183全等三角形的判定(一)

合集下载

初二数学上册:全等三角形五大判定方法

初二数学上册:全等三角形五大判定方法

初二数学上册:全等三角形五大判定方法全等三角形5大判定一、边边边(SSS)学习全等三角形判定法则时,第一条就是边边边。

内容:它们的夹角分别相等的两个三角形全等。

理解:若给出三条线段的长度(满足三角形三边关系),即可确定出的三角形形状,大小。

若给出三条线段长度AB=c,BC=a,AC=b,确定过程如下:①先确定一边AB;②分别以AB为圆心,分别做半径为b,a长的圆,交于C点;③最后连接AC,BC。

这样三角形的大小,形状就都被确定出来了。

二、边角边(SAS)内容:两边和它们的夹角分别相等的两个三角形全等。

理解:若确定两条公共端点线段的长度,及它们的夹角,即可确定出的三角形形状,大小。

若给出AB=cBC=a∠B=α,确定过程如下:①画∠EAD=α;②在射线AE上截取AC=c,在射线AD上截取AB=c;③连接BC。

这样,三角形的.大小形状同样被确定了。

三、角边角(ASA)内容:两角和他们的夹边分别相等的两个三角形全等。

理解:若给出三角形的两个角的大小和它们的夹边的长度了,即可确定出的三角形形状,大小。

若有AB=c,∠CAB=α,∠CBA=β,确定过程如下:①先确定一边AB=c;②在AB同旁画∠DAB=α,∠EBA=β,AD,BE 交于点C。

这样,三角形的大小形状同样被确定了。

四、角角边(AAS)内容:两边分别相等且其中一组等角的对边相等的两个三角形全等。

理解:若给出三角形的两个角的大小和其中一个角对边的长度了,即可确定出的三角形形状,大小。

若有AB=c,∠CAB=α,∠ACB=β,确定过程如下:由三角形的内角和为180度可得出剩下一角∠CBA的度数,这样,利用角边角的思路即可确定三角形形状大小。

相关定理:三角形内角和为180度五、斜边,直角边(HL)内容:斜边和一条直角边分别相等的两个直角三角形全等。

(HL)理解:若确定一个三角形为直角三角形,同时得到其一个直角边和斜边的长度,即可确定出三角形的形状大小。

判定全等三角形的五种方法

判定全等三角形的五种方法

判定全等三角形的五种方法全等三角形是指具有相同形状和相等边长的三角形。

判定两个三角形是否全等是数学中的一个重要问题。

下面将介绍判定全等三角形的五种方法。

方法一:SSS判定法(边边边)SSS判定法是指通过比较两个三角形的三条边是否相等来判定其是否全等。

如果两个三角形的三条边长度相等,则可以判断它们是全等三角形。

方法二:SAS判定法(边角边)SAS判定法是指通过比较两个三角形的两条边和夹角是否相等来判定其是否全等。

如果两个三角形的一边和夹角分别相等,则可以判断它们是全等三角形。

方法三:ASA判定法(角边角)ASA判定法是指通过比较两个三角形的两个角和夹边是否相等来判定其是否全等。

如果两个三角形的两个角和夹边分别相等,则可以判断它们是全等三角形。

方法四:AAS判定法(角角边)AAS判定法是指通过比较两个三角形的两个角和非夹边的对应边是否相等来判定其是否全等。

如果两个三角形的两个角和非夹边的对应边分别相等,则可以判断它们是全等三角形。

方法五:HL判定法(斜边和直角边)HL判定法是指通过比较两个直角三角形的斜边和直角边是否相等来判定其是否全等。

如果两个直角三角形的斜边和直角边分别相等,则可以判断它们是全等三角形。

通过以上五种方法,我们可以准确地判定两个三角形是否全等。

这些方法都是基于几何学中的一些定理和公理推导而来,经过严谨的数学证明,可以确保判定结果的准确性。

需要注意的是,在判定全等三角形时,我们需要确保给定的条件足够,即要求已知的边长、角度等信息能够满足相应的判定条件。

如果给定的信息不足够,或者不满足判定条件,那么就无法准确地判定两个三角形是否全等。

判定全等三角形的方法还可以用于解决一些实际问题,例如在建筑设计、图形测量等领域。

通过判定三角形是否全等,可以确保设计和测量的准确性,提高工作效率。

总结起来,判定全等三角形的五种方法分别是SSS判定法、SAS判定法、ASA判定法、AAS判定法和HL判定法。

这些方法都是基于几何学中的定理和公理推导而来,通过比较边长、角度等信息,可以准确地判定两个三角形是否全等。

12.2 全等三角形的判定第1课时(课件)-八年级上册(人教版)

12.2 全等三角形的判定第1课时(课件)-八年级上册(人教版)

想一想:
已知△ABC ≌△ A′B′ C′,找出其中相等的边与角:
A
A′
B
AB =A′B′ ∠A =∠A′
C B′
BC =B′C′ ∠B =∠B′
C′
AC =A′C′
∠C =∠C′
思考:满足这六个条件可以保证△ABC≌△A′B′C′吗?
• 学习目标: 1.通过三角形的稳定性,体验三角形全等的 “边边边”条件. 2.会运用“边边边”定理判定两个三角形的 全等.
∴△AEB ≌ △ADC (SSS).
2.已知AC=FE,BC=DE,点A,D,B,F在一条直线上,
AD=FB(如图),要用“边边边”证明△ABC ≌△ FDE,
除了已知中的AC=FE,BC=DE以外,还应该有什么条件?
怎样才能得到这个条件? 【解析】要证明△ABC ≌△FDE,还 应该有AB=FD这个条件. ∵DB是AB与DF的公共部分,且 AD=FB, ∴AD+DB=BF+DB,即AB=FD.
判定两个三角形全等:
三边对应相等的两个三角形全等.简写为
“边边边”或“SSS”.
课后练习
A
1.如图,AB=AC,AE=AD,BD=CE,
求证:△AEB ≌ △ ADC.
B ED C
【证明】在△∵BADEB=和CE△,A∴DBCD中-,ED=CE-ED,即BE=CD.
AB=AC,
AE=AD,
BE=CD,
解:作图如图所示:
作法:(1)以点O为圆心,任 意长为半径画弧,分别交OA, OB于点D,E; (2)以点C为圆心,OD长为半 径画弧,交OB于点F; (3)以点F为圆心,DE长为半 径画弧,与第2步中所画的弧相 交于点P ; (4)过C,P两点作直线,直线 CP即为要求作的直线.

