高中数学 第二章《简单随机抽样》教案 新人教A版必修3
简单随机抽样【新教材】人教A版高中数学必修第二册课件

返回导航
第九章 统计
数学(必修·第二册RJA)
2.抽签法与随机数法的异同点
①都属于简单随机抽样,并且要求被抽取样本的总体的个体 相同点 数有限;
②都是从总体中逐个不放回地进行抽取 ①抽签法比随机数法操作简单; ②随机数法更适用于总体中个体数较多的时候,而抽签法适 不同点 用于总体中个体数较少的情况,所以当总体中的个体数较多时, 应当选用随机数法,可以节约大量的人力和制作号签的成本
返回导航
第九章 统计
数学(必修·第二册RJA)
4.总体均值和样本均值
(1)总体均值:一般地,总体中有 N 个个体,它们的变量值分别为 Y1,
Y2,…,YN,则称-Y =_Y_1_+__Y_2+_N_…__+__Y_N_=____N1_i_=N_1Y_i_____为总体均值,又
称总体平均数.
(2)总体均值加权平均数的形式:如果总体的 N 个变量值中,不同的
返回导航
第九章 统计
数学(必修·第二册RJA)
3.随机数法 (1)定义:先把总体中的个体编号,用随机数根据产生与总体中个体 数量__相__等___的整数随机数,把产生的随机数作为抽中的编号,并剔除 _重__复____的编号,直到抽足样本所需要的个体数. (2)产生随机数的方法:①用随机试验生成随机数;②用信息技术生 成随机数.
典例 1 (1)关于简单随机抽样的特点有以下几种说法,其中不正 经过检测得到10袋袋装牛奶的质量(单位:g)为:
二是个体之间差异不明显. 一般地,设一个总体含有N(N为正整数)个个体,从中_______抽取n(1≤n<N) 个个体作为样本
确的是 B.与第几次抽样有关,第一次抽到的可能性最小
(2)A中不同年级的学生身体发育情况差别较大,B,D的总体容量较大,C的总体容量较小,适宜用简单随机抽样. (2)号签要求大小、形状完全相同;
【课件】简单随机抽样+课件高一下学期数学人教A版(2019)必修第二册+

样本量为50的平均数 165.2 162.8 164.4 164.4 165.6 164.8 165.3 164.7 165.7 165.0
样本量为100的平均 数
164.4 165.0 164.7 164.9 164.6 164.9 165.1 165.2 165.1
165.2
下图中的红线表示树人中学高一年级全体学生身高的平均数.
(1)抽签法 (2)随机数法
(1)抽签法
开始 712名同学从1到712编号
制作编号为1到712的号签(共712个) 将712个号签搅拌均匀
随机从中逐一抽出n个号签
与所抽取号码一致的学生即被选中
结束
(2)随机数法 随机数法抽取样本的步骤
把总体的N个个体依次编号,例如按0,1,2,···,N-1编号,然 后利用随机数 工具产生0~N-1 范围內的整数随机数,产生的随机 数是几就是选几号个体,直到抽足样本所需的数量.
练习3. 下列抽样中,是简单随机抽样的( D ) A.从无数个个体中抽取50个个体作为样本; B.仓库中有1万只灯泡,从中一次性抽取100只灯泡进行质检; C.某年级从300名学生中挑选出20名最优秀的学生参加数学竞赛; D.从全班50名学生中任意选取5名进行家访.
总体均值与样本均值
P178
(1)总体均值
2.最常用的简单随机抽样 抽签法 随机数法(随机试验、信息技术)
3.总体均值与样本均值
Y
Y1 Y2 YN N
1 N
N
Yi
i1
4.加权平均数公式
y
y1
y2
n
yn
1 n
n i1
yi
统计学:
??? ?
是研究如何收集、整理、归纳和分析数据的学科,它可以为人
人教A版必修3《2.1.1简单随机抽样》优化训练ppt课件

直径,要从中抽取 10 件轴在同一条件下进行测量,如何用简单
随机抽样的随机数表法抽取样本? 解:将 100 件轴编号为 00,01,„,99,在随机数表中选定 一个起始位置和读取方向,如取第 21 行第 1 个数开始,选取 10 个数为 68,34,30,13,70,55,74,77,40,44,这 10 件即为所要抽取
③选号:从选定的数字开始按照选定的方向读下去,得到 的号码不在编号中或已被选用,则跳过,直到选满 n 个号码为 止; ④确定样本:按步骤③选出的号码从总体中找出与其对应 的个体,组成样本.
