实数及二次根式的混合运算-计算题86道-
八年级根式计算题100道

八年级根式计算题100道一、二次根式加减法1=______________。
2计算:−=______________。
3−=______________。
+=______________。
45−。
6−=______________。
7______________。
8−。
9−=______________。
10−。
−。
1112=______________。
13计算:。
14计算:+−=______________。
15−。
16−。
二、二次根式乘除法17 计算:(1________=;(2________=;(3________=;(4________=;(5________=;(6________=;(7________=;(8________=。
18 =______________。
19 计算:=______________。
20 =______________。
21 =______________。
22 =______________。
23 =______________。
24 =______________。
25 计算:(1________=; (2)(________⎛−⨯−= ⎝;(3)________−=;(4________=。
26 =______________。
27 =______________。
28 计算: =______________。
29 =______________。
30 =______________。
31 ______________。
32 =______________。
33 =______________。
34=______________。
35÷=______________。
36÷=______________。
37=______________。
38计算:3=______________。
39计算:6=______________。
二次根式混合计算练习(附答案)

二次根式混合计算(2 ”「_ _ _ _ _ _ 18 — 2计算:(12)(1 一.. 2) .50 -2.32 .12.3• 、2 .2; 24 - 96 ;、:127- . 48+ ; . 12+ 75计算:(八)(2+ 3)+ -宀亠二°- 2计算(兀-3)0- (J2+1)( J2 -1) + 屁十卜E_2___ 1 1 1 2014 ) ( 1+—11 +V2 J 2+J 3+L 1L +…+——” ” ).3,4. 2013,2014计算:9( —X ;厂 1;8«2「3)计算: 2 x ( 2 + l) - _8V2迈扌-心-31十;计算: ...6 ■: - ‘ 2 八』24 3 48.10.计算: (1)「32 + 18 — 50;3 2 5(2)(5-2.6 ) x ( .2- 3 );11.计算:(3)(1+ . 2 + ,3 )(1-.2 - ,3);(4)(J12 -4J — )(2\8;4®).(1) C ■ 24 - 2 2.12 —--5.2412、计算,(-2)2-、、2(、2 -2) 6<3(1 )3_27 + .. (-3)2 - 3 -1 13、计算: (1) ,8 3 (2) i :75,3)C ,7 - . 5 - . 3)14、 3 -27「;』0 -、1 3 0.1253V4 V_ 2+73 _ 2 15、已知 x = 2 _ 3」=2 ■ 3,求值:2x 1-63 6416、计算:⑴V20+V5 「3xy 2y 2. -W2442}⑵(爲)2 +(兀十V 3)0 — V 27 +73—2 17、计算(「• :「(2)(6-3 :-. 1 / 121 .计算题(1)-■ 1「辽心一、:计算((9二|?恳—^+黑(寸二(^CXI—号co)(号CXI +号co ) —申中哼 +N电—^CXI ) (0 L )(吟2+^二畔2—^2)(書+将^—谒寸)2弋Q)◎co — Q £)(^co + Qu)OL )z ^r Ipl'r — 0(L —号)—或+「(i r g —— gw —) Q) T里)x CXI +2P X粵—『CXI—二十号 + z」L I ) (9)肿(2—吟匸(L —^e )(L +^e)(“)置+§■>ICO, + 2、)(号 +号—等))XI M衣• XICXI —毎co-M 44 ・0|参考答案1 . (1)-_; (2)厶-.10【解析】试题分析:(1)先把各个二次根式进行化简,再合并同类二次根式即可; (2) 根据二次根式的乘除混合运算法则计算. 解: (1 )::;;;— ::. =3 二一2 匚 + 匚一3 耳一匚;(2)一_「「严》「:=[.2. 3. 2【解析】试题分析:先将所给的各式化简成整数或最简二次根式,然后合并同类二次根式即可. 试题解析:原式 =1 _2 ^.2 -8.2・6 _3 _2--3-/2考点:二次根式的计算.试题解析:解:撐/—96鳥=:、6 2'6"6 T=^/6-2^/66- ------ 5?6.6考点:二次根式的加减点评:本题主要考查了二次根式的加减运算•首先把二次根式化为最简二次根式,然后再合并同类二次根式4. 0【解析】试题分析:根据实数的运算法则进行计算即可救出答案试题解析:(2 - -3)(2 • .3) • (-1)2010( ■■ 2 7丄「-(丄)-2=4-3^ -2=0考点:实数的混合运算•5. (1) 2+.3 ; (2) 5 3 .【解析】试题分析:(1)先计算零次幕、二次根式化简、去绝对值符号、把括号展开,然后进行合并即可求解. (2)把二次根式化成最简二次根式后,合并同类二次根式即可.4 41 / 12(1)原式=1-1+2 3 +2- .3 =2+ J 3 ;⑵原式=3 3-4. 32 3 5 3 2= 5,3 .考点:实数的混合运算;2•二次根式的混合运算.6. 4.6.【解析】试题分析:先进行二次根式的化简,财进行乘除运算,最后合并同类二次根式即可求出答案 试题解析:原式=9 V 2.2 21- 3迈•厶° -(2、2)2 •纸6-3= 9 2 1 -3 2 -8 4,6-3 =4.6.考点:实数的混合运算.7. 2013.【解析】试题分析:根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.111 1试题解析:(1.2014 )( 一1 +——1 +——1+…+ ----------- 1)1 +V2 <2 +V3 J3+U412013+J2014=(1 . 2014 ) ( ,2-1+ ..3- .. 2 + .. 4-、、3+…+ '、2014 - .. 2013 ) =(1.2014) ( 2 1 -)=2014-1=2013.考点:分母有理化.8. 2【解析】=2 + 1 — ,9 + .4 = 3 — 3+ 2= 2【解析】- 3 2解:原式=4—(3 — 2・、2) +—解:原式=2= 4 - 3 + 2 2 + 口 = 1 + —244【解析】(1)利用 一 a 2=a(a > 0) , , ab a . b (a > 0,b > 0)化简;(2) 可以利用多项式乘法法则,结合上题提示计算; (3) 利用平方差公式; (4) 利用多项式乘法公式化简•11.(1) ■ 6 ;(2) 3 . 2 .4 10【解析】试题分析:(1 )先把二次根式化成最简二次根式之后,再合并同类二次根式即可求出答案; (2 )先把二次根式化成最简二次根式之后,再进行二次根式的乘除法运算必6冷-子八6(2)原式=4巧汉一3汇4 5/2=3 .2 10考点:二次根式的化简与计算•12. 32.【解析】试题分析:先进行二次根式的化简,再合并同类二次根式即可求出答案试题解析:i (-2)2 -、2(、,2 -2厂v3=2-2+2、、2+ - 2 =3考点:二次根式的化简求值.13. (1)3 2 3 3; (2) -1-2 石【解析】10. (1)-32 ; (2) 11 .2-9 .3 ; (3) -4-2 .6 ; (4) 8-4.6 3试题解析:(1)原式=(2 .6=3103 / 12试题分析:(1)把二次根式进行化简后,再合并同类二次即可得出答案; (2)先利用平方差公式展开后,再利用完全平方公式计算即可.试题解析:(1)8 W F3、. 2 3.3---- + ------^.2 3.3 ;-2 ;(2)(J :5,.3)( J - .5 - .. 3)=7 -(、一5 '、3)2考点:二次根式的化简14. (1) 111(2) -4【解析】解:(1) 3 -27;(-3)2 - 3 -1 =-3 3-(-1) = 1.15. 385【解析】解:因为 2x 2 -3xy 2y 2 = 2x 2 - 4xy 2y 2 xy = 2(x - y)2 xy所以 2x 2 -3xy 2y 2 =2 (8 .3)21 =385 .16. -.,2 .【解析】试题分析:先化成最简二次根式 ,再进行计算. 试题解析:(J24 - J 》一2( J 1+J6)⑵—43。
实数与二次根式的混合运算-计算题86道

实数的运算练习一(1)3823250+- (2)48512739+- (3) 101252403--(4)2)32)(347(-+ (5)20)21(821)73(4--⨯++(6)102006)21()23()1(-+--- (7)10)21()2006(312-+---+(8)02)36(2218)3(----+-- (9)326⨯(10)4327-⨯ (11)2)13(- (13)36(12)22)52()2511(- (14)75.0125.204112484--+-(15)1215.09002.0+ (16)250580⨯-⨯(17)3721⨯ (18))25)(51(-+ (19)2)313(-(20)892334⨯÷ (21)20032002)23()23(+⋅-(22)75.04216122118+-+ (23)3333222271912105+-⨯---(24)753131234+- (25)3122112--(26)5145203-+ (27)48122+(28)325092-+ (29)2)231(-实数的运算练习二(1)3181083315275--+(2)7581312325.0---+(3)⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-5.0431381448 (4)()1471627527223+-+(5)⎪⎪⎭⎫ ⎝⎛-+-67.123256133223(6)()326125.021322--⎪⎪⎭⎫ ⎝⎛-+(7)344273125242965++-+(8)⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+121580325.12712(9)))((36163--⋅-;(10)63312⋅⋅(11))(102132531-⋅⋅(12)z y x 10010101⋅⋅-(13)20245-(14)14425081010⨯⨯..(15)521312321⨯÷ (16))(ba b b a 1223÷⋅.213⨯(17)91448⨯⨯(18)1575⨯(19)105⨯(20)0.524⨯(21)222610-(22)122718÷⨯(23)253353+-+(24)2753273-+(25)()223131-++(26)111535⎛⎫÷+ ⎪⎝⎭(27)11315822218-++(28)()12754827-+-实数的运算练习三(1)22332332-+--(2)338251196--+---(3)()()3233110.25 2.891864--+--(4)93712548+-(5)24126+- (6)()2623-⨯(7)3032÷⨯(8)6151+(9))22(28+-—2(10)=-2)3.0((11)=-2)52((12)=∙y xy 82(13)=∙2712(14)3393aa a a -+(15))169()144(-⨯-(16)22531-(17)5102421⨯-(18)n m 218(19)21437⎪⎪⎭⎫⎝⎛-(20)225241⎪⎪⎭⎫⎝⎛--(21))459(43332-⨯(22)⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-126312817(23)2484554+-+(24)2332326-- (25)21418122-+-(26)3)154276485(÷+- (27)x xx x 3)1246(÷-(28)21)2()12(18---+++(29)0)13(27132--+-二次根式的混合运算一.