. 19.【答案】5x -2y +7=0. 【解析】如图所示,由题设,点B 在原点O 的左侧,根据物理学知识,直线BC 一定过(-1,6)关于y 轴的对称点(1,6),直线AB 一定过(1,6)关于x 轴的对称点(1,-6)且k AB =k CD , ∴k AB =k CD =4631+--=-52.∴AB 方程为y -4=-52(x +3). 令y =0,得x =-75,∴B 7,05⎛⎫- ⎪⎝⎭.CD 方程为y -6=-52(x +1). 令x =0,得y =72,∴C 70,2⎛⎫ ⎪⎝⎭. ∴BC 的方程为75x -+72y=1,即5x -2y +7=0.20.【答案】见解析. 【解析】如图所示,过A 作直线l 的对称点A ′,连接A ′B 交l 于P , 若P ′(异于P )在直线上,则|AP ′|+|BP ′|=|A ′P ′|+|BP ′|>|A ′B |. 因此,供水站只有在P 点处,才能取得最小值,设A ′(a ,b ), 则AA ′的中点在l 上,且AA ′⊥l ,即1221002221112a b a a ++⎧+⨯-=⎪⎪⎨-⎛⎫⎪⋅-=- ⎪⎪-⎝⎭⎩解得36a b =⎧⎨=⎩即A ′(3,6).所以直线A ′B 的方程为6x +y -24=0,解方程组⎩⎪⎨⎪⎧6x +y -24=0,x +2y -10=0,得38113611x y ⎧=⎪⎪⎨⎪=⎪⎩所以P 点的坐标为⎝⎛⎭⎫3811,3611.故供水站应建在点P ⎝⎛⎭⎫3811,3611处. 21.【答案】2x +9y -65=0. 【解析】设B (4y 1-10,y 1),由AB 中点在6x +10y -59=0上,可得:114716+1059=22y y --⋅⋅-0,y 1=5, 所以B (10,5).设A 点关于x -4y +10=0的对称点为A ′(x ′,y ′),则有3141002211134x y y x ''''⎧+--⋅+=⎪⎪⎨+⎪⋅=-⎪-⎩⇒A ′(1,7),∵点A ′(1,7),B (10,5)在直线BC 上,∴51075110y x --=--,故BC :2x +9y -65=0. 22.【答案】x =3或y =1.【解析】若直线l 的斜率不存在,则直线l 的方程为x =3,此时与直线l 1,l 2的交点分别为A (3,-4),B (3,-9).截得的线段AB 的长为|AB |=|-4+9|=5,符合题意. 若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组()311y k x x y ⎧=-+⎪⎨++=0⎪⎩得321411k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩所以点A 的坐标为3241,11k k k k --⎛⎫- ⎪++⎝⎭.解方程组()316y k x x y ⎧=-+⎪⎨++=0⎪⎩得371911k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩,所以点B 的坐标为3791,11k k k k --⎛⎫- ⎪++⎝⎭.因为|AB |=5,所以2232374191=251111k k k k k k k k --⎡--⎤⎛⎫⎛⎫⎛⎫-+--- ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎣⎦. 解得k =0,即所求直线为y =1.综上所述,所求直线方程为x =3或y =1.单元测试二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 经过两点()()1,2,2,1P Q -,那么直线l 的斜率为( )A .3-B .13-C .13D .32.直线l 过点P (-1,2),倾斜角为45°,则直线l 的方程为( ) A .x -y +1=0 B .x -y -1=0 C .x -y -3=0D .x -y +3=03.如果直线ax +2y +2=0与直线3x -y -2=0平行,则a 的值为( ) A .-3 B .-6C .32D .234.直线2x a -2y b =1在y 轴上的截距为( ) A .|b |B .-b 2C .b 2D .±b5.已知点A (3,2),B (-2,a ),C (8,12)在同一条直线上,则a 的值是( ) A .0B .-4C .-8D .46.如果AB <0,BC <0,那么直线Ax +By +C =0不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限7.已知点A (1,-2),B (m,2),且线段AB 的垂直平分线的方程是x +2y -2=0, 则实数m 的值是( )A .-2B .-7C .3D .18.经过直线l 1:x -3y +4=0和l 2:2x +y =5=0的交点,并且经过原点的直线方程是( ) A .19x -9y =0 B .9x +19y =0 C .3x +19y =0D .19x -3y =09.