【问题探究】
有同学认为:随机数表只有一张,并且读数时只能按照从 左向右的顺序读取,否则产生的随机样本就不同了,对总体的
【变式与拓展】
1.有一批机器共 112 台,按出厂时间顺序依次放置在 1 号, 2 号,„,6 号库房内.为调查这批机器的质量问题,现指定从
放在 1 号库房中的 20 台抽取 10 台入样检测.你认为这样的抽样
方法是简单随机抽样吗? 解:不是.因为总体中不能保证每个个体有相同机会被抽到.
题型 2 简单随机抽样的实际操作 【例 2】 某车间工人加工一种轴 100 件,为了解这种轴的
估计就不准确了.你认为正确吗?
答案:不正确.随机数表的产生是随机的,读数的顺序也是 随机的,不同的样本对总体的估计相差不大.
题型 1 简单随机抽样的概念 【例 1】 下列抽样的方式是否属于简单随机抽样?为什 么? (1)从无限多个个体的总体中逐个不放回地抽取 50 个个体 作为样本;
(2)箱子里共有 100 个零件,从中选出 10 个零件进行质量
3204 9234 4935
A.08 B.07
8200 3623 4869
人教版高中数学必修三 2.1《随机抽样》知识梳理+跟踪检测

人教版高中数学必修三 第二章 统计2.1《随机抽样》知识梳理知识点一:简单随机抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧随机数法抽签法 3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.知识点二:系统抽样1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n(n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l(l ≤k);(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k),再加k 得到第3个个体编号(l +2k),依次进行下去,直到获取整个样本.知识点三:简单随机抽样1.分层抽样的概念 在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.人教版高中数学必修三第二章统计2.1《随机抽样》跟踪检测一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是1 5B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .126.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,87.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A. 22,100x s +B. 22100,100x s ++C. 2,x sD. 2100,x s +9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A.①②③B.①②④C.①③④D.①②③④10.下列抽样实验中,最适宜用系统抽样的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.16712.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为()A.2个B.3个C.5个D.13个13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,614.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,5315.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,916.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. 18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.人.三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:60人进行更为详细的调查,应当怎样进行抽样?23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?2.1《随机抽样》跟踪检测解答一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况[答案] D2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量[答案] C3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对[答案] C[解析]按照一定的规律进行抽取为系统抽样.4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此 C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同[答案] A[解析] 无论采用哪种抽样,每个个体被抽到的概率相等.5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .12[答案] A[解析] 运动员共计98人,抽取比例为2898=27,因此男运动员56人中抽取16人.6.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,8[答案] C[解析] 由题意得x =15,16.8=51(9+15+10+y +18+24) y =8,选C. 7.