解答题(共30小题)1.计算:(1)|﹣1|+(﹣2)2+(7﹣π)0﹣()﹣1 (2)÷﹣×+.2.(1)计算:( ﹣2)0﹣|+|×(﹣);(2)化简:(1+)+(2x﹣)3.化简:(1);(2)(x+y)2﹣(x﹣y)2.4.(1)计算:(2).5.化简或解方程组:(1)(2).6.(1)计算;(2)分解因式(x+2)(x+4)+x2﹣4.7.化简:(1);(2).8.(1)计算(2)解不等式组.9.计算:(1)(2).10.计算:(1)5+﹣7;(2).11.化简下列各式:(1);(2).12.(1)计算:;(2)化简:.13.(1)计算:﹣+(﹣π)0 (2)化简:(﹣)•.14.计算:(1)(2).5.(1)﹣72+2×(﹣3)2+(﹣6)÷(﹣)2 (2)2﹣6﹣()﹣1.16.计算与化简(1)(2).17.计算:(1);(2).18.计算:(1)(2).(8)(1)计算×(﹣);(2)计算()÷.20.计算:(1)(2)(3)(4).21.(1)(2).22.计算:(1)(2﹣)×;(2)(+)÷.23.(1)计算:|﹣2|﹣(2﹣)0+(﹣)﹣2;(2)化简:;(3)计算:(x+2)(x﹣2)+x(3﹣x)24.计算:(1)(2).25.计算:(1);(2).26.计算:(1)(﹣1)2﹣|2﹣3|﹣(﹣)3;(2)(a3x4﹣0.9ax3)÷ax3.27.计算与化简:(1)(2)(﹣3a 3)2•a 3﹣(5a 3)3+(﹣4a )2•a7(3)(a+1)2﹣2(a+1)(a ﹣1)+3(a ﹣1)2(4)28.计算: (1)(2).29.解下列各题: (1)解方程组:(2)化简:.30.化简: (1)(2)1、下列各式中不是二次根式的是 ( )(A )12+x (B )4- (C )0 (D )()2b a -2、下列运算正确的是 ( )(A )x x x 32=+ (B )12223=- (C )2+5=25 (D ) x b a x b x a )(-=-3、下列二次根式中与24是同类二次根式的是( )(A ) 18 (B )30 (C ) 48 (D ) 54 4、化简200320022323)()(+∙-的结果为( )(A) –1 (B)23- (C)23+ (D) 23-- 5、22)(-化简的结果是( )(A) –2 (B) 2 (C) ±2 (D) 4 6、使代数式8a a -+有意义的a 的范围是( )(A )0>a (B )0<a (C )0=a (D )不存在7、若x x x x -∙-=--32)3)(2(成立。
二次根式混合计算练习(附答案)

二次根式混合计算1.计算题(1)(2).2.计算:218(12)(12)5023212322-+.3.619624322+-+127-48+12+7524.计算:(23)(23)+()20101-()02π--121-⎪⎭⎫ ⎝⎛5.计算(π-3)0-)12)(12(-++2312-+6、计算:)13(9-0+)322(2818)212(2----+ 27.计算(20141+)(211++321++431++…+201420131+)8×) 212-⎛⎫ ⎪⎝⎭--3|.9.计算:4832426-÷+⨯.10.计算:(1)3132+218-5150; (2)(5-26)×(2-3);(3)(1+2+3)(1-2-3); (4)(12-481)(231-45.0).11.计算:(1)-(2)12、计算36)22(2)2(2+---(1)327-+2)3(--31-13、计算: (1(2)14、33364631125.041027-++--- .11(24)2(6)28--+15、已知,3232,3232+-=-+=y x 求值:22232y xy x +-.16、计算:⑴ ()()24632463+- ⑵ 20(3)(3)2732π++-+-17、计算(1)﹣× (2)(6﹣2x )÷3.20.计算:1312248233⎛÷ ⎝3631222⎝21.计算22.(1))235)(235(-++- (2))52453204(52+-22.计算:(1)(222122763 (2)(35233523-23.化简:(1)83250+ (2)2163)1526(-⨯- (3)(2)23()123)(123-+-+; (4) 12272431233()?-+24.计算(1)2543122÷⨯(2)(3)231|21|27)3(0++-+-- (4)11545+204555245(5)()()2012011+8π236+22--⨯-() (6)4832426-÷+⨯(7)20121031(1)5()27(21)2----++ (8)113123482732(92225(7)(3)- (10)21(232)8(3325)(335)3(11)5.081232+-; (12)32212332a a a ⨯÷ (13))2332)(2332(-+ (14)18282-+(15)3127112-+(16)0)31(33122-++参考答案1.(1)﹣;(2).【解析】试题分析:(1)先把各个二次根式进行化简,再合并同类二次根式即可;(2)根据二次根式的乘除混合运算法则计算.解:(1)=3﹣2+﹣3=﹣;(2)=4××=. 2.32-【解析】试题分析:先将所给的各式化简成整数或最简二次根式,然后合并同类二次根式即可. 试题解析:原式125282632=-+--32=-考点:二次根式的计算. 【答案】766 【解析】 试题解析:解:619624322+-+ 26626463 =(266264636+⎭ 56266=766 考点:二次根式的加减点评:本题主要考查了二次根式的加减运算.首先把二次根式化为最简二次根式,然后再合并同类二次根式. 4.0【解析】试题分析:根据实数的运算法则进行计算即可救出答案. 试题解析:12010)21()2()1()32)(32(----++-οπ =234-⨯+-=0考点:实数的混合运算.5.;(2) .【解析】试题分析:(1)先计算零次幂、二次根式化简、去绝对值符号、把括号展开,然后进行合并即可求解.(2)把二次根式化成最简二次根式后,合并同类二次根式即可.(1)原式(2)原式=12⨯=.考点:实数的混合运算;2.二次根式的混合运算.6.【解析】试题分析:先进行二次根式的化简,财进行乘除运算,最后合并同类二次根式即可求出答案.试题解析:原式=2913⨯++-+9213283=++-+-+=考点: 实数的混合运算.7.2013.【解析】试题分析:根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.试题解析:(1+(211++321++431++…+201420131+)=(1++…=(1+1)=2014-1=2013.考点: 分母有理化.8.2【解析】解:原式=)2+1-=2+1=3-3+2=29.1+114【解析】解:原式=4-(3-)+4=4-3+=1+11410.(1)342;(2)112-93;(3)-4-26;(4)8-364. 【解析】(1)利用2a =a(a ≥0),ab =a b (a ≥0,b ≥0)化简;(2)可以利用多项式乘法法则,结合上题提示计算;(3)利用平方差公式;(4)利用多项式乘法公式化简.11.(14(2. 【解析】试题分析:(1)先把二次根式化成最简二次根式之后,再合并同类二次根式即可求出答案;(2)先把二次根式化成最简二次根式之后,再进行二次根式的乘除法运算.试题解析:(1)(24-+原式24=---4=;(2)原式=310⨯考点: 二次根式的化简与计算.12.【解析】试题分析:先进行二次根式的化简,再合并同类二次根式即可求出答案.试题解析: 36)22(2)2(2+---=考点: 二次根式的化简求值.13.(1;(2)1--. 【解析】试题分析:(1)把二次根式进行化简后,再合并同类二次即可得出答案;(2)先利用平方差公式展开后,再利用完全平方公式计算即可.试题解析:(122=+22=+=;(2)27=-78=--1=--考点: 二次根式的化简.14.(1)1 (2)114- 【解析】解: (1)327-+2)3(--31-=.11--33-=+)( (2)33364631125.041027-++---=1111300.5.244---++=- 15.385 【解析】解:因为 xy y x xy y xy x y xy x +-=++-=+-22222)(2242232,38)32)(32()32()32)(32()32(3232323222=-+---++=+---+=-y x , 1)3232)(3232(=+--+=xy , 所以3851)38(2232222=+⨯=+-y xy x .16..【解析】试题分析:先化成最简二次根式,再进行计算.试题解析:-224-⨯22--=考点:二次根式化简.17..【解析】试题分析:先化成最简二次根式,再进行计算.试题解析:---=. 考点:二次根式化简.18.(1)22; (2) 6-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+-22=-=54-32 =22.(2)20(2π+312=+--6=-考点: 实数的混合运算.19.(1)1;(2)1 3【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:3=-⨯32=-1=;(2)2÷=÷=÷=13=.考点: 二次根式的混合运算.20.143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.21.0.【解析】试题分析:根据二次根式运算法则计算即可.=⎝.考点:二次根式计算.22.(1)(2)10.【解析】试题分析:(1)把括号内的项进行组合,利用平方差公式进行计算即可得到答案;(2)把二次根式化简后,合并同类二次根式,再进行计算即可求出答案.试题解析:(1))235)(235(-++-25=-55=-+=(2))52453204(52+-=10==考点: 二次根式的混合运算.23.(1)18-(2)33. 【解析】试题分析:(1)根据二次根式化简计算即可;(2)应用平方差公式化简即可.试题解析:(1)(18==-.(2)(((22451233=-=-=. 考点:二次根式化简.24.(1)92;(2)-. 【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;25..【解析】试题分析:二次根式的加减,首先要把各项化为最简二次根式,是同类二次根式的才能合并,不是同类二次根式)0,0m n≥≥)0,0m n≥>,需要说明的是公式从左到右是计算,从右到左是二次根式的化简,并且二次根式的计算要对结果有要求,能开方的要开方,根式中不含分母,分母中不含根式.试题解析:解: 原式=18-1+3-.考点:二次根式的计算.26.6-【解析】试题分析:根据二次根式的混合运算顺序和运算法则计算即可.试题解析:6=?=?=-考点:二次根式的混合运算.27.(1)2103.(2)4.【解析】试题分析:掌握二次根式的运算性质是解题的关键.一般地,二次根式的乘法:abba=•),(00≥≥ba;二次根式的除法:baba=),(00φba≥;二次根式的加减时,先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并.计算时,先算乘除法,能化简的根式要先进行化简再计算,最后计算加减法,即合并同类项即可.