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( ) A .(0,0)B .(17,27) C .(27,17) D .(17,114) 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0D .x +2y -3=011.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( ) A .-4B .-2C .0D .212.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3), 则点B 的坐标可能是( ) A .(2,0)或(4,6)B .(2,0)或(6,4)C .(4,6)D .(0,2)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为 M (1,-1),则直线l 的斜率为_________.14.点A (3,-4)与点B (5,8)关于直线l 对称,则直线l 的方程为_________.15.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为_________.16.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是①15°;②30°;③45°;④60°;⑤75°,其中正确答案的序号是_________.(写出所有正确答案的序号)三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知直线l 经过点P (-2,5)且斜率为-34,(1)求直线l 的方程;(2)若直线m 平行于直线l ,且点P 到直线m 的距离为3,求直线m 的方程.18.(12分)求经过两直线3x -2y +1=0和x +3y +4=0的交点,且垂直于直线 x +3y +4=0的直线方程.19.(12分)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,求一点P , 使|P A |=|PB |,且点P 到直线l 的距离等于2.20.(12分)△ABC 中,A (0,1),AB 边上的高CD 所在直线的方程为x +2y -4=0,AC 边上的中线BE 所在直线的方程为2x +y -3=0. (1)求直线AB 的方程; (2)求直线BC 的方程; (3)求△BDE 的面积.21.(12分)直线过点P (43,2)且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线同时满足下列条件: (1)△AOB 的周长为12; (2)△AOB 的面积为6.若存在,求直线的方程;若不存在,请说明理由.22.(12分)在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB ,AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合,如图,将矩形折叠,使A 点落在线段DC 上.(1)若折痕所在直线的斜率为k,试求折痕所在直线的方程;(2)当-2+3≤k≤0时,求折痕长的最大值.答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】C【解析】根据斜率公式可得,直线l的斜率121213k-==--,故选C.2.【答案】D【解析】由题意k=tan45°=1,∴直线l的方程为y-2=1·(x+1),即x-y+3=0,故选D.3.【答案】B【解析】由题意得a·(-1)-2×3=0,∴a=-6,故选B.4.【答案】B【解析】令x=0,则y=-b2,故选B.5.【答案】C【解析】根据题意可知k AC=k AB,即12283--=223a---,解得a=-8,故选C.6.【答案】D【解析】Ax+By+C=0可化为y=-ABx-CB,由AB<0,BC<0,得-AB>0,-CB>0,故直线Ax+By+C=0经过第一、二、三象限,不经过第四象限.故选D.7.【答案】C【解析】由已知条件可知线段AB 的中点(12m+,0)在直线x +2y -2=0上, 把中点坐标代入直线方程,解得m =3,故选C . 8.【答案】C【解析】解340250x y x y -+=⎧⎨-+=⎩得19737x y ⎧=-⎪⎪⎨⎪=⎪⎩,即直线l 1,l 2的交点是(-197,37),由两点式可得所求直线的方程是3x +19y =0,故选C . 9.【答案】C【解析】直线方程变形为k (3x +y -1)+(2y -x )=0,则直线通过定点(27,17). 故选C . 10.【答案】D【解析】将“关于直线对称的两条直线”转化为“关于直线对称的两点”:在直线x -2y +1=0上取一点P (3,2),点P 关于直线x =1的对称点P ′(-1,2)必在所求直线上,故选D . 