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A. 22,100x s + B. 22100,100x s ++ C. 2,x s D. 2100,x s +[答案] D[解析] 设增加工资后10位员工下月工资均值为'x ,方差为2's , 则平均数()()()12101'10010010010x x x x =++++⋅⋅⋅++⎡⎤⎣⎦ ()1210110010010x x x x =++++=+; ()()()222212101'100'100'100'10s x x x x x x ⎡⎤=+-++-+⋅⋅⋅++-⎣⎦ ()()()22221210110x x x x x x s ⎡⎤=-+-+⋅⋅⋅+-=⎣⎦.故选D . 9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A .①②③B .①②④C .①③④D .①②③④[答案] D10.下列抽样实验中,最适宜用系统抽样的是( )A .某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B .某厂生产的2 000个电子元件中随机抽取5个入样C .从某厂生产的2 000个电子元件中随机抽取200个入样D .从某厂生产的20个电子元件中随机抽取5个入样[答案] C[解析] A 中总体有明显层次,不适用系统抽样法;B 中样本容量很小,适宜用简单随机抽样法中的随机数法;D 中总体数很小,故适宜用抽签法,只有C 比较适用系统抽样法.11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167[答案] C[解析] 由图可知该校女教师的人数为()11070%150160%7760137⨯+⨯-=+= 故选C12.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为( )A .2个B .3个C .5个D .13个[答案] A[考点]分层抽样方法[分析]由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x ,即可得出结论.解:由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x , ∴x=2,故选A .[点评]本题考查分层抽样,抽样过程中每个个体被抽到的可能性相同,这是解决抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以做到知二求一.13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,6[答案] D[解析]由题意,各种职称的人数比为160∶320∶200∶120=4∶8∶5∶3,所以抽取的具有高、中、初级职称的人数和其他人员的人数分别为40×4 20=8,40×820=16,40×520=10,40×320=6.14.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,53[答案] A[解析]样本中共有30个数据,中位数为4547462+=;显然样本中数据出现次数最多的为45,故众数为45;极差为68-12=56,故选A.15.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,9[答案] B[解析]各年龄段所选分别为20100×45=9,20100×25=5,20100×30=6.16.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36[答案] B[解析]设该单位老年职工有x人,从中抽取y人.则160+3x=430⇒x=90,即老年职工有90人,则90160=y32⇒y=18.故选B.二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. [答案]30[解析]由题意,知22+3+5×n=6,∴n=30.18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.[答案]760[解析]设该校女生人数为x,则男生人数为(1 600-x).由已知,2001 600×(1 600-x)-2001 600·x=10,解得x=760.故该校的女生人数是760人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.[答案] 5.7%[解析]∵990∶99 000=1∶100,∴普通家庭中拥有3套或3套以上住房的大约为50×100=5 000(户).又∵100∶1 000=1∶10,∴高收入家庭中拥有3套或3套以上住房的大约为70×10=700(户).∴3套或3套以上住房的家庭约有5 000+700=5 700(户).故5 700100 000=5.7%.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.[答案]3720[解析]由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20(人).21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.生活能否自理人数性别男女能178 278不能23 21人.[答案]60[解析]由表知500人中生活不能自理的男性比女性多2人,所以该地区15 000位老人生活不能自理的男性比女性多2×15 000500=60(人).三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:很喜爱喜爱一般不喜爱2 435 4 5673 926 1 07260人进行更为详细的调查,应当怎样进行抽样?解:可用分层抽样方法,其总体容量为12 000.“很喜爱”占2 43512 000,应取60×2 43512 000≈12(人);“喜爱”占4 56712 000,应取60×4 56712 000≈23(人);“一般”占3 92612 000,应取60×3 92612 000≈20(人);“不喜爱”占1 07212 000,应取60×1 07212 000≈5(人).