试题解析:解:(1)原式=2514334⨯⨯1024334⨯⨯==2103(2)原式8523+--=4=考点:1、二次根式的化简;2、实数的运算.28.-【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化.29.2+.【解析】试题分析:根据运算顺序化各根式为最简二次根式后合并即可.试题解析:原式1511322=⋅==+=+. 考点:二次根式运算.30.2.【解析】试题分析:针对有理数的乘方,二次根式化简,零指数幂,负整数指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式12=-.考点:1.实数的运算;2.有理数的乘方;3.二次根式化简;4.零指数幂;5.负整数指数幂.31.32-22.【解析】试题分析:二次根式的乘法法则:)0,0(≥≥=⨯b a ab b a ,二次根式除法法则:)0,0(φb a ba b a ≥=÷,二次根式的乘除计算完后要化为最简二次根式,然后进行加减运算,二次根式加减的实质是合并同类二次根式. 试题解析:32-2234-223248-32426=+=÷+⨯.考点:二次根式的混合运算.32.(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==.考点:1.实数的运算;2.二次根式的加减法.33.(1)1;(2)7-【解析】试题分析:(1)解:原式=5-7+3=1;(2)解:原式=14(2720)--=7-考点:二次根式的混合运算.34.①、24;②、a 31【解析】试题分析:根据二次根式的混合运算的法则结合二次根式的性质依次计算即可. 试题解析:①、242222245.081232=+-=+-; ②、=⨯÷32212332a a a a a a a a 3146132232131122=⨯=⨯⨯⨯⨯⨯. 考点:实数的运算35.(1)-(3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。
8年级二次根式计算题450道

8年级二次根式计算题450道①5√8-2√32+√50=5*3√2-2*4√2+5√2=√2(15-8+5)=12√2②√6-√3/2-√2/3=√6-√6/2-√6/3=√6/6③(√45+√27)-(√4/3+√125)=(3√5+3√3)-(2√3/3+5√5)=-2√5+7√5/3④(√4a-√50b)-2(√b/2+√9a)=(2√a-5√2b)-2(√2b/2+3√a)=-4√a-6√2b⑤√4x*(√3x/2-√x/6)=2√x(√6x/2-√6x/6)=2√x*(√6x/3)=2/3*|x|*√6⑥(x√y-y√x)÷√xy=x√y÷√xy-y√x÷√xy=√x-√y⑦(3√7+2√3)(2√3-3√7)=(2√3)^2-(3√7)^2=12-63=-51⑧(√32-3√3)(4√2+√27)=(4√2-3√3)(4√2+3√3)=(4√2)^2-(3√3)^2=32-27=5⑨(3√6-√4)²=(3√6)^2-2*3√6*√4+(√4)^2=54-12√6+4=58-12√6⑩(1+√2-√3)(1-√2+√3)=[1+(√2-√3)][1-(√2-√3)]=1-(√2-√3)^2=1-(2+3+2√6)=-4-2√6①5√8-2√32+√50 =5*3√2-2*4√2+5√2 =√2(15-8+5) =12√2 ②√6-√3/2-√2/3 =√6-√6/2-√6/3 =√6/6 ③(√45+√27)-(√4/3+√125) =(3√5+3√3)-(2√3/3+5√5)=-2√5+7√5/3 ④(√4a-√50b)-2(√b/2+√9a) =(2√a-5√2b)-2(√2b/2+3√a) =-4√a-6√2b⑤√4x*(√3x/2-√x/6) =2√x(√6x/2-√6x/6) =2√x*(√6x/3) =2/3*|x|*√6 ⑥(x√y-y√x)÷√xy =x√y÷√xy-y√x÷√xy =√x-√y ⑦(3√7+2√3)(2√3-3√7) =(2√3)^2-(3√7)^2 =12-63 =-51⑧(√32-3√3)(4√2+√27) =(4√2-3√3)(4√2+3√3) =(4√2)^2-(3√3)^2 =32-27 =5⑨(3√6-√4)2 =(3√6)^2-2*3√6*√4+(√4)^2 =54-12√6+4 =58-12√6 ⑩(1+√2-√3)(1-√2+√3)=[1+(√2-√3)][1-(√2-√3)] =1-(√2-√3)^2 =1-(2+3+2√6) =-4-2√6二次根式计算题30道带答案1/6√1又3/5×(-5√3又√3/5)=1/6√(8/5)×(-5/3√(3/5)=-5/18√(24/25)=-5/18×2/5√6=-1/9√6(2)√8/a×√2a/b=√(8/a×2a/b)=√(16/b)=4/b(√b)(3)√2x乘以√2y乘以√x=√(2x*2y*x)=2x√y(4)2√a÷4√b=√a/2√b=1/2b√ab(5)5√xy÷√5x^3=5√(xy/5x³)=1/x√5y(6)√x-y÷√x+y=1/(x+y)√(x²-y²)(7)√x(x+y)÷√xy^2/x+y(x>0,y>0)=√[x(x+y)÷xy²/(x+y)]=(x+y)/y(8)√xy乘以√6x÷√3y=√6x²y÷√3y=x√2(9)(√mn-√m/n)÷√m/n(n>0)=√mn÷m/n-√m/n÷m/n=n-1(10)√3/8-(-3/4√27/2+3√1/6)=1/4√6+3/8√6-1/2√6=1/8√6(11)2/3√9x+6√x/4-2x√1/x=2√3x+3/2√x-2√x=5/2√x(12)2/a√4a+√1/a-2a√1/a^3=1/a√a+1/a√a-2/a√a=0(13)√0.2m+1/m√5m^3-m√125/m=1/5√5m+√5m-5√5m=-19/5√5m(14)√a+b/a-b-√a-b/a+b-√1/a^2-b^2(a>b>0)=1/(a-b)√(a²-b²)-1/(a+b)√(a²-b²)-1/(a²-b²)√(a²-b²) =(a+b-a+b-1)/(a²-b²)√(a²-b²)=(2b+1)/(a²-b²)√(a²-b²)解不等式(15)2x+√32<x+√22x-x<√2-4√2x<-3√216)√3/8-(-3/4√27/2+3√1/6)=1/2√3/2 + 9/4√3/2 - 1/2√6=1/4√6 + 9/8√6 - 1/2√6=7/8√6(17)√0.2m+1/m√5m^3-m√125/m=√1/5*m + 1/m√5m*m^2 - m√25*5m/m^2=1/5√5m+√5m-5√5m=-19/5√5m(18)(√45+√27)+(√1又1/3-√125)=3√5+3√3 + √4/3-5√5=3√3 + 2/3√3 + 3√5 - 5√5=5√3 -2√5(19)2/3√9x+6√x/4-2x√1/x=2√x+3√x-2√x=3√x20 √40÷√5=√8*√5÷√5=√8=2√221 √32/√2=√16*√2/√2=√16=422 √4/5÷√2/15=√4/5*√15/2=√(4/5*15/2)=√623 2√a^3b/√ab=2√a²√ab/√ab=2√a²=2|a|(24)√18-√32+√2=√2×9-√4×4×2+√2=3√2-4√2+√2=0(25)√75-√54+√96-√108=√5×5×3-√6×3×3+√6×4×4-√3×6×6=5√3-3√6+4√6-6√3=√6-√3=√3(√2-1)(26)(√45+√18)-(√8-√125)=√5×3×3+√2×3×3-√2×2×2+√5×5×5=3√5+3√2-3√2+5√5=8√5(27)½(√2+√3)-¾(√2+√27)=¼(2√2+2√3-√2-√27)此处通分,分子不变,分母都分别乘进去了,因为不好写就省略了=¼(2√2+2√3-√2-√3×3×3)=¼(√2-√3)(28)¼根号下18ab×(-2/b根号下6a²/a)=1/4×(-2/b)×√(18ab×6a²/a)=-1/(2b)×3a√(2b)=-3a/(2b) √(2b)(29)根号下50a²b(a<0,b>0)=√(25a²×2b)=-5a√(2b)(30)根号18×3/2根号20×(-1/3根号15)=-1/3×3/2×√(18×20×15)=-1/2×√5400=-1/2×30√6=-15√6帮我找50道一元二次方程计算题和50道二次根式计算题(带答案过程哦)。
中考数学----《实数混合运算》专项练习题(含答案解析)

中考数学----《实数混合运算》专项练习题(含答案解析) 1.计算:()2022192sin 30−︒. 【答案】3【分析】分别计算负数的偶次幂、二次根式、特殊角的正弦值,再进行加减即可.【详解】解:()20221192sin 3013213132−︒=+−⨯=+−=. 【点睛】本题考查负数的偶次幂、二次根式化简以及特殊角的三角函数值,属于基础题,正确计算是解题的关键.2.计算:021(3)3624−−π−−+. 【答案】7【分析】利用零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则计算即可.【详解】解:原式111644=−++7= 【点睛】本题考查零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则,熟练掌握实数的运算法则是解答此类问题的关键.3.计算:01(10)1620222⎛⎫−⨯− ⎪⎝⎭. 【答案】2【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式541=−+=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.4.计算:0(2022)2tan 45|2|9−−︒+−+【答案】4【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式12123=−⨯++1223=−++4=;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.5.()()0212 3.143tan 60132π−−−︒+−.【答案】14【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算. 0212 3.143tan 6013())2(π−−−︒+−123133314=−+14=. 【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.6.计算:20(2)|325(33)−+−− 3【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可. 【详解】解:原式43513=+【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1,2a a . 7.计算:(011322452−+︒−−. 【答案】2【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可.【详解】原式=1211222+=2. 【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.8.019(2022)2−−+.【答案】52【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得. 019(2022)2−−+1312=−+ 52=. 【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.9.计算:201(2)2sin 602π−⎛⎫−+−− ⎪⎝⎭︒.【答案】3【分析】先计算零指数幂、负指数幂、锐角三角函数值,再计算二次根式的乘法和加减法.【详解】解:201(2)2sin 602π−⎛⎫−+−− ⎪⎝⎭︒33 【点睛】此题考查了零指数幂、负指数幂、锐角三角函数值,解题的关键是熟练掌握零指数幂、负指数幂、锐角三角函数值的计算法则. 