全等三角形的判定方法五种的证明

全等三角形的判定方法五种的证明

全等三角形的判定方法五种的证明全文共四篇示例,供读者参考第一篇示例:全等三角形(即三角形的所有对应边和角都相等)在几何学中具有重要意义,因为它们有着很多共性特征和性质。

在实际问题中,我们常常需要判定两个三角形是否全等,以便解决一些几何问题。

下面我们将介绍五种判定方法,并给出它们的证明。

一、SSS法则(边边边全等)首先我们来介绍SSS法则,即如果两个三角形的三条边分别相等,则这两个三角形全等。

设有两个三角形ABC和DEF,已知AB=DE,AC=DF,BC=EF。

我们要证明三角形ABC全等于三角形DEF。

【证明过程】由已知条件可知,三角形ABC和三角形DEF的三边分别相等。

所以可以得到以下对应关系:AB=DEAC=DFBC=EF三角形的两边之和大于第三边,所以我们有以下结论:AB+AC>BCDE+DF>EF由于AB=DE,AC=DF,BC=EF,所以根据上述两个不等式可得:AB+AC>BCAB+AC>BC所以三角形ABC与三角形DEF全等。

由于∠C=∠F,所以我们有以下结论:∠A+∠C+∠B=180°∠A+∠F+∠E=180°由于∠C=∠F,所以可以将两个等式相减,得到:∠B-∠E=0∠B=∠E四、HL法则(斜边-直角-斜边全等)由于∠A=∠D,∠B=∠E,所以可以使用AA法则证明三角形ABC 与三角形DEF全等。

我们介绍了五种全等三角形的判定方法以及它们的证明。

这些方法在解决几何问题中起着至关重要的作用,希望大家能够掌握并灵活运用这些方法。

如果遇到类似的题目,可以根据不同情况灵活选择合适的方法来判定三角形的全等关系。

通过不断练习和思考,相信大家能够在几何学习中取得更好的成绩。

【2000字】第二篇示例:全等三角形是指具有完全相同的三边和三角形的一种特殊情况。

在几何学中,全等三角形之间具有一些特殊的性质和关系。

正确判断两个三角形是否全等是解决几何问题的关键。

全等三角形判定ppt课件

全等三角形判定ppt课件

若两个三角形全等,则它们的周长也 相等。
对应角相等
在全等三角形中,任意两个对应 的角都相等。
若两个三角形全等,则它们的内 角和也相等,且均为180度。
可以通过测量两个三角形的三个 内角来判断它们是否全等。
面积相等
若两个三角形全等,则它们的面积也相等。 可以通过计算两个三角形的面积来判断它们是否全等。
1 2
定义
两边和它们的夹角分别相等的两个三角形全等。
图形语言
若a=a',∠B=∠B',b=b',则⊿ABC≌⊿A'B'C'。
3
符号语言
∵a=a',∠B=∠B',b=b',∴⊿ABC≌⊿A'B'C'( SAS)。
角边角判定法(ASA)
01
02
03
定义
两角和它们的夹边分别相 等的两个三角形全等。
图形语言
实例1
证明两个三角形全等并求出未知 边长
实例2
利用全等三角形判定方法证明两个 四边形面积相等
实例3
利用全等三角形判定方法解决一个 实际问题,如测量一个不可直接测 量的距离
06
总结与展望
判定全等三角形的方法总结
三边分别相等的两个三角形全等。这是最基本的判定 方法,通过比较三角形的三边长度来确定两个三角形
证明过程
可以通过AAS(角角边)全等条件进行证明,即 如果两个三角形有两个角和其中一个角的对边分 别相等,则这两个三角形全等。这也是一种常用 的全等三角形判定方法。
实际应用举例
在实际应用中,角角边判定法常用于解决与角度 和边长有关的问题。例如,在建筑设计中,如果 需要确保两个建筑结构的角度和边长完全相等, 就可以利用角角边判定法来进行验证。