因此采用分层抽样在“很喜爱”、“喜爱”、“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人.23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?解:(1)将624名职工用随机方式编号由000至623.(2)利用随机数法从总体中剔除4人.(3)将剩下的620名职工重新编号由000至619.(4)分段,取间隔k=62062=10,将总体分成62组,每组含10人.(5)从第一段,即为000到009号随机抽取一个号l.(6)按编号将l,10+l,20+l,…,610+l,共62个号码选出,这62个号码所对应的职工组成样本.24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?解:学生A的方法得到的样本不能够反映不上网的居民情况,是一种方便样本,所得的结果代表性差,不能很准确地获得平均每户居民的月用水量;学生B 的方法实际上是普查,花费的人力物力要多一些,但是如果统计过程不出错,可以准确地得到平均每户居民的月用水量;在小区的每户居民都装有电话的情况下,学生C的方法是一种随机抽样方法,所得的样本具有代表性,可以比较准确地获得平均每户居民的月用水量.在小区的每户居民都装有电话的情况下,建议用随机抽样的方法获取数据,即用学生C的方法,以节省人力物力,并且可以得到比较精确的结果.5、已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能为( )A. 0.4.3ˆ2yx =+ B. 2 2.4ˆy x =- C. 9ˆ2.5yx =-+ D. 0.3 4.4ˆy x =-+ [答案] A[解析] 变量x 与y 正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.∵变量x 与y 正相关,∴可以排除C,D;样本平均数3x =, 3.5y =,代入A 符合,B 不符合,故选A.。
人教版高中数学必修3全册教案

人教版高中数学教案人教版高中数学必修3全册教案高中数学教案人教A版必修全套必修3教案,全套目录第一章算法初步 1com 程序框图与算法的基本逻辑结构 7 com 输入语句输出语句和赋值语句 29 com 条件语句 36com句 4413 算法案例 51第二章统计 7521 随机抽样 76com 简单随机抽样 76com 系统抽样 81com 分层抽样 8522 用样本估计总体 89com 用样本的频率分布估计总体分布 89 com 用样本的数字特征估计总体的数字特征 97 23 变量间的相关关系 107com 变量之间的相关关系 107com 两个变量的线性相关 107 第三章概率 11531 随机事件的概率 115 com 随机事件的概率 115 com 概率的意义 118com 概率的基本性质 121 com 古典概型 124com 整数值随机数random numbers的产生 128com 几何概型 132com 均匀随机数的产生 136第一章算法初步本章教材分析算法是数学及其应用的重要组成部分是计算科学的重要基础算法的应用是学习数学的一个重要方面学生学习算法的应用目的就是利用已有的数学知识分析问题和解决问题通过算法的学习对完善数学的思想激发应用数学的意识培养分析问题解决问题的能力增强进行实践的能力等都有很大的帮助本章主要内容算法与程序框图基本算法语句算法案例和小结教材从学生最熟悉的算法入手通过研究程序框图与算法案例使算法得到充分的应用同时也展现了古老算法和现代计算机技术的密切关系算法案例不仅展示了数学方法的严谨性科学性也为计算机的应用提供了广阔的空间让学生进一步受到数学思想方法的熏陶激发学生的学习热情在算法初步这一章中让学生近距离接近社会生活从生活中学习数学使数学在社会生活中得到应用和提高让学生体会到数学是有用的从而培养学生的学习兴趣数学建模也是高考考查重点本章还是数学思想方法的载体学生在学习中会经常用到算法思想转化思想从而提高自己数学能力因此应从三个方面把握本章1知识间的联系2数学思想方法3认知规律本章教学时间约需12课时具体分配如下仅供参考com 算法的概念约1课时 com 程序框图与算法的基本逻辑结构约4课时 com 输入语句输出语句和赋值语句约1课时 com 条件语句约1课时 com 循环语句约1课时13算法案例约3课时本章复习约1课时 11 算法与程序框图com 算法的概念整体设计教学分析算法在中学数学课程中是一个新的概念但没有一个精确化的定义教科书只对它作了如下描述在数学中算法通常是指按照一定规则解决某一类问题的明确有限的步骤为了让学生更好理解这一概念教科书先从分析一个具体的二元一次方程组的求解过程出发归纳出了二元一次方程组的求解步骤这些步骤就构成了解二元一次方程组的算法教学中应从学生非常熟悉的例子引出算法再通过例题加以巩固三维目标1正确理解算法的概念掌握算法的基本特点2通过例题教学使学生体会设计算法的基本思路3通过有趣的实例使学生了解算法这一概念的同时激发学生学习数学的兴趣重点难点教学重点算法的含义及应用教学难点写出解决一类问题的算法课时安排1课时教学过程导入新课思路1情境导入一个人带着三只狼和三只羚羊过河只有一条船同船可容纳一个人和两只动物没有人在的时候如果狼的数量不少于羚羊的数量狼就会吃羚羊该人如何将动物转移过河请同学们写出解决问题的步骤解决这一问题将要用到我们今天学习的内容算法思路2情境导入大家都看过赵本山与宋丹丹演的小品吧宋丹丹说了一个笑话把大象装进冰箱总共分几步答案分三步第一步把冰箱门打开第二步把大象装进去第三步把冰箱门关上上述步骤构成了把大象装进冰箱的算法今天我们开始学习算法的概念思路3直接导入算法不仅是数学及其应用的重要组成部分也是计算机科学的重要基础在现代社会里计算机已成为人们日常生活和工作中不可缺少的工具听音乐看电影玩游戏打字画卡通画处理数据计算机是怎样工作的呢要想弄清楚这个问题算法的学习是一个开始推进新课新知探究提出问题1解二元一次方程组有几种方法 2结合教材实例总结用加减消元法解二元一次方程组的步骤3结合教材实例总结用代入消元法解二元一次方程组的步骤4请写出解一般二元一次方程组的步骤 5根据上述实例谈谈你对算法的理解 6请同学们总结算法的特征7请思考我们学习算法的意义讨论结果1代入消元法和加减消元法2回顾二元一次方程组的求解过程我们可以归纳出以下步骤第一步??