10.计算:015(3)|67⎛⎫⨯−+−− ⎪⎝⎭. 【答案】166−【分析】先算绝对值、算术平方根,零指数幂,再算乘法和加减法,即可求解. 【详解】解:015(3)|67⎛⎫⨯−+− ⎪⎝⎭1561=−+166=−【点睛】本题主要考查实数的混合运算,掌握零指数幂和运算法则是解题的关键. 11.计算:(()2623+⨯−.【答案】0【分析】先算乘方,再算乘法和减法,即可.【详解】()26(6)623606=+−=+−−=⨯ 【点睛】本题考查实数的混合运算,关键是掌握2(a a =.12.2324 【答案】6−【分析】根据二次根式的混合运算进行计算即可求解. 【详解】解:原式626=6=−【点睛】本题考查了次根式的混合运算,正确的计算是解题的关键.13.计算:2013sin3082−︒︒⎛⎫− ⎪⎝⎭【答案】1【分析】根据零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质进行计算即可求解.【详解】解:原式=12 14222−⨯+1=.【点睛】本题考查了实数的混合运算,掌握零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质是解题的关键.14.计算:2sin60°﹣32|+(π10012(﹣12)﹣2.【答案】3【分析】代入特殊角的三角函数值,按照实数的混合运算法则计算即可得答案.【详解】解:2sin60°﹣32|+(π10012+(﹣12)﹣2333333=3.【点睛】本题考查特殊角的三角函数值、零指数幂、负整数指数幂及二次根式的性质与化简,熟练掌握实数的混合运算法则,熟记特殊角的三角函数值是解题关键.15.计算:12022125(1)3−⎛⎫+−⎪⎝⎭.5【分析】根据负整数指数幂、乘方、绝对值的性质化简后计算即可.【详解】解:12022 125(1)3−⎛⎫+−⎪⎝⎭3521=−5【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、绝对值的性质化简.16.124sin3032︒;3【分析】先化简二次根式,把特殊角三角函数值代入,并求绝对值,再计算乘法,最后合并同类二次根式即可; 【解析】解:原式1234232=⨯+3=【点睛】本题考查实数的混合运算,分式的混合运算,熟练掌握实数混合运算法则,熟记特殊角的三角函数值.17.计算:2022032tan 45(1)(3)π−−︒+−−.【答案】1 【分析】根据特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值等计算法则求解即可. 【详解】解:2022032tan 45(1)(3)π−−︒+−−32111=−⨯+−3211=−+−1=.【点睛】本题考查了特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值,准确熟练地化简各式是解题的关键.18.计算:201tan 452(3)(21)2(6)23−︒−++−−+⨯−. 【答案】6【分析】原式分别利用乘方,特殊角的三角函数值,零指数幂,负整数指数幂,乘法法则分别计算,再作加减法. 【详解】解:201tan 452(3)(21)2(6)23−︒−++−+⨯− =1191422++−− =6【点睛】此题考查了实数的混合运算,熟练掌握运算法则是解本题的关键.19.计算:()20211+84sin 45+2−︒−.【答案】1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可 【详解】解:原式2122422=−+⨯+ 122222=−+1=.【点睛】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.20.23862−−.【答案】4. 38=2,-6=6,计算出结果.【详解】解:原式2644=+−=故答案为:4.【点睛】本题主要考查了实数的混合运算,关键是开三次方与绝对值的计算. 21.计算:()043897⨯−+−. 【答案】-6;.【分析】直接利用有理数乘法法则以及绝对值的性质、二次根式的性质、零指数幂的性质分别化简得出答案;【详解】解:()043897⨯−+−− 12831=−+−+6=−;【点睛】此题主要考查了实数运算的混合运算,正确掌握相关运算法则是解题关键. 22.025|7|(23)−−+.【答案】1−【分析】利用算术平方根、绝对值的性质、零指数幂分别计算各项即可求解.【详解】解:原式5711=−+=−.【点睛】本题考查实数的混合运算,掌握算术平方根、绝对值的性质、零指数幂是解题的关键.23.计算:0|2021|(3)4−+−【答案】2020【分析】先计算绝对值、零指数幂和算术平方根,最后计算加减即可; 【详解】解:0|2021|(3)4−+−202112=+−,2020=.【点睛】本题主要考查实数的混合运算,解题的关键是掌握实数的混合运算顺序及相关运算法则.24.计算:011(2021)()2cos 452π−−+−︒. 【答案】32【分析】先进行零指数幂和负整数指数幂,余弦函数值计算,再计算二次根式的乘法,合并同类项即可.【详解】解:011(2021)()2cos 452π−−+−︒, 2122=+− 32=【点睛】本题主要考查零指数幂和负整数指数幂,特殊角三角函数值,掌握零指数幂和负整数指数幂的运算法则,特殊角锐角三角函数值是解题的关键.25.计算:()101tan 60233122−⎛⎫−+︒−+−− ⎪⎝⎭π【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可. 【详解】解:()101tan 60233122−⎛⎫−+︒−−+− ⎪⎝⎭π ()=2+3233−+1-2=2323123−−=3−【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.26.计算:()03.1427134sin 60π−+︒.【答案】0【分析】分别化简各数,再作加减法.【详解】解:()03.1427134sin 60π−︒ =3133314−+ =1333123−+=0【点睛】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.27.计算:()2012sin 602020233π−︒⎛⎫+−+−+ ⎪⎝⎭ 【答案】12【解析】【分析】分别根据特殊锐角三角函数值、零指数幂、负指数幂和实数性质化简各式,再计算即可.【详解】解:原式329123=++3123=12=.【点睛】本题考查了特殊锐角三角函数值、零指数幂、负指数幂和实数的有关性质,解答关键是根据相关法则进行计算.28.计算:552×822)0. 【答案】0【解析】【分析】先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;【详解】 解:原式=12352522122− =35521−=0;【点睛】本题主要考查实数的混合运算,解题的关键是掌握绝对值性质、二次根式的性质、零指数幂的规定、熟记三角函数值及分式的混合运算顺序和运算法则.29.计算:0(23)(23)tan 60(23)π++︒−− 3【解析】【分析】先计算平方差公式、特殊角的正切函数值、零指数幂,再计算实数的混合运算即可.【详解】 原式222(3)31=− 4331=−+3=【点睛】本题考查了平方差公式、特殊角的正切函数值、零指数幂等知识点,熟记各运算法则是解题关键.30.()220201272603232cos −⎛⎫−−+ ⎪⎝⎭o ; 36.【解析】【分析】根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可;【详解】 ()220201272603232cos −⎛⎫−−+ ⎪⎝⎭o 3314323=−−−36=;【点睛】本题考查了实数的混合运算,二次根式的加减法,解答此题的关键是熟练掌握运算法则. 31.计算:120201(1)|132sin 602−︒⎛⎫−+−+− ⎪⎝+⎭. 【答案】2【解析】【分析】分别利用零指数幂、负指数幂的性质,绝对值的性质和特殊角的三角函数值分别化简即可.【详解】 解:原式=)312312++−=12313+=2【点睛】此题主要考查了根式运算,指数计算,绝对值,三角函数值等知识点,正确应用记住它们的化简规则是解题关键.32.计算:2cos45(2020)|22π︒︒+−+−.【答案】3【解析】【分析】根据特殊角的三角函数值,零指数幂运算及去绝对值法则进行计算即可.【详解】 解:2cos45(2020)|22π︒︒+−+=2×22+1+22 =2+1+22=3.【点睛】本题考查零次幂的性质、特殊角的三角函数值,绝对值性质实数的运算,熟练掌握计算法则是正确计算的前提.33.计算:11()18|2|6sin 453−−−︒【答案】5【解析】【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.【详解】解:原式=2332262+−⨯ 332232=+−5.=【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.34.计算:0|122sin45(2020)︒−+−;【答案】0;【解析】【分析】根据实数的混合运算法则计算即可;【详解】解:原式221212−⨯+ =0;【点睛】本题考查了实数的混合运算,以及特殊角的三角函数值,解题的关键是掌握运算法则.35.计算:10311345( 3.14)273π−⎛⎫+︒+− ⎪⎝⎭3【解析】【分析】根据负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值进行计算即可【详解】10311345( 3.14)273π−⎛⎫+︒+− ⎪⎝⎭3|131|13=++−33113=+−3=【点睛】 本题考查了负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值,熟知以上计算是解题的关键.36.计算:101()2cos 4512(31)3−−+−【答案】1【分析】根据负整指数幂的性质,特殊角的三角函数值,绝对值,零指数幂的性质,直接计算即可.【详解】101()2cos 4512(31)3−−+ 2322211=−⨯− 22131=−1=.【点睛】 本题主要考查了实数的混合运算,包含零指数幂,负整数指数幂,绝对值及特殊角的余弦值等,灵活运用是解题关键.37.计算:013120208302−⎛⎫+︒− ⎪⎝⎭. 【答案】0【解析】【分析】依次计算零指数幂,化简立方根乘以特殊的三角函数值,最后一项利用负指数幂,最后相加减即可得出答案.【详解】解:原式11222=+⨯− 112=+−0=【点睛】此题主要考查了实数的运算以及特殊的三角函数值,熟练掌握运算法则是解题的关键. 38.计算:1202138(π﹣3.14)0﹣(﹣15)-1. 【答案】5【解析】算出立方根、零指数幂和负指数幂即可得到结果;【详解】解:原式=1﹣2+1+5=5.【点睛】本题主要考查了实数的运算,计算是解题的关键.39.计算:13182cos60-(-1) 2π−⎛⎫−⎪⎝⎭.【答案】0【解析】【分析】先化简各项,再作加减法,即可计算.【详解】解:原式=1 22212−++⨯−=0,故答案为:0.【点睛】此题考查实数的混合运算以及特殊角的三角函数值,关键是掌握运算法则和运算顺序.40.0 31 8312sin604⎛⎫−−︒+ ⎪⎝⎭【答案】2−.【解析】【分析】先计算立方根、绝对值运算、特殊角的三角函数值、零指数幂,再计算实数的混合运算即可.【详解】原式323121−+−+ =23131 =−+【点睛】本题考查了立方根、绝对值运算、特殊角的三角函数值、零指数幂等知识点,熟记各运算法则是解题关键.41.计算:()10124sin 601232π−⎛⎫−−−+︒− ⎪⎝⎭ 【答案】-3【解析】【分析】根据负整数指数幂、绝对值、特殊角的三角函数值、二次根式和零次幂的运算法则分别对每项进行化简,再进行加减计算即可. 【详解】 解:()10124sin 601232π−⎛⎫−−−+︒− ⎪⎝⎭ 2223231=−−+3=−【点睛】本题考查实数的混合运算、熟练掌握负整数指数幂、绝对值、特殊角的三角函数值、二次根式和零次幂的运算法则是解题的关键.42.计算:()10131012454−︒⎛⎫−−++ ⎪⎝⎭ 【答案】7【解析】【分析】根据绝对值、零次幂、特殊角的三角函数值、二次根式和负整数指数幂的运算法则分别对每项进行化简,再进行加减计算即可.【详解】解:)10131012454−︒⎛⎫−−+ ⎪⎝⎭ =3114−++=7【点睛】本题考查实数的混合运算、熟练掌握绝对值、零次幂、特殊角的三角函数值、二次根式和负整数指数幂的运算法则是解题的关键.43.101313tan 30(3.14)2π−⎛⎫−︒+−+ ⎪⎝⎭ 【答案】2.【解析】【分析】先计算绝对值运算、特殊角的正切函数值、零指数幂、负整数指数幂,再计算实数的混合运算即可得.【详解】 原式331312=−++ 31312=+2=.【点睛】本题考查了绝对值运算、特殊角的正切函数值、零指数幂、负整数指数幂,熟记各运算法则是解题关键.44.()(202 3.14219π−+ 【答案】10.【解析】【分析】先计算零指数幂、绝对值运算、算术平方根,再计算二次根式的乘法、去括号、有理数的乘方,然后计算二次根式的加减法即可得.【详解】原式221(21)3=−+2219=+10=.【点睛】本题考查了零指数幂、绝对值运算、算术平方根、二次根式的加减法与乘法等知识点,熟记各运算法则是解题关键.18。