全等三角形的判定课件

全等三角形的判定课件

全等三角形的判定课件全等三角形是初中数学中的重要概念,其判定方法是解决相关几何问题的关键。

本课件将详细介绍全等三角形的判定方法,帮助同学们深入理解并熟练运用。

一、全等三角形的定义两个能够完全重合的三角形叫做全等三角形。

完全重合意味着它们的形状和大小完全相同,对应边相等,对应角也相等。

二、全等三角形的性质1、全等三角形的对应边相等。

例如,若△ABC≌△DEF,则 AB = DE,BC = EF,AC = DF。

2、全等三角形的对应角相等。

比如,△ABC≌△DEF,则∠A =∠D,∠B =∠E,∠C =∠F。

3、全等三角形的周长相等。

因为对应边相等,所以周长也相等。

4、全等三角形的面积相等。

形状大小完全相同,面积自然相等。

三、全等三角形的判定方法1、“边边边”(SSS)三边对应相等的两个三角形全等。

举例说明:在△ABC 和△DEF 中,如果 AB = DE,BC = EF,AC = DF,那么△ABC≌△DEF。

证明思路:通过构建三角形的框架,三边确定了,三角形的形状和大小也就唯一确定了。

2、“边角边”(SAS)两边和它们的夹角对应相等的两个三角形全等。

例如:在△ABC 和△DEF 中,若 AB = DE,∠A =∠D,AC =DF,则△ABC≌△DEF。

证明要点:夹角确定了三角形的形状,两边确定了三角形的大小。

3、“角边角”(ASA)两角和它们的夹边对应相等的两个三角形全等。

比如:在△ABC 和△DEF 中,若∠A =∠D,AB = DE,∠B =∠E,则△ABC≌△DEF。

证明关键:夹边和两角共同确定了三角形的形状和大小。

4、“角角边”(AAS)两角和其中一个角的对边对应相等的两个三角形全等。

举例:在△ABC 和△DEF 中,若∠A =∠D,∠B =∠E,BC =EF,则△ABC≌△DEF。

证明方法:通过三角形内角和定理,可以将“角角边”转化为“角边角”来证明。

5、直角三角形的特殊判定方法“斜边、直角边”(HL)斜边和一条直角边对应相等的两个直角三角形全等。

《三角形全等的判定(第一课时)》课件

(2)给每个学生发一个△ABC, 根据前面的作法, 作出一个 △A′B′C′, 使AB=A′B′、AC=A′C′、BC=B′C′. 将△A′B′C′剪下 ,观察两个三角形能否重合.
三边分别相等的两个三角形全等.(简写成“边边边”或 “SSS”)
知识回顾 问题探究 课堂小结 随堂检测 探究三: 利用三角形全等的判定“SSS”解决问题
【思路点拨】利用等式的性质, 等式两边同时加上FC, 可得BC=FE, 再得△ABC≌△DEF, 最后由全等三角形的性质解决问题.
知识回顾 问题探究 课堂小结 随堂检测 探究三: 利用三角形全等的判定“SSS”解决问题
练习 如图, AB=AD, CB=CD, ∠B=30° , ∠BAD=48°, 则
一条边和一个角相等、两个角相等、两条边相等 操作: (1)让学生画一个一边长为3cm,一个角为30°的三角形,画好 后剪下来看与同桌的三角形能否重合? (2)让学生画一个两个角分别为30°和50°的三角形,画好后剪 下来看与同桌的三角形能否重合? (3)让学生画一个两边分别为3cm和5cm的三角形, 画好后剪下 来看与同桌的三角形能否重合.
例5 如图, 已知∠AOB, 利用直尺和圆规作∠A′O′B′=∠AOB,
并说明为什么这样做出来的∠A′O′B′和∠AOB是相等的?
【解题过程】 作法: 1.以点O为圆心,适当长为半径作弧交OA、OB于点C.D. 2.作任一射线O′A′, 以点O′为圆心,以OC长为半径作弧交O A′于点C′. 3.以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相 交于D′. 4.过点D′画射线O′B′,则∠A′O′B′=∠AOB.
∴△ABD≌△ACD (SSS).
【思路点拨】 中点的性质和公共边, 注意 证全等三角形的规范书写. 【数学思想】数形结合思想.

12.2三角形全等的判定(一)(SSS、SAS)(原卷版)