×2得5x 1?第二步解?得x第三步?-?×2得5y 3?第四步解?得y第五步得到方程组的解为3 用代入消元法解二元一次方程组我们可以归纳出以下步骤第一步由?得x 2y,1?第二步把?代入?得2 2y,1 y 1? 第三步解?得y ?第四步把?代入?得x 2×,1第五步得到方程组的解为4 对于一般的二元一次方程组其中a1b2,a2b1?0可以写出类似的求解步骤第一步?×b2-?×b1得a1b2,a2b1x b2c1,b1c2?第二步解?得x第三步?×a1-?×a2得a1b2,a2b1y a1c2,a2c1?第四步解?得y第五步得到方程组的解为5 算法的定义广义的算法是指完成某项工作的方法和步骤那么我们可以说洗衣机的使用说明书是操作洗衣机的算法菜谱是做菜的算法等等在数学中算法通常是指按照一定规则解决某一类问题的明确有限的步骤现在算法通常可以编成计算机程序让计算机执行并解决问题6 算法的特征?确定性算法的每一步都应当做到准确无误不重不漏不重是指不是可有可无的甚至无用的步骤不漏是指缺少哪一步都无法完成任务?逻辑性算法从开始的第一步直到最后一步之间做到环环相扣分工明确前一步是后一步的前提后一步是前一步的继续?有穷性算法要有明确的开始和结束当到达终止步骤时所要解决的问题必须有明确的结果也就是说必须在有限步内完成任务不能无限制地持续进行7 在解决某些问题时需要设计出一系列可操作或可计算的步骤来解决问题这些步骤称为解决这些问题的算法也就是说算法实际上就是解决问题的一种程序性方法算法一般是机械的有时需进行大量重复的计算它的优点是一种通法只要按部就班地去做总能得到结果因此算法是计算科学的重要基础应用示例思路1例1 1设计一个算法判断7是否为质数2设计一个算法判断35是否为质数算法分析1根据质数的定义可以这样判断依次用26除7如果它们中有一个能整除7则7不是质数否则7是质数算法如下1第一步用2除7得到余数1因为余数不为0所以2不能整除7 第二步用3除7得到余数1因为余数不为0所以3不能整除7第三步用4除7得到余数3因为余数不为0所以4不能整除7第四步用5除7得到余数2因为余数不为0所以5不能整除7第五步用6除7得到余数1因为余数不为0所以6不能整除7因此7是质数2类似地可写出判断35是否为质数的算法第一步用2除35得到余数1因为余数不为0所以2不能整除35第二步用3除35得到余数2因为余数不为0所以3不能整除35第三步用4除35得到余数3因为余数不为0所以4不能整除35第四步用5除35得到余数0因为余数为0所以5能整除35因此35不是质数点评上述算法有很大的局限性用上述算法判断35是否为质数还可以如果判断1997是否为质数就麻烦了因此我们需要寻找普适性的算法步骤变式训练请写出判断n n 2 是否为质数的算法分析对于任意的整数n n 2 若用i表示2 n-1 中的任意整数则判断n是否为质数的算法包含下面的重复操作用i除n得到余数r判断余数r是否为0若是则不是质数否则将i的值增加1再执行同样的操作这个操作一直要进行到i的值等于 n-1 为止算法如下第一步给定大于2的整数n第二步令i 2第三步用i除n得到余数r第四步判断r 0是否成立若是则n不是质数结束算法否则将i的值增加1仍用i表示第五步判断i,n-1是否成立若是则n是质数结束算法否则返回第三步例2 写出用二分法求方程x2-2 0 x 0 的近似解的算法分析令f x x2-2则方程x2-2 0 x 0 的解就是函数 f x 的零点二分法的基本思想是把函数 f x 的零点所在的区间〔ab〕满足f a ?f b 0一分为二得到〔am〕和〔mb〕根据f a ?f m 0是否成立取出零点所在的区间〔am〕或〔mb〕仍记为〔ab〕对所得的区间〔ab〕重复上述步骤直到包含零点的区间〔ab〕足够小则〔ab〕内的数可以作为方程的近似解解第一步令 f x x2-2给定精确度 d第二步确定区间〔ab〕满足f a ?f b 0第三步取区间中点m第四步若f a ?f m 0则含零点的区间为〔am〕否则含零点的区间为〔mb〕将新得到的含零点的区间仍记为〔ab〕第五步判断〔ab〕的长度是否小于d或f m是否等于0若是则m是方程的近似解否则返回第三步当d 0005时按照以上算法可以得到下表a b a-b 1 2 1 1 15 05 125 15 0251375 15 0125 1375 1437 5 0062 5 1406 251437 5 0031 25 1406 25 1421 875 0015 625 1414062 5 1421 875 0007 812 5 1414 062 5 1417 968 75 0003906 25 于是开区间1414 062 51417 968 75中的实数都是当精确度为0005时的原方程的近似解实际上上述步骤也是求的近似值的一个算法点评算法一般是机械的有时需要进行大量的重复计算只要按部就班地去做总能算出结果通常把算法过程称为数学机械化数学机械化的最大优点是它可以借助计算机来完成实际上处理任何问题都需要算法如中国象棋有中国象棋的棋谱走法胜负的评判准则而国际象棋有国际象棋的棋谱走法胜负的评判准则再比如申请出国有一系列的先后手续购买物品也有相关的手续思路 2 例1 一个人带着三只狼和三只羚羊过河只有一条船同船可容纳一个人和两只动物没有人在的时候如果狼的数量不少于羚羊的数量就会吃羚羊该人如何将动物转移过河请设计算法。
高中数学必修3《简单随机抽样》PPT

答案:B
3.为了了解全校240名高一学生的身高情况,从中抽取40名学 生进行测量.下列说法正确的是( ) A.总体是240名 B.个体是每一个学生 C.样本是40名学生 D.样本容量是40 解析:在这个问题中,总体是240名学生的身高,个体是每个学 生的身高,样本是40名学生的身高,样本容量是40.因此选D. 答案:D
解:方案如下:
第一步,将18名志愿者编号,号码为:01,02,03,…,18.