11.【答案】B【解析】因为l 的斜率为tan135°=-1,所以l 1的斜率为1,所以k AB =()213a---=1,解得a=0.又l 1∥l 2,所以-2b=1,解得b =-2,所以a +b =-2,故选B . 12.【答案】A【解析】设B (x ,y ),根据题意可得1AC BC k k BC AC ⋅=-⎧⎪⎨=⎪⎩,即3431303y x --⎧⋅=-⎪--=⎩⎪⎨⎪⎧ x =2y =0或⎩⎪⎨⎪⎧x =4y =6, 所以B (2,0)或B (4,6).故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】-23【解析】设A (x 1,y 1),B (x 2,y 2),则y 1+y 22=-1,又y 1=1,∴y 2=-3,代入方程x -y -7=0,得x 2=4,即B (4,-3),又x 1+x 22=1,∴x 1=-2,即A (-2,1),∴k AB =()3142----=-23.14.【答案】x +6y -16=0【解析】直线l 就是线段AB 的垂直平分线,AB 的中点为(4,2),k AB =6, 所以k l =-16,所以直线l 的方程为y -2=-16(x -4),即x +6y -16=0.15.【答案】3 2【解析】依题意,知l 1∥l 2,故点M 所在直线平行于l 1和l 2,可设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式,得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=32.16.【答案】①⑤【解析】两平行线间的距离为d =|3-1|1+1=2,由图知直线m 与l 1的夹角为30°,l 1的倾斜角为45°, 所以直线m 的倾斜角等于30°+45°=75°或45°-30°=15°.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)3x +4y -14=0;(2)3x +4y +1=0或3x +4y -29=0. 【解析】(1)直线l 的方程为:y -5=-34(x +2)整理得3x +4y -14=0.(2)设直线m 的方程为3x +4y +n =0, d|3245|n ⨯-+⨯+=3,解得n =1或-29.∴直线m 的方程为3x +4y +1=0或3x +4y -29=0. 18.【答案】3x -y +2=0.【解析】解法一:设所求直线方程为3x -2y +1+λ(x +3y +4)=0, 即(3+λ)x +(3λ-2)y +(1+4λ)=0,由所求直线垂直于直线x +3y +4=0, 得-13·(-3+λ3λ-2)=-1,解得λ=310,故所求直线方程是3x -y +2=0.解法二:设所求直线方程为3x -y +m =0.由⎩⎪⎨⎪⎧ 3x -2y +1=0,x +3y +4=0,解得⎩⎪⎨⎪⎧x =-1,y =-1,即两已知直线的交点为(-1,-1). 又3x -y +m =0过点(-1,-1),故-3+1+m =0,m =2. 故所求直线方程为3x -y +2=0.19.【答案】P (1,-4)或P (277,-87).【解析】解法1:设点P (x ,y ).因为|P A |=|PB |,① 又点P 到直线l 的距离等于2,所以|4x +3y -2|5=2.②由①②联立方程组,解得P (1,-4)或P (277,-87).解法2:设点P (x ,y ).因为|P A |=|PB |,所以点P 在线段AB 的垂直平分线上.由题意知k AB =-1,线段AB 的中点为(3,-2),所以线段AB 的垂直平分线的方程是y =x -5,所以设点P (x ,x -5). 因为点P 到直线l 的距离等于2,所以()|4352|5x x +--=2,解得x =1或x =277,所以P (1,-4)或P (277,-87).20.【答案】(1)2x -y +1=0;(2)2x -y +1=0;(3)110.【解析】(1)由已知得直线AB 的斜率为2,∴AB 边所在的直线方程为y -1=2(x -0),即2x -y +1=0.(2)由⎩⎪⎨⎪⎧2x -y +1=0,2x +y -3=0得⎩⎪⎨⎪⎧x =12,y =2.即直线AB 与直线BE 的交点为B (12,2).设C (m ,n ),则由已知条件得⎩⎪⎨⎪⎧m +2n -4=0,2·m 2+n +12-3=0,解得⎩⎪⎨⎪⎧m =2,n =1,∴C (2,1).∴BC 边所在直线的方程为y -12-1=x -212-2,即2x +3y -7=0.(3)∵E 是线段AC 的中点,∴E (1,1).∴|BE |=52,由⎩⎪⎨⎪⎧2x -y +1=0,x +2y -4=0得⎩⎨⎧x =25,y =95,∴D (25,95),∴D 到BE 的距离为d =|2×25+95-3|22+12=255,∴S △BDE =12·d ·|BE |=110. 