八年级上册数学《第十二章 全等三角形》1.2.2 三角形全等的判定(一)“边边边”与“边角边”◆利用“SSS ”判定两个三角形全等文字语言:三边分别相等的两个三角形全等,简写为“边边边”或“SSS”.几何语言:在△ABC 和△DEF 中,AB =DE BC =EF CA =FD∴△ABC ≌△DEF (SSS).◆利用“SAS ”判定两个三角形全等1、文字语言:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”.2、几何语言:在△ABC 和△DEF 中,AB =DE ∠B =∠E BC =EF∴△ABC ≌△DEF (SSS).3、方法:(1)已知两边,可以找“夹角”;(2)已知一角和这角的一夹边,可找这角的另一夹边【注意】1. 有两边和其中一边的对角对应相等的两个三角形不一定全等.2. 说明两三角形全等所需的条件应按对应边的顺序书写.3. 结论中所出现的边必须在所证明的两个三角形中.【例题1】如图,△ABC 中,AB =AC ,EB =EC ,则由“SSS ”可以判定( )A.△ABE≌△ACE B.△ABD≌△ACDC.△BDE≌△CDE D.以上答案都不对【变式1-1】如图,在△ACE和△BDF中,AE=BF,CE=DF,要利用“SSS”证明△ACE≌△BDF,需添加的一个条件可以是( )A.AB=BC B.DC=BC C.AB=CD D.以上都不对【变式1-2】下列四个三角形中,与图中的△ABC全等的是( )A.B.C .D .【变式1-3】如图,已知点A 、D 、B 、F 在一条直线上,AC =EF ,AD =FB ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是( )A .AC ∥EFB .∠E =∠C C .∠ABC =∠FDED .AB =DF【变式1-4】如图,已知∠1=∠2,若用“SAS ”证明△BDA ≌△ACB ,还需加上条件( )A .AD =BCB .BD =AC C .∠D =∠C D .OA =OB【例题2】如图,已知点B ,C ,D ,E 在同一直线上,且AB =AE ,AC =AD ,BD =CE .求证:△ABC ≌△AED.【变式2-1】(2023•云南)如图,C是BD的中点,AB=ED,AC=EC.求证:△ABC≌△EDC.【变式2-2】如图,AB=DE,AC=DF,BF=EC,△ABC和△DEF全等吗?请说明理由.【变式2-3】(2023•永善县三模)如图,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.【例题3】11.(2018秋•庆云县校级月考)请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 .【变式3-1】小聪在用直尺和圆规作一个角等于已知角时,具体过程是这样的:已知:∠AOB .求作:∠A ′O ′B ′,使∠A ′O ′B ′=∠AOB .作法:(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)画一条射线O ′A ′,以点O ′为圆心,OC 长为半径画弧,交O ′A ′于点C ′;(3)以点C '为圆心,CD 长为半径画弧,与第(2)步中所画的弧相交于点D ′;(4)过点D '画射线O ′B ′,则∠A ′O ′B ′=∠AOB .小聪作法正确的理由是( )A .由SSS 可得△O ′C ′D′≌△OCD ,进而可证∠A ′O ′B ′=∠AOBB .由SAS 可得△O ′C ′D ′≌△OCD ,进而可证∠A ′O ′B ′=∠AOBC .由ASA 可得△O ′C ′D ′≌△OCD ,进而可证∠A ′O ′B ′=∠AOBD .由“等边对等角”可得∠A ′O ′B ′=∠AOB【变式3-2】(2023春•白银期中)已知∠AOB ,点C 是OB 边上的一点.用尺规作图画出经过点C 与OA 平行的直线.【变式3-3】如图,以△ABC 的顶点A 为圆心,以BC 长为半径作弧,再以顶点C 为圆心,以AB 长为半径作弧,两弧交于点D ;连接AD 、CD ,若∠B =56°,则∠ADC 的大小为 度.【例题4】(2023•官渡区一模)如图,点A ,B ,C ,D 在同一直线上,AF =DE ,∠A =∠D ,AC =DB .求证:△ABF ≌△DCE.【变式4-1】(2023•从化区二模)为了制作燕子风筝,燕子风筝的骨架图如图所示,AB=AE,AC=AD,∠BAD=∠EAC,证明:△ABC≌△AED.【变式4-2】(2023•祥云县模拟)已知:如图,点F、C在线段BE上,AB=DE,∠B=∠E,BF=EC,求证:△ABC≌△DEF.【变式4-3】(2023•乾安县四模)已知:如图,BA=BD,BE=BC,∠ABD=∠CBE,求证:△ABE≌△DBC.【变式4-4】(2023•宁江区二模)如图,△ABC 中,D 是BC 延长线上一点,满足CD =AB ,过点C 作CE ∥AB 且CE =BC ,连接DE 并延长,分别交AC 、AB 于点F 、G ,求证:△ABC ≌△DCE .【变式4-5】(2023•五华区校级模拟)如图,已知AB ∥DE ,AB =DE ,AF =DC .求证:△ABC ≌△DEF .【例题5】如图,点D 在AB 上,点E 在AC 上,CD 与BE 相交于点O ,且AD =AE ,∠B =∠C ,若BE =4,则CD =  .【变式5-1】(2022春•成华区期末)如图,在等腰△ABC 中,∠ACB =90°,点D 是AC 的中点,过点A 作直线BD 的垂线交BC 的延长线于点E ,若BC =4,则CE 的长为 .【变式5-2】茗茗用同种材料制成的金属框架如图所示,已知∠B =∠E ,AB =DE ,BF =EC ,其中△ABC 的周长为24cm ,CF =3cm ,则制成整个金属框架所需这种材料的长度为 cm .【变式5-3】(2023•青海一模)在△ABC 中,D 是BC 边的中点,若AB =9,AC =5,则△ABC 的中线AD 长的取值范围是( )A .5<AD <9B .4<AD <9C .2<AD <14D .2<AD <7【例题6】如图,已知OA =OB ,OC =OD ,∠O =50°,∠D=35°,则∠OBC =( )A.95°B.120°C.50°D.105°【变式6-1】(2022春•福山区期中)如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.(1)求证:∠D=∠2;(2)若EF∥AC,∠D=76°,求∠BAC的度数.【变式6-2】(2023春•青羊区期末)如图在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=40°,求∠DEC的度数.【变式6-3】(2022秋•湟中区校级期末)如图,在△ABC中,D为AB上一点,E为AC中点,连接DE 并延长至点F,使得EF=ED,连CF.(1)求证:CF∥AB(2)若∠ABC=50°,连接BE,BE平分∠ABC,AC平分∠BCF,求∠A的度数.【例题7】(2022秋•甘井子区校级月考)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BF =CE,试判断AB和DE的关系,并说明理由.【变式7-1】(2023春•罗湖区校级期末)已知:如图,点A、F、C、D在同一直线上,AF=DC,AB=DE,AB∥DE,连接BC,BF,CE.求证:(1)△ABC≌△DEF;(2)BC∥EF.【变式7-2】(2023春•萍乡期末)如图,已知:AB⊥BD,ED⊥BD,AB=CD,BC=DE,那么AC与CE 有什么关系?写出你的猜想并说明理由.【变式7-3】如图,在△ABC中,D为AB的中点,F为BC上一点,DF∥AC,延长FD至E,且DE=DF,联结AE、AF.(1)求证:∠E=∠C;(2)如果DF平分∠AFB,求证:AC⊥AB.【例题8】如图,AC =DC ,BC =EC ,请你添加一个适当的条件: ,使得△ABC ≌△DEC .【变式8-1】如图,已知在△ABC 和△DEF 中,∠B =∠E ,BF =CE ,点B 、F 、C 、E 在同一条直线上,若使△ABC ≌△DEF ,则还需添加的一个条件是 (只填一个即可).【变式8-2】如图,AB =AE ,AC=AD,要使△ABC ≌△AED ,应添加一个条件是 .【变式8-3】问题:如图,在△ABC 和△DEF 中,B ,E ,C ,F 在同一条直线上,AB =DE ,若 .求证:△ABC ≌△DEF .在①AC =DF ,②∠ABC =∠DEF ,③BE =CF 这三个条件中选择其中两个,补充在上面的问题中,并完成解答.【例题9】(2022春•包头期末)如图,已知点A ,C 在线段BD 两侧,AB =AD ,CB =CD ,线段AC ,BD 相交A 于点O .下列结论:①∠ABC =∠ADC ;②AC ⊥BD ;③AC 平分∠BAD ;④OB =OD .其中正确的是  (填写所有正确结论的序号).【变式9-1】(2023•禅城区校级一模)如图,已知AB=AC,AD=AE,∠BAC=∠DAE,且B、D、E三点共线,(1)证明:△ABD≌△ACE;(2)证明:∠3=∠1+∠2.【变式9-2】(2022春•沙坪坝区校级期中)如图,点C在线段AB上,AD∥BE,AC=BE,AD=BC,CF 平分∠DCE.求证:△DCF≌△ECF【变式9-3】(2023春•浦东新区校级期末)如图,已知AB=AE,AC=AD,∠BAD=∠EAC,AD∥BC.(1)△ADE与△ACB是否全等?说明理由;(2)如果∠B=30°,∠D=40°,求∠BAE的度数.【变式9-4】(2022秋•自流井区校级期末)如图,在△ABC和△ADE中,AB=AD,AC=AE,∠1=∠2,AD、BC相交于点F.(1)求证:∠B=∠D;(2)若AB∥DE,AE=3,DE=4,求△ACF的周长.【变式9-5】如图,AD=CB,E、F是AC上两动点,且有DE=BF.(1)若点E、F运动至如图(1)所示的位置,且有AF=CE,求证:△ADE≌△CBF;(2)若点E、F运动至如图(2)所示的位置,仍有AF=CE,则△ADE≌△CBF还成立吗?为什么?(3)若点E、F不重合,则AD和CB平行吗?请说明理由.。