第二步,将号码分别写在相同的纸条上,揉成团,制成号签 . 第三步,将得到的号签放到一个不透明的盒子中,充分搅匀. 第四步,从盒子中依次取出6个号签,并记录上面的编号. 第五步,所得号码对应的志愿者就是医疗小组成员.
随机数表法的应用
分析:要判断所给的抽样方法是否是简单随机抽样,关键是看 它们是否符合简单随机抽样的四个特点. 解:(1)不是简单随机抽样.因为这不是等可能抽样. (2)不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个” 抽取. (3)不是简单随机抽样.因为这是有放回抽样. (4)是简单随机抽样.因为它满足简单随机抽样的四个特点.
方法感悟 方法技巧 1.抽签法制作号签时要求大小、形状完全相同 . 2.随机数表法的编号要求位数相同,且第一个 数字的抽取是随机的,开始读数的方向是任的
.
本节课到此结束, 谢谢!
对于总体容量不大,即易编号时,可采用这种 方法. 即:编号—选起始数—读数—取数.
例3 某个车间工人已加工一种轴100件,为了 了解这种轴的直径,要从中抽出10件在同一条 件下测量,用随机数表法抽取这10件.
【解】 按随机数表法的过程抽取样本: 将100个轴进行编号00,01,…,99,据课本上 的随机数表,如从第21行第1个数开始选取10 个:68,34,30,13,70,55,74,77,40,44,接着测量这 10个编号对应的轴的直径. 【思维总结】 在随机数表中遇到大于99的数
2020-2021学年高中人教A版数学必修3课件:2.1.2 系统抽样
自
课
主
堂
预
小
习 探
第二章 统计
·
结 提
新
素
知
养
2.1 随机抽样
合
作
课
探 究
2.1.2 系统抽样
时 分
层
释
作
疑
业
难
·
返 首 页
·
自
课
主
堂
预 习
学习目标
核心素养
小 结
·
探 1.理解系统抽样的概念.(重点) 1.通过系统抽样的学习,体现 提
新
素
知 2.掌握系统抽样的方法与步骤, 数学运算素养.
养
合
作 探
层
释 疑
这是将 10 000 个中奖号码平均分成 100 组,从第一组抽 0 068 号,其
作 业
难
余号码是在此基础上加 100 的整数倍得到的,是系统抽样.] 返 首 页
·
自 主
3.有 20 个同学,编号为 1~20,现在从中抽取 4 人的作文卷进
课 堂
预
小
习 行调查,用系统抽样方法确定所抽的编号为( )
难
·
返 首 页
·
自
课
主
堂
预
小
习
系统抽样的适用范围和特征
结
·
探
提
新 知
1适用范围:①个体较多,但均衡的总体;②当总体容量较
素 养
合 大,样本容量也较大时.
作
课
探 究
2系统抽样的特征:①等间距性;②等可能性.
时 分
层
释
作
疑
业
难
·
《系统抽样》课件2-优质公开课-人教A版必修3精品
小结
1.系统抽样也是等概率抽样,即每个 个体被抽到的概率是相等的,其概率仍 为P=n/N,从而保证了抽样的公平性. 2.系统抽样适合于总体的个体数较多的 情形,操作上分四个步骤进行,除了剔 除余数个体和确定起始号需要随机抽样 外,其余样本号码由事先定下的规则自 动生成,从而使得系统抽样操作简单、 方便.
作业: P59练习:1,2,3.
ቤተ መጻሕፍቲ ባይዱ
思考3:用系统抽样从含有N个个体的总 体中抽取一个容量为 n 的样本,要平均 分成多少段,每段各有多少个号码? 分成n段,每段各有K=N/n个号码 . 思考4:如果N不能被n整除怎么办? 从总体中随机剔除N除以n的余数个个体 后再分段.