二次根式计算题 100 道
二次根式计算题 100 道一、化简类1、√82、√183、√274、√325、√506、√727、√988、√1289、√16210、√200二、计算类11、√2 +√812、√3 √1213、2√5 +3√2014、4√12 9√2715、√27 √7516、√48 +√1217、√18 √32 +√218、√24 √6 +3√819、2√12 6√1/3 +√4820、3√45 √125 +5√20三、乘法运算类21、√2 × √822、√3 × √1223、√5 × √2024、√6 × √3025、2√3 × 3√226、3√5 × 2√1027、4√2 × 5√828、5√6 × 6√329、√18 × √2430、√27 × √32四、除法运算类31、√8 ÷ √232、√18 ÷ √333、√24 ÷ √634、√48 ÷ √1235、√50 ÷ √536、√72 ÷ √837、√98 ÷ √738、√128 ÷ √1639、√162 ÷ √1840、√200 ÷ √20五、混合运算类41、(√5 +√3)(√5 √3)42、(√2 + 3)(√2 1)43、(2√3 1)(2√3 + 1)44、(3√2 + 2)(3√2 2)45、(√5 2)²46、(√3 + 1)²47、(2√5 3)²48、(4√2 + 1)²49、√(2 √3)²50、√(3 √5)²六、分母有理化类51、 1/(√2 1)52、 1/(√3 √2)53、 2/(√5 +√3)54、 3/(√6 √5)55、 4/(√7 √6)56、 5/(√8 √7)57、 6/(√9 √8)58、 7/(√10 √9)59、 8/(√11 √10)60、 9/(√12 √11)七、含参数类61、已知 a =√2 + 1,b =√2 1,求 a² b²62、若 x = 2 +√3,y =2 √3,求 x²+ y²63、设 m =√5 + 2,n =√5 2,计算 m² n²64、已知 p = 3 +√2,q =3 √2,求 p² 2pq + q²65、当 a =√7 + 2,b =√7 2 时,求(a + b)²(a b)²66、若 x =√11 + 3,y =√11 3,计算 xy67、给定 m =2√3 + 1,n =2√3 1,求 m²n + mn²68、设 a = 4 +√15,b =4 √15,求 a²b ab²69、已知 c = 5 +2√6,d =5 2√6,求 c²/d + d²/c70、当 e =3√2 + 1,f =3√2 1 时,求 ef/(e + f)八、比较大小类71、√11 与√1372、√15 与 473、2√3 与3√274、√5 + 1 与 375、2√7 3 与 276、√18 √12 与√10 √877、√20 +√5 与5√278、3√11 2√7 与4√3 √1979、√17 √13 与√11 √780、5√2 3√3 与4√3 2√2九、求值类81、已知 x =√3 + 1,求 x² 2x + 2 的值82、若 y =√5 2,求 y²+ 4y + 4 的值83、当 z =2√2 1 时,求 z²+ 2z + 1 的值84、已知 a =√7 + 3,求 a² 6a 7 的值85、若 b =√10 1,求 b² 2b 1 的值86、当 c =3√3 + 2 时,求 c² 4c 5 的值87、已知 d =4√2 3,求 d²+ 6d + 5 的值88、若 e =√13 2,求 e²+ 4e + 3 的值89、当 f =5√2 + 1 时,求 f² 10f + 26 的值90、已知 g =6√3 5,求 g² 12g + 40 的值十、综合应用类91、一个直角三角形的两条直角边分别为√12 厘米和√27 厘米,求这个直角三角形的面积。
二次根式50道计算题(汇编)
二次根式50道计算题(汇编)本文档包含了50道关于二次根式的计算题,可以帮助你巩固和练习有关二次根式的计算技巧。
题目1.计算 $2\\sqrt{3}$。
2.计算 $3\\sqrt{7}-\\sqrt{2}$。
3.计算 $\\sqrt{12}+\\sqrt{27}$。
4.计算 $4\\sqrt{6} - 2\\sqrt{3}$。
5.计算 $\\sqrt{50}$。
6.计算 $2(\\sqrt{5}+\\sqrt{3})$。
7.计算 $\\sqrt{18} - \\sqrt{8}$。
8.计算 $3\\sqrt{5} + 2\\sqrt{45}$。
9.计算 $\\sqrt{72} - 2\\sqrt{18}$。
10.计算 $4\\sqrt{10} - 3\\sqrt{8}$。
11.计算 $2\\sqrt{6} \\times 3\\sqrt{2}$。
12.计算 $(\\sqrt{3}+\\sqrt{5})^2$。
13.计算 $(\\sqrt{7}-\\sqrt{2})^2$。
14.计算 $(\\sqrt{20}+\\sqrt{5})(\\sqrt{20}-\\sqrt{5})$。
15.计算$(\\sqrt{3}+\\sqrt{2})(\\sqrt{3}-\\sqrt{2})$。
16.计算 $(4\\sqrt{2})^2$。
17.计算 $(\\sqrt{2})^4$。
18.计算 $(\\sqrt{3})^3$。
19.计算 $(\\sqrt{7})^2$。
20.计算 $3\\sqrt{5} \\div \\sqrt{3}$。
21.计算 $\\sqrt{8} \\div 2$。
22.计算 $\\sqrt{18} \\div (\\sqrt{6} \\times\\sqrt{2})$。
23.计算 $2\\sqrt{7} + \\sqrt{7}$。
24.计算 $\\sqrt{11} + 2\\sqrt{11}$。
八年级数学下册-专题. 二次根式的混合运算专项训练(沪科版)(解析版)
专题16.4二次根式的混合运算专项训练【沪科版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对二次根式混合运算的理解!1.(2023春·广西贺州·八年级统考期中)计算:12−3×8÷2【答案】1−2【分析】根据二次根式的混合运算进行计算即可求解.【详解】解:12−3×8÷2=2−1−22÷2=1−2.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.2.(2023秋·辽宁沈阳·1−32−12−【答案】2+【分析】根据二次根式的混合计算法则求解即可.【详解】解:原式=9×12÷3−1−23+3−23=36−4+23−533=6−23−533=2+【点睛】本题主要考查了二次根式的混合计算,熟知相关计算法则是解题的关键.3.(2023秋·上海青浦·八年级校考期中)计算:75−3−12+【分析】先根据二次根式的性质,完全平方公式和分母有理化化简,再计算加减即可.【详解】解:原式=53−23−3−23+1+23−1=53−23−4+23+23−2=73−6【点睛】本题考查二次根式的混合运算,掌握分母有理化和二次根式混合运算的法则是解题的关键.4.(2023秋·辽宁丹东·−3+23−2【答案】6−32【分析】先计算二次根式的除法运算,乘法运算,化简二次根式,再合并即可.【详解】解:原式−6×3−232+1=5−32+1=6−32.【点睛】本题考查的是二次根式的混合运算,熟记混合运算的运算顺序是解本题的关键.5.(2023春·广东湛江·八年级统考期末)计算:12−6÷2+3+13−1【答案】3+2【分析】先化简,进行除法和平方差公式的计算,再合并同类二次根式即可得解.【详解】解:12−6÷2+3+13−1=23−3+3−1=3+2.【点睛】本题考查二次根式的混合运算.熟练掌握二次根式的性质,运算法则,正确的计算,是解题的关键.6.(2023秋·陕西西安·八年级校考期中)计算:52+5−2+55−2.【分析】根据二次根式的乘法和加减运算法则计算即可.【详解】52+5−2+55−2=5×2+52−52−22=10+5−5−4=10+5−1=10+4.【点睛】本题主要考查二次根式的乘法及加减运算,牢记二次根式的乘除及加减运算法则是解题的关键.7.(2023春·吉林松原·八年级统考期末)计算:23−22−327−8【答案】5−26【分析】先根据完全平方公式和二次根式的乘法法则展开,然后再合并同类二次根式即可解答.【详解】解:23−22−327−8,=12−46+2−9+26,=5−26.【点睛】本题主要考查了二次根式的四则混合运算、完全平方公式等知识点,灵活运用二次根式四则混合运算法则是解答本题的关键.8.(2023春·广西河池·八年级统考期末)计算:(5−3)2+(5+3)(5−3).【答案】10−215【分析】先根据完全平方公式和平方差公式计算乘法,再合并同类二次根式即可.【详解】解:原式=5−215+3+5−3=10−215【点睛】本题主要考查了二次根式的混合运算,熟练掌握平方差公式和完全平方公式及二次根式的性质是解题的关键.9.(2023春·上海·八年级校考期末)计算:12+−2+1【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法.2+【详解】12+=23+(3+1)−2×=23+3+1−2+−1.【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.10.(2023秋·上海闵行·=3,=13.【答案】2+2,【分析】首先对第一个式子的分子利用平方差公式分解,第二个式子利用完全平方公式分解,然后约分,合并同类二次根式即可化简,然后代入数值计算即可.【详解】解:原式==+++=2+2当=3,=13时,原式=23+=23=【点睛】本题考查了二次根式的化简求值,正确理解平方差公式和完全平方公式对分子进行变形是关键.11.(2023秋·四川成都·八年级成都外国语学校校考期中)已知:2a+b+5=4(2−2+−1),先化简再【分析】用完全平方公式将原方程配方,由平方的非负性求出a、b的值,化简要求的式子,将a、b的值代入化简后的式子计算出结果即可.【详解】原方程可化为2a+b+5﹣42−2﹣4−1=0,即(2a﹣2﹣42−2+4)+(b﹣1﹣4−1+4)=0,∴(2−2﹣2)2+(−1﹣2)2=0,∴2−2﹣2=0,−1﹣2=0,解得a=3,b=5,将a、b的值代入得:原式【点睛】本题主要考查完全平方公式、平方的非负性.12.(2023春·上海闵行·÷中=3+1,=3−1.【答案】3【分析】先把二次根式化为最简,再把字母的取值代入即可.