全等三角形的判定方法公式

全等三角形的判定方法公式好嘞,今天咱们来聊聊全等三角形的判定方法。

什么是全等三角形呢?就是那种形状和大小完全一样的三角形,放在一起就像双胞胎一样,谁也分不出哪一个是哪个。

要想判定两个三角形是不是全等的,咱们得有几条“铁律”,听起来可能有点复杂,但其实就像做菜,只要掌握了调料,味道自然好。

现在,咱们就来看看这些判定方法,绝对让你大开眼界!第一条,边边边法,听起来是不是很直白?对,就是边长都相等的意思。

比如说,有两个三角形,一个是三角形ABC,另一个是三角形DEF。

如果AB=DE,BC=EF,CA=FD,那就恭喜你,两个三角形是全等的,跟拿着尺子量出来的一模一样。

想象一下,两个三角形在那儿比拼,边长一个比一个长,最后发现居然一模一样,简直就是老天爷的杰作啊!所以,这个方法就像找到了宝藏一样,让你瞬间明白谁是谁。

咱们说说边角边法。

这里的意思是,有两个边相等,还要夹着的那个角也要相等。

比方说,三角形ABC和三角形DEF,AB=DE,AC=DF,且∠A=∠D,哇哦,那这两个三角形也是全等的。

想想,两个朋友在比拼他们的三角形,结果发现,不光边长一样,夹着的角也没差,简直太有趣了,像是两个人穿着一模一样的衣服,真是让人忍不住想笑。

然后,咱们再来看角边角法。

这个名字听起来有点拗口,其实说的就是有一个边相等,而这个边的两边角也相等。

假设三角形ABC和三角形DEF,∠A=∠D,AB=DE,∠B=∠E,那这两个家伙也是全等的!想象一下,他们在那儿比拼,互相一照镜子,发现不仅边一样,角也一样,真是太有意思了,像是演了一出戏,台词都不用改。

咱们说说斜边直角三角形法,专门针对那些直角三角形。

如果两个直角三角形的斜边相等,而且一条直角边也相等,那这两个三角形就全等了。

比如,三角形ABC和三角形DEF都是直角三角形,且AB=DE,AC=DF,斜边BC=EF,那绝对是全等的,简直像两个兄弟,没什么好争的。

咱们得提提,以上这些判定方法,听起来简单,可实际操作的时候,得小心谨慎,别掉了链子哦。

三角形全等的判定“角边角与角角边”(6种题型)-2023年新八年级数学题型(人教版)(解析版)