思考5:将含有N个个体的总体平均分成 n段,每段的号码个数称为分段间隔, 那么分段间隔k的值如何确定?
例1 某中学有高一学生322名,为 了了解学生的身体状况,要抽取一个容 量为40的样本,用系统抽样法如何抽样?
解 第一步,随机剔除2名学生,把余下 的 : 320名学生编号为1,2,3,„320. 第二步,把总体分成40个部分,每个部 分有8个个体.具体分组如下: 1~8,9~16,17~24,…,313~320. 第三步,在第1部分用抽签法确定起始 编号(如3号). 第四步,从该号码起,每间隔8个号码 抽取1个号码,得到3,11,19,…315.于是 就得到一个容量为40的样本.
第一步,将这500名学生编号为1,2, 3,„,500. 第二步,将总体平均分成50部分,每 一部分含10个个体. 第三步,在第1部分中用简单随机抽样 抽取一个号码(如6号). 第四步,从该号码起,每隔10个号码取 一个号码,就得到一个容量为50的样本 .
思考3:上述抽样方法称为系统抽样,一 般地,怎样理解系统抽样的含义? 1.定义:将个体数为N的总体分成均衡 的n个部分,再按照预先定出的规则,从 每一部分中抽取1个个体,即得到容量为 n的样本.
【课件】新课标人教A版数学必修3:2.2.1用样本的频率分布估计总体分布课件
频率分布
样本中所有数据(或数据组)的频数和样 本容量的比,叫做该数据的频率.
所有数据(或数据组)的频数的分布变化 规律叫做样本的频率分布.
频率分布的表示形式有: ①样本频率分布表 ②样本频率分布条形图 ③样本频率分布直方图
2.2.1用样本的频率分布 估计总体分布(1)
我国的缺水情况
• 我国是世界上严重缺水的国家之一。
茎叶图
甲
乙
8 463 368 389
1
0 1 25 2 54 3 1 61679 4 49 50
注:中间的数字表示得分的十位数字。
旁边的数字分别表示两个人得分的 个位数。
茎叶图的特征:
(1)用茎叶图表示数据有两个优点:一是从统计图上 没有原始数据信息的损失;二是茎叶图中的数据可 以随时记录,随时添加,方便记录与表示;
极差 组距
4.1 0.5
8.2
3.将数据分组(8.2取整,分为9组)
4.列出频率分布表.
5.画出频率分布直方图
画频率分布直方图
步骤:
1.求极差: 4.3 - 0.2 = 4.1
2.决定组距与组数:组数=
极差 组距
=
4.1 0.5
= 8.2
3.将数据分组
[0,0.5 ),[0.5,1 ),…,[4,4.5]
组距0.5
0.6 0.5 0.4 0.3 0.2 0.1
0 123456789
组距0.5
0.6 0.5 0.4 组距0.5 0.3 0.2 0.1
0 123456789
组距0.5
所得到的结论的统计意义
• 3t这个标准一定能保证85%以上的居民用水 不超标吗?
• 不一定! • 原因1、样本只是总体的代表,并且具有随
人教版高中数学必修三 第二章 统计第三章简单随机抽样-知识点
第三章 简单随机抽样第一节 简单随机抽样概述一、简单随机抽样的概念简单随机抽样也叫作纯随机抽样。
其概念可有两种等价的定义方法:定义之一:简单随机抽样就是从总体N 个抽样单元中,一次抽取n 个单元时,使全部可能的)(Nn A 种不同的样本被抽到的概率均相等,即都等于1/A 。
按简单随机抽样,抽到的样本称为简单随机样本。
按上述定义,在抽取简单随机样本之前,应将所有可能的互不相同的样本一一列举出来。
但当N 与n 都比较大时,要列出全部可能的样本是不现实的。
因此,按上述定义进行抽样是不太方便的。
定义之二:简单随机抽样是从总体的N 个抽样单元中,每次抽取一个单元时,使每一个单元都有相等的概率被抽中,连续抽n 次,以抽中的n 个单元组成简单随机样本。
由于定义二无需列举全部可能的样本,故比较便于组织实施。
但按这个定义进行抽样时,仍然需要掌握一个可以赖以实施抽样的抽样框。
二、简单随机抽样的具体实施方法常用的有抽签法和随机数法两种。
(一)抽签法抽签法是先对总体N 个抽样单元分别编上1到N 的号码,再制作与之相对应的N 个号签并充分摇匀后,从中随机地抽取n 个号签(可以是一次抽取n 个号签,也可以一次抽一个号签,连续抽n 次),与抽中号签号码相同的n 个单元即为抽中的单元,由其组成简单随机样本。
抽签法在技术上十分简单,但在实际应用中,对总体各单元编号并制作号签的工作量可能会很繁重,尤其是当总体容量比较大时,抽签法并不是很方便,而且也往往难以保证做到等概率。
因此,实际工作中常常使用随机数法。
(二)随机数法随机数法就是利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
由于计算机产生的随机数实际上是伪随机数,不是真正的随机数,特别是直接采用一般现成程序时,产生的随机数往往不能保证其随机性。
因此,一般使用随机数表,或用随机数骰子产生的随机数,特别在n 比较大时。
1、随机数表及其使用方法随机数表是由0到9的10个阿拉伯数字进行随机排列组成的表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.1 简单随机抽样
教学目标:
1、知识与技能:
(1)正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;
2、过程与方法:
(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;
(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知
识与现实世界及各学科知识之间的联系,认识数学的重要性。
4、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并
能灵活应用相关知识从总体中抽取样本。
教学设想:
假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标
检验,你准备怎样做?