【详解】解:B+)÷K =(p(−p B =(p(p ===B =B ++−B B =+B ∵=3+1,=3−1,∴+=3+1+3−1=23,B =(3+1)(3−1)=2,则r B ==3.【点睛】本题考查了二次根式的化简求值,解答本题的关键是明确分式化简求值的方法.13.(2023春·北京海淀·八年级人大附中校考期中)先化简,再求值:−中x =9,y =14.【答案】3+2;10【分析】先化简二次根式,然后合并同类二次根式,再将x 和y 值代入计算即可.【详解】解:−16+=6−2−3+4=3+2,将x =9,y =14代入,原式=39+2,故答案为:10.【点睛】此题考查了二次根式的化简求值,解题的关键是掌握运算法则.14.(2023春·广东肇庆·八年级肇庆市第四中学校考期中)先化简,再求值:+−36B),=23,=27【答案】−B,−32【分析】根据二次根式的性质、二次根式的加减混合运算法则把原式化简,把x、y的值代入计算即可.【详解】解:原式=6×+3××B−4×−6B=6B+3B−4B−6B=−B当=23时,原式=−=−18=−32【点睛】此题考查的是二次根式的化简求值,掌握二次根式的性质、二次根式的加减混合运算法则是解题的关键.15.(2023春·河南信阳·八年级统考期末)计算:(1)75÷3−0.5×12−24;(2)2−32+2−3×3.【答案】(1)5+6(2)2−6【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据二次根式的混合运算法则计算即可.【详解】(1)原式=25−6−26(2)原式=2−32−3+3=2−3⋅2=2−6【点睛】本题考查的是二次根式混合运算,熟知二次根式的运算法则是解答此题的关键.16.(2023春·山东济宁·八年级济宁学院附属中学校考期中)计算:39(2)30×23【答案】(1)5(2)32【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的乘除混合运算顺序和运算法则进行计算即可.【详解】(1)解:原式=23×3+6×=2+3=5;(2)解:原式=30×32×÷=32÷=34×5=34×32=34×42【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(2023春·河南新乡·八年级统考期中)计算:(1)6×248÷3(2)−52+1+33−3−327【答案】(1)36−4(2)2+23【分析】(1)直接利用二次根式的乘除运算法则化简,进而得出答案.(2)直接利用二次根式的乘除运算法则、立方根的性质分别化简,进而得出答案.【详解】(1)解:原式=6×4,=36−4.(2)解:原式=5+3−3+33−3−3,=2+23.【点睛】此题主要考查了实数的运算,正确化简各数是解题的关键.18.(2023春·山东烟台·八年级统考期中)计算(1)2718÷2(2)42×(3+2)2+【答案】3(2)−7−3【分析】(1)先化简括号中各式,合并后进行二次根式除法运算即可;(2)分别进行二次根式乘法、完全平方公式和分母有理化将各部分化简,再进行合并即可.【详解】(1)原式=33+−32÷2=32÷2=−3;(2)原式=26−3+26+2−2+3=26−5−26−2−3=−7−3;【点睛】本题考查二次根式混合运算,掌握相关运算法则,分析运算顺序是解题关键.19.(2023春·云南昆明·八年级云大附中校考期末)计算:(1)240−10;(2)48÷3+30−22+32.【答案】2(2)−7−26【分析】(1)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答;(2)先计算二次根式的乘除法,再算加减,即可解答.【详解】(1)240−10=410−−10=2(2)48÷3+30−(22+3)2=16+26−8+46+3=4+26−8−46−3=−7−26.【点睛】本题考查了二次根式的混合运算,准确熟练地进行计算是解题的关键.20.(2023春·广西崇左·八年级统考期末)计算:(1)50−32+18(2)(3−2)(3+2)+(24−12)÷6【答案】(1)42(2)3−2【分析】(1)先根据二次根式的性质化简,然后再合并同类二次根式即可解答;(2)先用平方差公式和二次根式除法运算,然后再和合并同类二次根式即可解答.【详解】(1)解:50−32+18,=52−42+32,=42.(2)解:(3−2)(3+2)+(24−12)÷6=32−22+4−2,=3−2+2−2=3−2.【点睛】本题主要考查了二次根式的混合运算、二次根式的加减运算等知识点,灵活运用二次根式混合运算法则是解答本题的关键.21.(2023春·山东德州·八年级统考期末)(1)计算8+3×6−32;(2)已知=5−1,求代数式2+5−6的值.【答案】(1)43;(2)35−5【分析】(1)根据二次根式的混合计算法则求解即可;(2)把所求式子变形为+12+3−7,然后代值计算即可.【详解】解:(1)原式=48+18−32=43+32−32=43;(2)∵=5−1,∴2+5−6=2+2+1+3−7=+12+3−7=5−1+12+3×5−1−7=52+35−3−7=5+35−3−7=35−5.【点睛】本题主要考查了二次根式的混合计算,二次根式的化简求值,正确计算是解题的关键.22.(2023春·山东德州·八年级统考期中)(1)计算:18+12−32;(2)计算:3+223−22−54÷6;(3)24−−2+6;(4)3×12+−6×(−1)3−(−13)−2.【答案】(1)23−2;(2)−2;(3)−2;(4)−9【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先利用平方差公式和二次根式的除法法则运算,然后化简后进行有理数的减法运算;(3)先把各二次根式化为最简二次根式,然后合并即可;(4)先根据二次根式的乘法法则、绝对值、乘方的意义和负整数指数幂的意义计算,然后进行有理数的混合运算.【详解】解:(1)原式=32+23−42=23−2;(2)原式=9−8−54÷6=1−9=1−3=−2;(3)原式=26−26=−2;(4)原式=3×12+6×−1−9=6−6−9=−9.【点睛】本题考查了二次根式的混合运算:熟练掌握二次根式的性质、二次根式的乘法法则、除法法则和负整数指数幂的意义是解决问题的关键.23.(2023秋·辽宁锦州·八年级统考期中)(1)计算:(2)计算:÷212+16−327(3)计算:2+33−2+3+20+23−4−3−12【答案】(1)0;(2)27;(3)8【分析】(1)根据二次根式的加减进行计算即可求解;(2)根据二次根式的加减计算括号内的,然后再根据二次根式的除法进行计算;(3)根据完全平方公式,平方差公式,零指数幂,以及化简绝对值,进行计算即可求解.【详解】(1)计算:−4+6=−13×32−14×43+6×36+2×22=−2−3+3+2=0(2)计算:2416327=−6×33÷2×23+4×34−3×33=−23÷−73=27(3)计算:2+33−2+3+20+23−4−3−12=9−2+1+4−23−3+23−1=8【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.24.(2023春·四川绵阳·八年级统考期末)计算:(1)(10+3)2(10−3)2;(2)(25−3)2−(25+3)2.【答案】(1)1(2)−245【分析】(1)利用平方差公式进行运算较简便;(2)利用平方差公式进行运算较简便.【详解】(1)解:(10+3)2(10−3)2=[10+3×10−3]2=(10−9)2=12=1;(2)解:(25−3)2−(25+3)2=25−3+25+3×25−3−25−3=45×−6=−245.【点睛】本题主要考查二次根式的混合运算,掌握相关的运算法则是解答的关键.25.(2023秋·江苏苏州·八年级苏州中学校考期中)计算:(1)12−27+(2)23−123+1−1+321−32【答案】(1)2)7【分析】(1)分别化简二次根式,再合并同类二次根式即可得到答案;(2)先将1+321−32变形为1+31−32,然后利用平方差公式计算求解.【详解】(1)12−27+=2333+33=−3(2)23−123+1−1+321−32=232−12−1+31−32=12−1−−22=7故答案为(1)−2)7.【点睛】本题考查的是二次根式的混合运算,积的乘方,平方差公式,合并同类二次根式,掌握以上知识是解题的关键.26.(2023春·新疆乌鲁木齐·八年级乌鲁木齐市第六十八中学校考期末)(1)计算:(48﹣﹣20.5)(2)化简:((3−+B)÷【答案】(1)33;(2)a2﹣+2+a【分析】根据二次根式的性质,先化简各二次根式为最简二次根式,然后合并同类二次根式即可.【详解】解:(1)(48﹣20.5)=43﹣2﹣3+2=33;(2)3B÷=a2﹣+2+a.【点睛】本题考查了二次根式的混合运算,解得关键是根据相关法则进行运算.27.(2023春·广东广州·八年级广州六中校考期中)先化简,再求值:2+32−3−3−2+3,其中=2−3.【答案】2+6,−7【分析】直接利用平方差公式以及二次根式的乘法将原式变形,进而合并同类项,进而把已知代入求出答案.【详解】解:原式=42−3−32+6+3=2+6,把=2−3代入,得,原式=2−32+62−3=2+9−62+62−18=−7.【点睛】此题主要考查了平方差公式,多项式乘单项式以及二次根式的化简求值,正确化简原式是解题关键.28.(2023秋·山东青岛·八年级校考期中)计算与化简(1)+3)×6(2)(3+2)2−(2−3)(2+3)3(1−3)0(4)218−32−【答案】(1)52(2)10+62(3)6【分析】(1)根据二次根式的乘法进行计算即可求解;(2)根据完全平方公式与平方差公式进行计算即可求解;(3)根据二次根式的除法以及零次幂进行计算即可求解;(4)根据二次根式的加减进行计算即可求解.【详解】(1)解:3)×6=3×6=22+32=52;(2)解:(3+2)2−(2−3)(2+3)=9+62+2−4−3=10+62;(3+(1−3)0=+1=4+1+1=6;(4)解:218−32−=32−32−22=【点睛】本题考查了二次根式的混合运算,零次幂,掌握二次根式的运算法则是解题的关键.29.(2023秋·上海普陀·八年级校考期中)化简二次根式:23B2−−【答案】52B3【分析】先将括号内各式化为最简二次根式,再根据二次根式的混合运算法则计算即可.【详解】解:原式=2×3−×当≥0时,原式=23−3−12×3=23+2×3=2=52B3,当<0时,原式=2−3−−143+12×3=2−3+143−123=−543×2=−52B3.【点睛】本题考查二次根式的化简以及二次根式的混合运算,解题的关键是熟练掌握二次根式的化简法则以及二次根式的混合运算法则.30.(2023秋·辽宁辽阳·八年级辽阳市第一中学校联考期中)计算下列各式:(1)212+348−(2)23−12−32+132−1.【答案】(1)133(2)−43−4【分析】(1)先化简各二次根式,再合并即可;(2)先计算二次根式的乘法运算,再合并即可.【详解】(1)解:212+348−=43+123−33=133;(2)23−12−32+132−1=12−43+1−18+1=−43−4.【点睛】本题考查的是二次根式的加减运算,二次根式的乘法运算,混合运算,熟记运算法则是解本题的关键.31.(2023春·四川凉山·八年级统考期末)计算:(1)−12019+327−1−2+8(2)已知=2+1,=2−1,求++2的值.【答案】(1)2+3(2)8【分析】(1)先利用有理数的乘方、立方根、绝对值和二次根式的性质化简,再进行计算即可;(2)将x和y的值代入,进行分母有理化,再计算即可.【详解】(1)解:原式=−1+3−2−1+22=−1+3−2+1+22=2+3;(2)解:∵=2+1,=2−1,∴++2=22++2−1+2=2−12+2+12+2=2−22+1+2+22+1+2=8.【点睛】本题考查了实数的混合运算,二次根式的混合运算,分式的加法运算,熟练掌握运算法则是解题的关键.32.