21.【答案】)存在,3x +4y -12=0.【解析】设直线方程为x a +yb =1(a >0,b >0),若满足条件(1),则a +b +a 2+b 2=12 ① 又∵直线过点P (43,2),∵43a +2b=1.②由①②可得5a 2-32a +48=0,解得⎩⎪⎨⎪⎧a =4,b =3,或⎩⎨⎧a =125,b =92,∴所求直线的方程为x 4+y 3=1或5x 12+2y9=1,即3x +4y -12=0或15x +8y -36=0,若满足条件(2),则ab =12,③ 由题意得,43a +2b=1,④由③④整理得a 2-6a +8=0,解得⎩⎪⎨⎪⎧ a =4,b =3或⎩⎪⎨⎪⎧a =2,b =6,∴所求直线的方程为x 4+y 3=1或x 2+y6=1,即3x +4y -12=0或3x +y -6=0.综上所述:存在同时满足(1)(2)两个条件的直线方程,为3x +4y -12=0. 22.【答案】(1)y =kx +k 22+12;(2)2(6-2).【解析】(1)①当k =0时,A 点与D 点重合,折痕所在的直线方程为y =12.②当k ≠0时,将矩形折叠后A 点落在线段DC 上的点记为G (a,1), ∴A 与G 关于折痕所在的直线对称,有k OG ·k =-1⇒1a·k =-1⇒a =-k ,故G 点坐标为(-k,1),从而折痕所在直线与OG 的交点坐标(即线段OG 的中点)为M (-k 2,12).故折痕所在的直线方程为y -12=k (x +k 2),即y =kx +k 22+12.由①②得折痕所在的直线方程为y =kx +k 22+12.(2)当k =0时,折痕的长为2.当-2+3≤k <0时,折痕所在直线交直线BC 于点E (2,2k +k 22+12),交y 轴于点N (0,k 2+12).则|NE |2=22+[k 2+12-(2k +k 22+12)]2=4+4k 2≤4+4(7-43)=32-163.此时,折痕长度的最大值为32-163=2(6-2).而2(6-2)>2,故折痕长度的最大值为2(6-2).。
高中数学 第三章 直线与方程测试题A必修2 试题(共5页)
第三章直线(zh íxi àn)与方程测试题班别 姓名 考号一、选择题(本大题一一共12个小题,每一小题5分,一共60分)1.假设直线过点(1,2),(4,2+3)那么此直线的倾斜角是( )A .30°B .45°C .60°D .90°2.假设三点A (3,1),B (-2, b ),C (8,11)在同一直线上,那么实数b 等于A .2B .3C .9D .-93.过点(1,2),且倾斜角为30°的直线方程是( )A .y +2=33(x +1) B .y -2=3(x -1)C.3x -3y +6-3=0D.3x -y +2-3=04.直线3x -2y +5=0与直线x +3y +10=0的位置关系是( )A .相交B .平行C .重合D .异面5.直线mx -y +2m +1=0经过一定点,那么该定点的坐标为( )A .(-2,1)B .(2,1)C .(1,-2)D .(1,2)6.ab <0,bc <0,那么直线ax +by +c =0通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限7.点P (2,5)到直线y =-3x 的间隔 d 等于( )A .0 B.23+52 C.-23+52 D.-23-528.与直线y =-2x +3平行,且与直线y =3x +4交于x 轴上的同一点的直线方程是() A .y =-2x +4 B .y =12x +4 C .y =-2x -83 D .y =12x -839.两条直线y =ax -2与y =(a +2)x +1互相垂直,那么a 等于( )A .2B .1C .0D .-110.等腰直角三角形ABC 的斜边所在(suǒzài)的直线是3x -y +2=0,直角顶点是C (3,-2),那么两条直角边AC ,BC 的方程是( )A .3x -y +5=0,x +2y -7=0B .2x +y -4=0,x -2y -7=0C .2x -y +4=0,2x +y -7=0D .3x -2y -2=0,2x -y +2=011.设点A (2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 相交,那么l 的斜率k 的取值范围是( )A.k ≥34或者k ≤-4B.-4≤k ≤34C.-34≤k ≤4 D.以上都不对 12.在坐标平面内,与点A (1,2)间隔 为1,且与点B (3,1)间隔 为2的直线一共有( )A .1条B .2条C .3条D .4条二、填空题(本大题一一共4个小题,每一小题5分,一共20分)13.点A (-1,2),B (-4,6),那么|AB |等于________.14.平行直线l 1:x -y +1=0与l 2:3x -3y +1=0的间隔 等于________.15.