三角形全等的判定“角边角与角角边”(6种题型)【知识梳理】一、全等三角形判定——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .二、全等三角形判定——“角角边” 1.全等三角形判定——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.【考点剖析】题型一:用“角边角”直接证明三角形全等例1.如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O .求证:△AEC ≌△BED ;【详解】∵AE 和BD 相交于点O ,∴∠AOD=∠BOE .在△AOD 和△BOE 中,∠A=∠B ,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC=∠BED .在△AEC 和△BED 中,A B AE BEAEC BED ∠∠⎧⎪⎨⎪∠∠⎩===∴△AEC ≌△BED (ASA ).【变式1】如图,AB =AD ,∠1,DA 平分∠BDE .求证:△ABC ≌△ADE .【解答】证明:∵∠1=∠2,∴∠1+∠DAC =∠2+∠DAC ,∴∠BAC =∠DAE ,∵AB =AD ,∴∠ADB =∠B ,∵DA 平分∠BDE .∴∠ADE =∠ADB ,∴∠ADE =∠B ,在△ABC和△ADE中,{∠ADE=∠B AB=AD∠BAC=∠DAE,∴△ABC≌△ADE(ASA).【变式2】如图,已知∠1=∠2,∠3=∠4,要证BC=CD,证明中判定两个三角形全等的依据是()A.角角角B.角边角C.边角边D.角角边【分析】已知两角对应相等,且有一公共边,利用全等三角形的判定定理进行推理即可.【解答】解:在△ABC与△ADC中,{∠1=∠2 AC=AC∠3=∠4,则△ABC≌△ADC(ASA).∴BC=CD.故选:B.【变式3】(2022•长安区一模)已知:点B、E、C、F在一条直线上,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.【解答】证明:∵AB∥DE,∴∠B=∠DEF,∵AC∥DF,∴∠ACB=∠F,∵BE=CF,∴BE+EC=CF+EC,即BC =EF ,在△ABC 和△DEF 中,{∠B =∠DEFBC =EF ∠ACB =∠F,∴△ABC ≌△DEF (ASA ). 题型二:用“角边角”间接证明三角形全等例2.如图,已知AB ∥CD ,AB =CD ,∠A =∠D .求证:AF =DE .【详解】证明:∵AB //CD ,∴∠B =∠C ,在△ABF 和△DCE 中,A D AB CD BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF ≌△DCE (ASA ),∴AF =DE .【变式1】已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【变式2】如图,AB =AC ,AB ⊥AC ,AD ⊥AE ,且∠ABD =∠ACE .求证:BD =CE .【详解】∵AB ⊥AC ,AD ⊥AE ,∴∠BAE +∠CAE =90°,∠BAE +∠BAD =90°,∴∠CAE =∠BAD .又AB =AC ,∠ABD =∠ACE ,∴△ABD ≌△ACE (ASA ).∴BD =CE .【变式3】如图,要测量河两岸相对两点A 、B 间的距离,在河岸BM 上截取BC =CD ,作ED ⊥BD 交AC 的延长线于点E ,垂足为点D .(DE ≠CD )(1)线段 的长度就是A 、B 两点间的距离(2)请说明(1)成立的理由.【解答】解:(1)线段DE 的长度就是A 、B 两点间的距离;故答案为:DE ;(2)∵AB ⊥BC ,DE ⊥BD∴∠ABC =∠EDC =90°又∵∠ACB =∠DCE ,BC =CD∴△ABC ≌△CDE (ASA )∴AB =DE .【变式4】如图,G 是线段AB 上一点,AC 和DG 相交于点E.请先作出∠ABC 的平分线BF ,交AC 于点F ;然后证明:当AD∥BC,AD =BC ,∠ABC=2∠ADG 时,DE =BF.【答案与解析】证明: ∵AD∥BC,∴∠DAC=∠C∵BF 平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中 ⎪⎩⎪⎨⎧∠=∠=∠=∠C DAC BCAD CBF ADG ∴△DAE≌△BCF(ASA )∴DE=BF【变式5】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA )∴PM =HN【变式6】如图,已知224m ABC S =△,AD 平分BAC ∠,且AD BD ⊥于点D ,则ADC S =△________2m .【答案】12【详解】解:如图,延长BD 交AC 于点E ,∵AD 平分BAC ∠,AD BD ⊥,∴BAD EAD ∠=∠,90ADB ADE ∠=∠=︒.∵AD AD =,∴()ADB ADE ASA ≌.∴BD DE =.∴ABD AED S S =△△,BCD ECD S S =. ∴12ABD BCD AED ECD ABC S S S S S =++=△△△△△.即12ADC ABC S S =.∵224m ABC S =△,∴212m ADC S =△.故答案为:12.【变式7】(2022秋•苏州期中)如图,△ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE ∥CF .(1)求证:△BDE ≌△CDF ;(2)若AE =13,AF =7,试求DE 的长.【解答】(1)证明:∵AD 是BC 边上的中线,∴BD =CD ,∵BE ∥CF ,∴∠DBE =∠DCF ,在△BDE 和△CDF 中,,∴△BDE ≌△CDF (ASA );(2)解:∵AE =13,AF =7,∴EF =AE ﹣AF =13﹣7=6,∵△BDE ≌△CDF ,∴DE =DF ,∵DE +DF =EF =6,∴DE =3.题型三:用“角角边”直接证明三角形全等例3.如图,在四边形ABCD中,E是对角线AC上一点,AD∥BC,∠ADC=∠ACD,∠CED+∠B=180°.求证:△ADE≌△CAB.【解答】证明:∵∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠DAE=∠ACB,∵∠CED+∠B=180°,∠CED+∠AED=180°,∴∠AED=∠B,在△ADE与△CAB中,{∠DAE=∠ACB ∠AED=∠BAD=AC,∴△ADE≌△CAB(AAS).【变式】(202210块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC 和△CEB 中,∴△ADC ≌△CEB (AAS ); (2)解:由题意得:AD =2×3=6(cm ),BE =7×2=14(cm ),∵△ADC ≌△CEB ,∴EC =AD =6cm ,DC =BE =14cm ,∴DE =DC +CE =20(cm ),答:两堵木墙之间的距离为20cm .题型四:用“角角边”间接证明三角形全等例4、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【变式】已知:如图,90ACB ∠=︒,AC BC =,CD 是经过点C 的一条直线,过点A 、B 分别作AE CD ⊥、 BF CD ⊥,垂足为E 、F ,求证:CE BF =.