显然,你只能从中抽取一定数量的饼干作为检验的样本。(为什么?)那么,应当怎
样获取样本呢?
【探究新知】
一、简单随机抽样的概念
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),
如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽
样,这样抽取的样本,叫做简单随机样本。
【说明】简单随机抽样必须具备下列特点:
(1)简单随机抽样要求被抽取的样本的总体个数N是有限的。
(2)简单随机样本数n小于等于样本总体的个数N。
(3)简单随机样本是从总体中逐个抽取的。
(4)简单随机抽样是一种不放回的抽样。
(5)简单随机抽样的每个个体入样的可能性均为n/N。
思考?
下列抽样的方式是否属于简单随机抽样?为什么?
(1)从无限多个个体中抽取50个个体作为样本。
(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从
中任意取出一个零件进行质量检验后,再把它放回箱子。
二、抽签法和随机数法
1、抽签法的定义。
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个
容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
【说明】抽签法的一般步骤:
(1)将总体的个体编号。
(2)连续抽签获取样本号码。
思考?
你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?
2、随机数法的定义:
利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅
介绍随机数表法。
怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的
500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽
取样本时,可以按照下面的步骤进行。
第一步,先将800袋牛奶编号,可以编为000,001,…,799。
第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,
下面摘取了附表1的第6行至第10行)。
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38
57 60 86 32 44 09 47 27 96 54 49 17 46 09 62
87 35 20 96 43 84 26 34 91 64
21 76 33 50 25 83 92 12 06 76
12 86 73 58 07 44 39 52 38 79
15 51 00 13 42 99 66 02 79 54
90 52 84 77 27 08 02 73 43 28
第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得
到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到
916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,…,
依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。
【说明】随机数表法的步骤:
(1)将总体的个体编号。
(2)在随机数表中选择开始数字。
(3)读数获取样本号码。
【例题精析】
例1:人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,
对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?
[分析] 简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定
了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽
样。
例2:某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在
同一条件下测量,如何采用简单随机抽样的方法抽取样本?
[分析] 简单随机抽样一般采用两种方法:抽签法和随机数表法。
解法1:(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状相同的号签,
分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取10个号签,然
后测量这个10个号签对应的轴的直径。
解法2:(随机数表法)将100件轴编号为00,01,…99,在随机数表中选定一个起
始位置,如取第21行第1个数开始,选取10个为68,34,30,13,70,55,74,77,40,
44,这10件即为所要抽取的样本。
【课堂练习】P
【课堂小结】
1、简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的
方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽
签法和随机数法。
2、抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方
便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺
点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体
容量较少的抽样类型。
3、简单随机抽样每个个体入样的可能性都相等,均为n/N,但是这里一定要将每个个
体入样的可能性、第n次每个个体入样的可能性、特定的个体在第n次被抽到的可能性这三
种情况区分开业,避免在解题中出现错误。
【评价设计】
1、为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确
的是
A.总体是240 B、个体是每一个学生
C、样本是40名学生 D、样本容量是40
2、为了正确所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,
200个零件的长度是 ( )
A、总体 B、个体是每一个学生
C、总体的一个样本 D、样本容量
3、一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样
本,则某一特定个体被抽到的可能性是 。
4、从3名男生、2名女生中随机抽取2人,检查数学成绩,则抽到的均为女生的可能
性是 。