假设直线l 经过点P (2,3)且与两坐标轴围成一个等腰直角三角形,那么直线l 的方程为________或者________.16.假设直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,那么m 的倾斜角可以是①15° ②30° ③45° ④60° ⑤75°,其中正确答案的序号是________.(写出所有正确答案的序号)三、解答题(本大题一一共6个大题,一共70分,解容许写出文字说明,证明过程或者演算步骤)17.(10分)求经过点A (-2,3),B (4,-1)的直线的两点式方程,并把它化成点斜式,斜截式和截距式.18.(12分)(1)当a为何(wèihé)值时,直线l1:y=-x+2a与直线l2:y=(a2-2)x+2平行?(2)当a为何值时,直线l1:y=(2a-1)x+3与直线l2:y=4x-3垂直?19.(12分)在△ABC中,点A(5,-2),B(7,3),且边AC的中点M在y轴上,边BC的中点N在x 轴上,求:(1)顶点C的坐标;(2)直线MN的方程.20.(12分)过点P(3,0)作一直线(zhíxiàn),使它夹在两直线l1:2x-y-2=0和l2:x+y+3=0之间的线段AB恰被P点平分,求此直线方程.21.(12分)△ABC的三个顶点A(4,-6),B(-4,0),C(-1,4),求(1)AC边上的高BD所在直线方程;(2)BC边的垂直平分线EF所在直线方程;(3)AB边的中线的方程.22.(12分)当m为何(wèihé)值时,直线(2m2+m-3)x+(m2-m)y=4m-1.(1)倾斜角为45°;(2)在x轴上的截距为1.内容总结。
高一数学必修2第三章测试题及答案解析
数学必修二第三章综合检测题(一) 一、选择题1.若直线过点(1,2),(4,2+3)则此直线的倾斜角是( )A .30°B .45°C .60°D .90°2.若三点A(3,1),B(-2, b),C(8,11)在同一直线上,则实数b 等于( )A .2B .3C .9D .-93.过点(1,2),且倾斜角为30°的直线方程是( )A .y +2=33(x +1) B .y -2=3(x -1) C.3x -3y +6-3=0 D.3x -y +2-3=04.直线3x -2y +5=0与直线x +3y +10=0的位置关系是( )A .相交B .平行C .重合D .异面5.直线mx -y +2m +1=0经过一定点,则该定点的坐标为( )A .(-2,1)B .(2,1)C .(1,-2)D .(1,2)6.已知ab <0,bc <0,则直线ax +by +c =0通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限7.点P(2,5)到直线y =-3x 的距离d 等于( )A .0 B.23+52C.-23+52 D.-23-528.与直线y =-2x +3平行,且与直线y =3x +4交于x 轴上的同一点的直线方程是( )A .y =-2x +4B .y =12x +4 C .y =-2x -83D .y =12x -839.两条直线y =ax -2与y =(a +2)x +1互相垂直,则a 等于( )A .2B .1C .0D .-110.已知等腰直角三角形ABC 的斜边所在的直线是3x -y +2=0,直角顶点是C(3,-2),则两条直角边AC ,BC 的方程是( )A .3x -y +5=0,x +2y -7=0B .2x +y -4=0,x -2y -7=0C .2x -y +4=0,2x +y -7=0D .3x -2y -2=0,2x -y +2=011.设点A(2,-3),B(-3,-2),直线l 过点P(1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( )A .k ≥34或k ≤-4B .-4≤k ≤34C .-34≤k ≤4 D .以上都不对 12.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有( )A .1条B .2条C .3条D .4条二、填空题13.已知点A(-1,2),B(-4,6),则|AB|等于________.14.平行直线l1:x -y +1=0与l2:3x -3y +1=0的距离等于________.15.若直线l 经过点P(2,3)且与两坐标轴围成一个等腰直角三角形,则直线l 的方程为________或________.16.若直线m 被两平行线l1:x -y +1=0与l2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是①15° ②30° ③45° ④60° ⑤75°,其中正确答案的序号是________.(写出所有正确答案的序号)三、解答题(解答应写出文字说明,证明过程或演算步骤)17.