(2023春·山东淄博·八年级淄博市博山区第一中学校考期中)(1)计算:3−22+12+(2)先化简,再求值:+2−−2,其中=3,=6.【答案】(1)7;(2)122【分析】(1)直接利用完全平方公式以及结合二次根式的性质化简进而得出答案.(2)用完全平方公式展开、合并,然后代值化简计算.【详解】(1)3−2212+=3+4-43+23+6×3=3+4-43+23+23=7(2)+2−−2=(+2B+p−(−2B+p=4B当=3,=6时原式=4B=418=122.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键,在进行代数式的运算的时候,也要能够借助因式分解的知识简便计算.33.(2023秋·全国·八年级期末)化简(1)计算212−3+348(2)324+2−32−3+6−32【答案】(1)143(2)18−【分析】(1)根据二次根式的性质化简,然后根据二次根式的加减运算进行计算即可求解;(2)根据二次根式的混合运算进行计算即可求解.【详解】(1)解:212−+348=43−23+123=143;(2)解:324+2−32−3+6−32=3×26+62−6+3+6+9−66=18−【点睛】本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.34.(2023秋·福建漳州·八年级统考期中)先化简,再求值:(−3)(+3)−o−4),其中:=3+1.【答案】4−3;43+1【分析】先算乘法,再合并同类项,最后代入求出答案即可.【详解】解:(−3)(+3)−o−4)=2−3−2+4=4−3,当=3+1时,原式=4×(3+1)−3=43+4−3=43+1.【点睛】本题考查了二次根式的化简求值,能正确根据二次根式的运算法则进行计算是解此题的关键.35.(2023秋·上海·八年级上海交大附中校考期中)先化简再求值:2−K6r2−=【答案】−3+1,1【分析】先将分子和分母分解因式,并根据二次根式的性质化简,再约分,最后代入计算即可.【详解】因为=2+=3)(2−3)=2−3,可知−1=2−3−1=1−3<0.原式=(K3)(r2)r2−=−3−1−oK1)=−3+1.所以原式=2−3−3+=−1−3+2+3=1.【点睛】本题主要考查了分式的化简求值,根据a的大小化简(−1)2=1−是解题的关键.36.(2023春·江苏·八年级期末)计算化简(1)12+27(2)5B•−43≥0,≥0(3)1−【答案】(2)−202;(3)1;(4)3.【分析】(1)先把各二次根式化成最简二次根式,再利用二次根式的加减法则进行计算即可;(2)先把各二次根式化成最简二次根式,再利用二次根式的乘法法则进行计算即可;(3)括号中两项通分并利用同分母分式的减法法则计算,再计算除法即可;(4)先利用完全平方公式计算,再利用二次根式的加减法则进行计算即可.【详解】(1)解:12−23−33+39(2)解:∵≥0,≥0,∴5B•−43=−20B•B=−202;(3)解:1÷K1=1−1−÷−1=−1−÷−1=−1×−1=1;(4+2=5+25+14+5−25+14=5+25+1+5−25+14=3.【点睛】此题主要考查了二次根式的混合运算以及分式的加减乘除混合运算,正确化简二次根式是解题关键.37.(2023春·山西阳泉·八年级统考期中)先化简,再求值:3+5−5−2−5+10,其中= 3−1.【答案】83−11【分析】先根据平方差公式,合并同类项进行整理,再将=3−1代入计算即可.【详解】3+5−5−2−5+10=32−15−22+10+10=2+10−5当=3−1时,原式=(3−1)2+10(3−1)−5=4−23+103−10−5=83−11.【点睛】本题考查了平方差公式,整式的加减,二次根式的混合运算,先化简式子,再代值,按照二次根式的计算法则计算即可.38.(2023春·全国·八年级期中)化简:(1)48÷3−×12+24(2)2+12−1+3−22【答案】(1)4+6(2)8−43【分析】(1)先算二次根式的乘除运算,同时利用二次根式的性质化简,然后合并同类二次根式;(2)利用平方差公式和完全平方公式进行计算即可.【详解】(1)解:原式=16−6+24=4−6+26=4+6;(2)解:原式=2−1+3−43+4=8−43.【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.39.(2023秋·陕西咸阳·八年级统考期末)当a=4,b=3时,先化简+2B−【答案】(3−3)B;43【分析】先化简二次根式,再合并同类二次根式,再把a=4,b=3代入化简后的代数式,再计算即可.【详解】解:2B−=B+2B−=(3−3)B当a=4,b=3时,原式=(3−33)×3×4=2×23=43.【点睛】本题考查的是二次根式的化简,二次根式的加减运算,掌握“二次根式的化简”是解本题的关键.40.(2023春·山东烟台·八年级统考期中)化简计算:(1)(48+20)−(12−5)(2)(3+1)2−6(2−1)【答案】(1)23+35(2)4+6【分析】(1)原式分别化简二次根式后,再合并即可;(2)原式根据完全平方公式和单项式乘以多项式运算法则把括号展开,再合并即可得到答案.【详解】(1)(48+20)−(12−5)=48+20−12+5=43+25−23+5=23+35(2)(3+1)2−6(2−1)=(3)2+23+1−12+6=3+23+1−23+6=4+6【点睛】本题主要考查了二次混合运算,熟练掌握运算法则是解答本题的关键.。
二次根式混合运算题含答案
二次根式混合运算题含答案本文是一份数学题目,需要进行排版和改写以更好地呈现。
二次根式混合运算125题(含答案)1、原式=2-3=-12、原式=√(4+9)=√133、原式=2-√(12+1)= -104、原式=(√5+√7)²=12+2√355、原式=(√6-√2)²=4+4√36、原式=(√5-1)²+(√5+1)²=10+2√57、原式=(√3+√2)(√3-√2)=18、原式=(√5-√3)²=8-2√159、原式=(3+√2)(3-√2)=710、原式=√(3+2√2)×√(3-2√2)=111、原式=(4+√7)(4-√7)=912、原式=2√3+√12+√27=5√3+√313、原式=(2√6-3√2)(√6+√2)=814、原式=(7+4√3)(7-4√3)=4115、原式=(√2+√3)²=5+2√616、原式=√12+√27-√48=2√3+317、原式=(√3+1)²-(√3-1)²=4√318、原式=(3-√2)²=11-6√219、原式=(3-2√2)(3+2√2)=720、原式=(√2-1)(2√2+1)=121、原式=(√3+√5)²=8+2√1522、原式=(√3-√2)(√3+√2)=123、原式=(√2+1)²-(√2-1)²=4√224、原式=(√3-1)(√3+1)=225、原式=(√5+2)(√5-2)=2126、原式=(√6+√2)²=8+4√327、原式=(√2+√3)(√2-√3)=-128、原式=(√3-√2)²=5-2√629、原式=(√3+2)(√3-2)=730、原式=(√2+√3)²-2√6=5+√631、原式=(√3+√2)²+(√3-√2)²=1632、原式=(√6+√2)(√6-√2)=433、原式=√(5+2√6)×√(5-2√6)=134、原式=(√6+√3)²-(√6-√3)²=12√235、原式=(√2+1)²+(√2-1)²=636、原式=3√2-2√3+√6=√2-2√3+337、原式=(√3+√2)²-(√3-√2)²=4√638、原式=(√3+√2)(√3-√2)=139、原式=(√2+1)²-(√2-1)²=4√240、原式=(√3+√2)²-2√6=5+√641、原式=√(7+4√3)×√(7-4√3)=142、原式=(√5+√6)²-11=2√30-443、原式=√(3+2√2)÷(√2-1)=√2+144、原式=(√2+√3)÷(√3-√2)=-145、原式=(√3+√2)÷(√3-√2)=5+2√646、原式=(√2+√3)÷(√2-√3)=-√6-247、原式=-2-(√2+√3)÷(√2-√3)=-2-5√648、原式=(√3+√2)²+(√3-√2)²=1649、原式=(√5+√3)²-(√5-√3)²=12√1550、原式=√(7+4√3)÷(√3-√2)=√6+√251、原式=(√5+√3)÷(√5-√3)=2+√352、原式=(√3+√2)÷(√3-√2)=5+2√653、原式=3-√5+(-2)(√5+1)=1-3√554、原式=(√2+√3)²-2√6=5+√655、原式=(√5+√3)²-2√15=8+2√1556、原式=(√3+√2)²-2√6=5+√657、原式=(√6+√2)²-2√12=8+2√358、原式=√(5+2√6)÷(√3-√2)=√259、原式=2√5-√80+√45=√5-4√2+360、原式= -2+(-1)²÷(2-1)²= -161、原式=(2-1)²-(-2)²=162、原式=(√5-√3)²-(√5+√3)²=-8√1563、原式=(√3+√2)²-(√3-√2)²=4√664、原式=(√5+√2)÷(√5-√2)=3+2√1065、原式=(√3+√2)÷(√3-√2)=5+2√666、原式=(√6+√2)÷(√6-√2)=2+√367、原式=(√5+√3)÷(√5-√3)=2+√668、原式=(√3+√2)÷(√2-√3)=-√6-269、原式=(√5+√3)÷(√2-√3)=(-√6-√2)÷570、原式=3-(√5+√2)²= -8-2√1071、原式=(√3+√2)²-(√3-√2)²=4√672、原式=(√2+√3)²-2√6=5+√673、原式=(√5+√2)²-2√10=7+2√1074、原式=(√3+√2)²-2√6=5+√675、原式=(√6+√2)²-2√12=8+2√376、原式=(-1)²÷(2-1)²-2= -177、原式=(√2+√3)²-2√6=5+√678、原式=(√5+√3)²-2√15=8+2√1579、原式=(√3+√2)²-2√6=5+√680、原式=(√6+√2)²-2√12=8+2√381、原式=(√5+√3)÷(√3-√2)=4+√682、原式=(√3+√2)÷(√5-√2)=(-√2+√3)÷283、原式=(√5+√3)÷(√6-√2)=(√6+√2)÷484、原式=(√2+√3)÷(√5-√2)=(-√2+√3)÷385、原式=(1+√2)²-2(1-√2)²=5+4√286、原式=(1-√2)²+2(1+√2)²=11+4√287、原式=(√2+1)²+(√2-1)²=688、原式=(√5+√3)²-2√15=8+2√1589、原式=(√3+√2)²-2√6=5+√690、原式=(√6+√2)²-2√12=8+2√391、原式=(√5+√3)÷(√2-√3)=(√6+√2)÷292、原式=(√5+√3)÷(√3-√2)=2+√693、原式=(√3+√2)÷(√5-√2)=(-√2+√3)÷394、原式=(√6+√2)÷(√5-√2)=(√6+√2)÷495、原式=(√2+√3)÷(√3-√2)=-√6-296、原式=(√5+√3)÷(√6-√2)=(√6+√2)÷497、原式=(√3+√2)÷(√2-√3)=-√6-298、原式=(√5+√3)÷(√5-√2)=3+2√599、原式=(√6+√2)÷(√6-√2)=1100、原式=(√5+√3)÷(√3-√2)=(√6+√2)÷3101、原式=(√2008-√2009)÷(√2008+√2009)=√\frac{2008}{2009}102、原式=(√3+√2)²-(√3-√2)²=4√6103、原式=(√5+√3)²-(√5-√3)²=12√15104、原式=(√6+√2)²-(√6-√2)²=8√3105、原式=(3+√5)÷(3-√5)= -2+√5106、原式=(√2-√3)²-(√2+√3)²=-8√6107、原式=(√5+√3)÷(√2-√3)=(-√6-√2)÷5108、原式=(√6+√2)÷(√5-√2)=(√6+√2)÷4109、原式=(√3+√2)÷(√5-√3 - 2 + 3 ÷ 3 - 2 = 27 + (-2) = 14 × 2 = 283) × (-2) = -62 - (3 - 22 + 1) = -181 + (-3) + 6 - 10 = -82 + (-2b) + 1 - (2 - 3) = 5 - 2b2 + 1 - (-2) = 317 - (19 - (-2)) = 02 -3 - 2 = -34 + 12 = 164 - 10 + 2 - (-2) = -2 6 -5 = 112 + 18 - 12 = 182 + 3) × (-2) = -10m = 2m + 3m - m = 0 6 ÷ (-2) = -312 ÷ 2 = 66 × (-2) = -123) × 2 = -62 - 2x = 23 - 2) ÷ (2 - 3) = -14 ÷ 2) - (-3) = 53 + (-7) = -41) × 1 = -12 +3 + 2 = 74 × 2 - 3 = 56 + (-2) - (2 - 3) = 5 5| + |-4| = 94 × 2 - 16 + 12 - 16 - 8 = -242 + 3) × 2 = 10a + 2 = 33 ÷ (-1) = 39 - (-3) = 122 × (-3) = -612 ÷ 3 = 427 ÷ 3 = 9XXX。