【答案与解析】证明:∵ CD AE ⊥,CD BF ⊥∴︒=∠=∠90BFC AEC∴︒=∠+∠90B BCF∵,90︒=∠ACB∴︒=∠+∠90ACF BCF∴B ACF ∠=∠在BCF ∆和CAE ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠BC AC B ACE BFC AEC∴BCF ∆≌CAE ∆(AAS )∴BF CE =【总结升华】要证BF CE =,只需证含有这两个线段的BCF ∆≌CAE ∆.同角的余角相等是找角等的好方法.题型五:“边角边”与“角角边”综合应用例5.如图,120CAB ABD ∠+∠=AD 、BC 分别平分CAB ∠、ABD ∠,AD 与BC 交于点O .(1)求AOB ∠的度数;(2)说明AB AC BD =+的理由.【答案】(1)120°;(2)见解析【详解】解:(1)∵AD ,BC 分别平分∠CAB 和∠ABD ,∠CAB +∠ABD =120°,∴∠OAB +∠OBA =60°,∴∠AOB =180°-60°=120°;(2)在AB 上截取AE =AC ,∵∠CAO=∠EAO,AO=AO,∴△AOC≌△AOE(SAS),∴∠C=∠AEO,∵∠C+∠D=(180°-∠CAB-∠ABC)+(180°-∠ABD-∠BAD)=180°,∴∠AEO+∠D=180°,∵∠AEO+∠BEO=180°,∴∠BEO=∠D,又∠EBO=∠DBO,BO=BO,∴△OBE≌△OBD(AAS),∴BD=BE,又AC=AE,∴AC+BD=AE+BE=A B.【变式】如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.【答案】(1)①证明见解析;②证明见解析;(2)DE=AD-BE,证明见解析.【详解】解:(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC 和△CEB 中,CDA BEC DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS ).②证明:由(1)知:△ADC ≌△CEB ,∴AD =CE ,CD =BE ,∵DC +CE =DE ,∴AD +BE =DE .(2)成立.证明:∵BE ⊥EC ,AD ⊥CE ,∴∠ADC =∠BEC =90°,∴∠EBC +∠ECB =90°,∵∠ACB =90°,∴∠ECB +∠ACE =90°,∴∠ACD =∠EBC ,在△ADC 和△CEB 中,ACD CBE ADC BEC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴AD =CE ,CD =BE ,∴DE =EC -CD =AD -BE .题型六:尺规作图——利用角边角或角角边做三角形例6、已知三角形的两角及其夹边,求作这个三角形已知:∠α,∠β和线段c ,如图4-4-21所示.图4-4-21求作:△ABC ,使∠A =∠α,∠B =∠β,AB =c .作法:(1)作∠DAF =∠α;图4-4-224-4-23(2)在射线AF 上截取线段AB =c ;图4-4-24(3)以B 为顶点,以BA 为一边,在AB 的同侧作∠ABE =∠β,BE 交AD 于点C .△ABC 就是所求作的三角形.[点析] 我们这样作出的三角形是唯一的,依据是两角及其夹边分别相等的两个三角形全等. 例7.已知:角α,β和线段a ,如图4-4-29所示,求作:△ABC ,使∠A =∠α,∠B =∠β,BC =a .图4-4-29[解析] 本题所给条件是两角及其中一角的对边,可利用三角形内角和定理求出∠C ,再利用两角夹边作图. 解: 如图4-4-30所示:(1)作∠γ=180°-∠α-∠β;(2)作线段BC =a ;(3)分别以B ,C 为顶点,以BC 为一边作∠CBM =∠β,∠BCN =∠γ;(4)射线BM ,CN 交于点A .△ABC 就是所求作的三角形.图4-4-30【变式】(2022春·陕西·七年级陕西师大附中校考期中)尺规作图已知:α∠,∠β和线段a ,求作ABC ,使A α∠=∠,2B β∠=∠,AB a =.要求:不写作法,保留作图痕迹,标明字母.【详解】解:如图,△ABC即为所求..【过关检测】一、单选题A.带①去B.带②去C.带③去D.①②③都带去【答案】A【分析】根据全等三角形的判定可进行求解【详解】解:第①块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:A.【点睛】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.≌过程中,先作2.(2023春·广东佛山·七年级校考期中)如图,在用尺规作图得到DBC ABCDBC ABC ∠=∠,再作DCB ACB ∠=∠,从而得到DBC ABC ≌,其中运用的三角形全等的判定方法是( )A .SASB .ASAC .AASD .SSS【答案】B 【分析】根据题意分析可得DBC ABC ∠=∠,DCB ACB ∠=∠,再加上公共边BC BC =,根据AAS ,即可判断DBC ABC ≌.【详解】解:∵得DBC ABC ∠=∠, BC BC =,DCB ACB ∠=∠,∴DBC ABC≌()ASA , 故选:B .【点睛】本题考查了作一个角等于已知角,全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.3.(2023春·重庆沙坪坝·七年级重庆一中校考期末)如图,OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥于点M ,点N 是射线OA 上的一个动点,连接PN ,若6PM =,则PN 的长度不可能是( )【答案】D 【分析】如图所示,过点P 作PH OA ⊥于H ,证明POH POM △≌△得到6PH PM ==,由垂线段最短可知PN PH ≥,由此即可得到答案.【详解】解:如图所示,过点P 作PH OA ⊥于H ,∵PM OB ⊥,∴90PHO PMO ==︒∠∠,∵OC 平分AOB ∠,∴POH POM ∠=∠,又∵OP OP =,∴()AAS POH POM △≌△,∴6PH PM ==,由垂线段最短可知PN PH ≥,∵(264036=>,∴6,∴四个选项中,只有D 选项符合题意,故选:D .【点睛】本题主要考查了全等三角形的性质与判定,垂线段最短,实数比较大小,正确作出辅助线构造全等三角形是解题的关键. 4.(2023春·陕西咸阳·七年级统考期末)如图,AD BC ∥,ABC ∠的平分线BP 与BAD ∠的平分线AP 相交于点P ,作PE AB ⊥于点E ,若4PE =,则点P 到AD 与BC 的距离之和为( )A .4B .6C .8D .10【答案】C【分析】如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,先证明AD FG ⊥,由角平分线的定义得到EBP GBP =∠∠,进而证明EBP GBP △≌△得到4PG PE ==,同理可得4PF PE ==,则8FG PF PG =+=,由此即可得到答案.