求经过点A(-2,3),B(4,-1)的直线的两点式方程,并把它化成点斜式,斜截式和截距式.18.(1)当a 为何值时,直线l1:y =-x +2a 与直线l2:y =(a2-2)x +2平行? (2)当a 为何值时,直线l1:y =(2a -1)x +3与直线l2:y =4x -3垂直?19.在△ABC 中,已知点A(5,-2),B(7,3),且边AC 的中点M 在y 轴上,边BC 的中点N 在x 轴上,求:(1)顶点C 的坐标;(2)直线MN 的方程.20.过点P(3,0)作一直线,使它夹在两直线l1:2x -y -2=0和l2:x +y +3=0之间的线段AB 恰被P 点平分,求此直线方程.21.已知△ABC 的三个顶点A(4,-6),B(-4,0),C(-1,4),求(1)AC 边上的高BD 所在直线方程;(2)BC 边的垂直平分线EF 所在直线方程;(3)AB 边的中线的方程.22.当m 为何值时,直线(2m2+m -3)x +(m2-m)y =4m -1.(1)倾斜角为45°;(2)在x 轴上的截距为1.数学必修二第三章综合检测题1A 斜率k =2+3-24-1=33,∴倾斜角为30°. 2D 由条件知kBC =kAC ,∴b -11-2-8=11-18-3,∴b =-9. 3C 由直线方程的点斜式得y -2=tan30°(x -1),整理得3x -3y +6-3=0.4A ∵A1B2-A2B1=3×3-1×(-2)=11≠0,∴这两条直线相交.5A 直线变形为m(x +2)-(y -1)=0,故无论m 取何值,点(-2,1)都在此直线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021学年必修2第三章直线与方程精品模拟试
卷 直线与方程(一) 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.若直线,互相平行,则实数的值为( )
A. B.6 C. D. 2.已知两点,,动点在直线上运动,则的最小值为( ) A. B. C.4 D.5 3.下面说法正确的是( ) A.经过定点的直线都可以用方程表示
B.不经过原点的直线都可以用方程表示 C.经过定点的直线都可以用方程表示
D.经过任意两个不同的点,的直线都可以用方程表示 4.若两条平行直线与之间的距离是,则( ) A.0 B.1 C. D. 5.过点的直线与两坐标轴分别交于A、B两点,O为坐标原点,当的面积最小时,直线的方程为( ) A. B. C. D. 6.已知,则“直线与平行”是“”的( )条件. A.充分不必要 B.必要不充分 C.充要 D.既不充分又不必要 7.直线经过,两点,那么直线的倾斜角的取值范围为( )
A. B.
C. D. 8.已知直线和以,为端点的线段相交,则实数k的取值范围为( )
此
卷
只装订不密封 姓名 准考证号 考场号 座
位号 A. B. C. D.或 9.已知点,,直线的方程为,且与线段相交,则直线的斜率的取值范围为( ) A. B. C. D. 10.设,过定点A的动直线和过定点B的动直线交于点,则的最大值( ) A. B. C.6 D.3 11.已知实数满足,则直线必过定点,这个定点的坐标为( ) A. B. C. D. 12.已知是等腰三角形,,,点在线段上运动,则的取值范围是( ) A. B. C. D. 二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知点与直线,则点关于直线l的对称点坐标为______. 14.过直线与直线的交点,且到点距离为的直线方程为______. 15.在平面直角坐标系中,直线与直线相交于点,则当实数变化时,点到直线的距离的最大值为______. 16.直线分别交轴于两点,点在直线上,则的最小值是______.
三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.(10分)已知的顶点,,. 求:(1)边上的中线所在直线的方程; (2)求点关于直线对称点坐标.
18.(12分)己知直线的方程为. (1)求过点,且与直线垂直的直线方程; (2)求与直线平行,且到点的距离为的直线的方程.
19.(12分)已知直线经过直线与直线的交点,且垂直于直线. (1)求直线的方程; (2)求直线与两坐标轴围成的三角形的面积.
20.(12分)已知直线方程为. (1)证明:直线恒过定点; (2)为何值时,点到直线的距离最大,最大值为多少? (3)若直线分别与轴,轴的负半轴交于两点,求面积的最小值及此时直线的方程.
21.(12分)已知的三个顶点、、. (1)求边所在直线的方程; (2)边上中线的方程为,且,求点的坐标.
22.(12分)设直线的方程为. (1)求证:不论为何值,直线必过一定点; (2)若直线分别与轴正半轴,轴正半轴交于点,, 当面积最小时,求的周长及此时的直线方程; (3)当直线在两坐标轴上的截距均为正整数且a也为正整数时,求直线的方程.