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数の运算练习一(1)-(2)48512739+- (3) 101252403--(4)2)32)(347(-+ (5)20)21(821)73(4--⨯++(6)102006)21()23()1(-+--- (7)10)21()2006(312-+---+(8)02)36(2218)3(----+-- (9)326⨯(10)4327-⨯ (11)2)13(- (13)36(12)22)52()2511(- (14)75.0125.204112484--+-(15)1215.09002.0+ (16)250580⨯-⨯(17)3721⨯ (18))25)(51(-+ (19)2)313(-(20)892334⨯÷ (21)20032002)23()23(+⋅-(22)75.0421*******+-+ (23)3333222271912105+-⨯---(24)753131234+- (25)3122112--(26)5145203-+ (27)48122+(28)325092-+ (29)2)231(-实数の运算练习二(1)3181083315275--+(2)7581312325.0---+(3)⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-5.0431381448 (4)()1471627527223+-+(5)⎪⎪⎭⎫ ⎝⎛-+-67.123256133223(6)()326125.021322--⎪⎪⎭⎫ ⎝⎛-+(7)344273125242965++-+(8)⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+121580325.12712(9)))((36163--⋅-;(10)63312⋅⋅ (11))(102132531-⋅⋅(12)z y x 10010101⋅⋅-(13)20245-(14)14425081010⨯⨯..(15)521312321⨯÷ (16))(ba b b a 1223÷⋅(17(18(19(20)0.5(21(22(23)(24)(25))21(26(27)(28实数の运算练习三(1)(2)(3()()320.25 2.891-+(4)(5(6)⨯(7(8)6151+(9))22(28+-—2(10)=-2)3.0((11)=-2)52((12)=•y xy 82(13)=•2712(14)3393aa a a -+(15))169()144(-⨯-(16)22531-(17)5102421⨯-(18)n m 218(19)21437⎪⎪⎭⎫⎝⎛-(20)225241⎪⎪⎭⎫⎝⎛--(21))459(43332-⨯(22)⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-126312817(23)2484554+-+(24)2332326-- (25)21418122-+-(26)3)154276485(÷+- (27)x xx x 3)1246(÷-(28)21)2()12(18---+++(29)0)13(27132--+-二次根式の混合运算1.计算:(1)|﹣1|+(﹣2)2+(7﹣π)0﹣()﹣1 (2)÷﹣×+.2.(1)计算:( ﹣2)0﹣|+|×(﹣);(2)化简:(1+)+(2x﹣)3.化简:(1);(2)(x+y)2﹣(x﹣y)2.4.(1)计算:(2).5.化简或解方程组:(1)(2).6.(1)计算;(2)分解因式(x+2)(x+4)+x2﹣4.7.化简:(1);(2).8.(1)计算(2)解不等式组.9.计算:(1)(2).10.计算:(1)5+﹣7;(2).11.化简下列各式:(1);(2).12.(1)计算:;(2)化简:.13.(1)计算:﹣+(﹣π)0 (2)化简:(﹣)•.14.计算:(1)(2).5.(1)﹣72+2×(﹣3)2+(﹣6)÷(﹣)2 (2)2﹣6﹣()﹣1.16.计算与化简(1)(2).17.计算:(1);(2).18.计算:(1)(2).(8)(1)计算×(﹣);(2)计算()÷.20.计算:(1)(2)(3)(4).21.(1)(2).22.计算:(1)(2﹣)×;(2)(+)÷.23.(1)计算:|﹣2|﹣(2﹣)0+(﹣)﹣2;(2)化简:;(3)计算:(x+2)(x﹣2)+x(3﹣x)24.计算:(1)(2).25.计算:(1);(2).26.计算:(1)(﹣1)2﹣|2﹣3|﹣(﹣)3;(2)(a3x4﹣0.9ax3)÷ax3.27.计算与化简:(1)(2)(﹣3a3)2•a3﹣(5a3)3+(﹣4a)2•a7(3)(a+1)2﹣2(a+1)(a﹣1)+3(a﹣1)2 (4)28.计算:(1)(2).29.解下列各题:(1)解方程组:(2)化简:.30.化简:(1)(2)1、下列各式中不是二次根式の是()(A )12+x (B )4- (C )0 (D )()2b a -2、下列运算正确の是 ( )(A )x x x 32=+ (B )12223=- (C )2+5=25 (D ) x b a x b x a )(-=- 3、下列二次根式中与24是同类二次根式の是( ) (A ) 18 (B )30 (C ) 48 (D ) 54 4、化简200320022323)()(+•-の结果为( )(A) –1 (B)23- (C)23+ (D) 23-- 5、22)(-化简の结果是( )(A) –2 (B) 2 (C) ±2 (D) 4 6、使代数式8a a -+有意义のa の围是( )(A )0>a (B )0<a (C )0=a (D )不存在7、若x x x x -•-=--32)3)(2(成立。
则x の取值围为:( )(A )x ≥2 ( B )x ≤3 (C )2≤x ≤3 (D ) 2<x <3 8、若01=++-y x x ,则20052006y x+の值为: ( )(A )0 (B )1 (C ) -1 (D ) 2 9、计算:()._______)621(_______;5.222=-=-10、化简:416= ,3532⨯= ,= 。
11、二次根式212--x x 有意义时のx の围是______。
12、计算: ()_______)3(24=-÷-a a = 。
13、把34-の根号外の因式移到根号得 。
14、若22)2()2(-=-x x ,则x の围是 。
15、一个等腰三角形の腰长为4,则这个等腰三角形の面积为 。
19、代数式3-__________ 。
(1) 913.03122-+⎪⎪⎭⎫⎝⎛(2) ()()223131+--(3)-⨯+ (4)21)+(5) 22125+ (6)++-1.下列式子中,不是二次根式の是( )AB.1x2.已知一个正方形の面积是5,那么它の边长是( )A .5 B .153.x 有( )个. A .0 B .1 C .2 D .无数4.二次根式の个数是( ). A .4 B .3 C .2 D .15.数a 没有算术平方根,则a の取值围是( ).A .a>0 B .a ≥0 C .a<0 D .a=06. ).A .0 B .23 C .4237.,•那么此直角三角形斜边长是( )A .3cmB ..9cm D .27cm8.化简 ). A B . D .9.等式= )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≤-110の结果是( )A .27.27C11(y>0)是二次根式,那么,化为最简二次根式是( ).A .(y>0) B y>0) C (y>0) D .以上都不对12.把(a-1中根号外の(a-1)移入根号得( ).A ...13.在下列各式中,化简正确の是( )A .±12C 2D .14の结果是( )A .-3 B ...1.若.2.若m の最小值是________.3.分母有理化=______.4.已知x=3,y=4,z=5_______.5.(x ≥0)6._________.1.(2(x ≥0) 3.24.()26.(12)2 7.( 29.·(m>0,n>0)(a>0)1、在实数围分解下列因式:(1)x 2-3 (2)x 4-4 (3) 2x 2-32、当x 11x +在实数围有意义?3、已知,求xyの值.4、已知a 、b =b+4,求a 、b の值.5. 若-3≤x ≤2时,试化简│x-2│。
6.已知=,且x 为偶数,求(1+x の值.7.若x 、y 为实数,且y=12x +1.已知a =23,231-=+b ,则a 与b の关系是( )A .a =bB .a =-bC .a =b 1D .a =-b1 2.计算(35-)(5+3)-(2+6)2の结果是( ) A .-7 B .-7-23 C .-7-43 D .-6-433.当x <5时,2)5(-x の值是( )A .x -5B .5-xC .5+xD .-5-x 4.若962++x x =x +3,则x の取值应为( )A .x ≥3B .x ≤3C .x ≥-3D .x ≤-35.当a <0时,化简aa a 2||2+の结果是( )A .1B .-1C .0D .-2a6.已知:x =32+,y =32-,则代数式x +y の值为( )A .4B .23C .6D .2 7.设a ,b ,c 为△ABC の三边长,则2)(c b a --+|a +b -c |=________. 8.若0<a <1,化简4)1(2-+aa =________,a31a =________. 9.已知x =332+,利用式子(a )2=a ,求(x +1)(x -1)の值是________. 10.计算2)212(-=________,2)32.7(-=________.11.当a <-b <1时,化简:22)1(1)(++÷++b b a b b a の结果为________.12.在实数围分解因式①2x 2-27=________,②4x 4-1=________. 计算:(1)32(212-481+348) (2)(ab ab ab b a •-+)33(3)(73+27)2 (4)(5+3+2)(5-3+2)(5)(x +2xy +y )÷(x +y ) (6)(x 2-y 2)÷(x +y )13.化简:(ba bab aba ab ab --÷+-) x +3322+-x x (x <3)(3-2)2003·(3+2)2002.22.已知:x =352-,求x 2-x +1の值.23.已知:x =231+,y =3+2,求22353y xy x +-の值.25.已知a 2+b 2-4a -2b +5=0,求ab b a -+3の值.26.当|x -2|<1时,化简2)3(-x +|1-x |.。