直线与方程(一)答 案 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.【答案】B 【解析】因为直线,互相平行, 所以且,解得且,所以, 故选B. 2.【答案】B 【解析】根据题意画出图形,如图所示:
设点关于直线的对称点, 连接,则即为的最小值,且, 故选B. 3.【答案】D 【解析】经过定点且斜率存在的直线才可用方程表示,所以A错; 不经过原点且与两坐标轴都不垂直的直线才可以用方程表示,所以B错; 经过定点且斜率存在的直线才可用方程表示,所以C错; 当时,经过点,的直线可以用方程,即表示; 当时,经过点,的直线可以用方程, 即表示, 因此经过任意两个不同的点,的直线都可以用方程表示,所以D对, 故选D. 4.【答案】C 【解析】由,得,解得,即直线,
两直线之间的距离为,解得 (舍去), 所以,故答案选C. 5.【答案】A 【解析】设的方程为,则有, 因为,,所以,即,所以, 当且仅当,即,时,取“=”. 即当,时,的面积最小, 此时的方程为,即,故选A. 6.【答案】A 【解析】若直线与平行, 则,即, 当,时,两直线方程为,,此时两直线重合, 故“直线与平行”是“”的充分不必要条件, 故选A. 7.【答案】D 【解析】直线的斜率为, 因为,所以, 所以直线的倾斜角的取值范围是,故选D. 8.【答案】C 【解析】因为直线恒过定点,
又因为,, 故直线的斜率的范围为,故选C. 9.【答案】A 【解析】直线整理为, 即可知道直线过定点, 作出直线和点对应的图象如图:
,,,,, 要使直线与线段相交,则直线的斜率满足或, 或, 即直线的斜率的取值范围是,故选A. 10.【答案】C 【解析】直线可整理为,故恒过定点,即为A的坐标; 直线整理为,故恒过定点,即为B坐标, 又两条直线垂直,故可得, 即, 整理得,解得, 当且仅当时取得最大值, 故选C. 11.【答案】D 【解析】∵,∴, ∵直线,∴,即.
,,∴直线必过点, 本题选择D选项.
12.【答案】D 【解析】以BC的中点O为坐标原点,BC所在直线为x轴, OA所在直线为y轴建立直角坐标系,如图:
可得,,由,可得, 直线的方程为,即, 可设,即有, 则
, 当, 可得的最小值为, 当时,可得的最大值8, 则的取值范围是,故选D.
二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)
13.【答案】 【解析】设点关于直线的对称点,
则由,解得,, 故点,故答案为. 14.【答案】或 【解析】由,得,所以,直线与的交点为. 当所求直线的斜率不存在时,所求直线的方程为,点到该直线的距离为,不合乎题意; 当所求直线的斜率存在时,设所求直线的方程为,即, 由于点到所求直线的距离为,可得, 整理得,解得或, 综上所述,所求直线的方程为或, 故答案为或. 15.【答案】 【解析】设直线与轴交于,直线与轴交于, . 当时,直线为,直线为,所以两条直线的交点为. 当时,两条直线的斜率分别为、,斜率乘积为,故, 所以点的轨迹是以为直径的圆(除两点外). 设以为直径的圆的圆心为,半径, 圆的方程为,点满足圆的方程. 综上所述,点点的轨迹是以为直径的圆(除两点外).
圆心到直线的距离为. 所以点到直线的距离的最大值为,
故答案为. 16.【答案】 【解析】直线分别交轴于两点, 则,, 设关于直线对称的点为,则, 解得, ,当,,三点共线时等号成立, 故答案为. 三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1);(2). 【解析】(1)由题设有,故, 故直线的方程为,即. (2),故直线的方程为, 设点关于直线对称点坐标为, 则,解得, 故点关于直线对称点坐标为. 18.【答案】(1);(2)或. 【解析】(1)∵直线的斜率为,∴所求直线斜率为, 又∵过点,∴所求直线方程为, 即. (2)依题意设所求直线方程为, ∵点到该直线的距离为,∴, 解得或, 所以,所求直线方程为或. 19.【答案】(1);(2)1. 【解析】(1),解得,则点的坐标为. 由于点的坐标是,且所求直线与直线垂直, 可设所求直线的方程为. 将点坐标代入得,解得, 故所求直线的方程为. (2)由直线的方程知它在轴,轴上的截距分别是,, 所以直线与两坐标轴围成的三角形的面积. 20.【答案】(1)证明见解析;(2),点到直线的距离最大,最大值为;(3)面积的最小值为,.