【详解】解:如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,∵AD BC ∥,∴AD FG ⊥,∵PE AB ⊥,∴90PFA PEA PEB PGB ====︒∠∠∠∠,∵BP 平分ABC ∠,∴EBP GBP =∠∠,又∵BP BP =,∴()AAS EBP GBP △≌△,∴4PG PE ==,同理可得4PF PE ==,∴8FG PF PG =+=,∴点P 到AD 与BC 的距离之和为8,故选C .【点睛】本题主要考查了平行线的性质,全等三角形的性质与判定,角平分线的定义,平行线间的距离等等,正确作出辅助线构造全等三角形是解题的关键. 5.(2023春·福建福州·七年级福建省福州第十六中学校考期末)如图,90C ∠=︒,点M 是BC 的中点,DM 平分ADC ∠,且8CB =,则点M 到线段AD 的最小距离为( )A .2B .3C .4D .5【答案】C 【分析】如图所示,过点M 作ME AD ⊥于E ,证明MDE MDC △≌△,得到ME MC =,再根据线段中点的定义得到142ME MC BC ===,根据垂线段最短可知点M 到线段AD 的最小距离为4.【详解】解:如图所示,过点M 作ME AD ⊥于E ,∴90MED C ==︒∠∠,∵DM 平分ADC ∠,∴MDE MDC =∠∠,又∵MD MD =,∴()AAS MDE MDC △≌△,∴ME MC =,∵点M 是BC 的中点,8CB =,∴142ME MC BC ===,∴点M 到线段AD 的最小距离为4,故选:C .【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,垂线段最短等等,正确作出辅助线构造全等三角形是解题的关键.6.(2023·全国·八年级假期作业)如图,点E 在ABC 外部,点D 在ABC 的BC 边上,DE 交AC 于F ,若123∠=∠=∠,AE AC =,则( ).A .ABD AFE △≌△B .AFE ADC ≌△△ C .AFE DFC ≌△△D .ABC ADE △≌△ 【答案】D 【分析】首先根据题意得到BAC DAE ∠=∠,E C ∠=∠,然后根据ASA 证明ABC ADE △≌△.【详解】解:∵12∠=∠,∴12DAC DAC ∠+∠=∠+∠,∴BAC DAE ∠=∠,∵23∠∠=,AFE DFC ∠=∠,∴E C ∠=∠,∴在ABC 和ADE V 中,BAC DAE AC AEC E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABC ADE ≌△△, 故选:D .【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.7.(2023·浙江·八年级假期作业)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块)你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带( )A .带①去B .带②去C .带③去D .①②③都带去【答案】B 【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:①、③、④块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去, 只有第②块有完整的两角及夹边,符合ASA ,满足题目要求的条件,是符合题意的.故选:B .【点睛】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS . 8.(2023春·浙江宁波·七年级校考期末)如图,ABC 的两条高AD 和BF 相交于点E ,8AD BD ==,10AC =,2AE =,则BF 的长为( )A .11.2B .11.5C .12.5D .13【答案】A 【分析】先证明BDE ADC △≌△,可得 6DE DC ==,14BC =,而10AC =,再由等面积法可得答案.【详解】解:∵ABC 的两条高AD 和BF 相交于点E ,∴90ADB ADC BFA ∠=∠=︒=∠,∵AEF BED ∠=∠,∴DBE DAC ∠=∠,∵8AD BD ==,2AE =,∴BDE ADC △≌△,6DE =,∴6DE DC ==,∴14BC =,而10AC =,由等面积法可得:111481022BF ⨯⨯=⨯⨯,解得:11.2BF =;故选A【点睛】本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,等面积法的应用,证明BDE ADC △≌△是解本题的关键. 9.(2023春·辽宁沈阳·七年级沈阳市第一二六中学校考阶段练习)如图,抗日战争期间,为了炸毁敌人的碉堡,需要测出我军阵地与敌人碉堡的距离.我军战士想到一个办法,他先面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部点B ;然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上;最后,他用步测的办法量出自己与E 点的距离,从而推算出我军阵地与敌人碉堡的距离,这里判定ABC DEF ≌△△的理由可以是( )A . SSSB . SASC . ASAD . AAA【答案】C 【分析】根据垂直的定义和全等三角形的判定定理即可得到结论.【详解】解:∵士兵的视线通过帽檐正好落在碉堡的底部点B ,然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上,∴A D ∠=∠,∵AC BC ⊥,DF EF ^,∴90ACB DFE ∠=∠=︒,∵AC DF =,∴判定ABC DEF ≌△△的理由是ASA . 故选C .【点睛】本题主要考查了全等三角形的应用,分析题意找到相等的角和边判定三角形的全等是解题的关键.10.(2023春·四川达州·八年级统考期末)如图,已知BP 是ABC ∠的平分线,AP BP ⊥,若212cm BPC S =△,则ABC 的面积( )A .224cmB .230cmC .236cmD .不能确定【答案】A【分析】延长AP 交BC 于点C ,根据题意,易证()ASA ABP DBP ≌,因为APC △和DPC △同高等底,所以面积相等,根据等量代换便可得出2224cm ABC BPC S S ==.【详解】如图所示,延长AP ,交BC 于点D ,,∵AP BP ⊥,∴90APB DPB ∠=∠=︒,∵BP 是ABC ∠的角平分线,∴ABP DBP ∠=∠,在ABP 和DBP 中,ABP DBP BP BP APB DPB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABP DBP ≌,∴AP DP =,∴ABP DBP S S =△△,∵APC △和DPC △同底等高,∴APC DPC S S =△,∴PBC DPB DPC ABP APC S S S S S =+=+△△△△,∴2224ABC BPC S S cm ==,故选:C .【点睛】本题考查了三角形的角平分线和全等三角形的判定,解题的关键是熟练运用三角形的角平分线和全等三角形的判定.二、填空题 11.(2023·浙江·八年级假期作业)如图,D 在AB 上,E 在AC 上,且B C ∠=∠,补充一个条件______后,可用“AAS ”判断ABE ACD ≌.【答案】BE CD =或AE AD =【分析】由于两个三角形已经具备B C ∠=∠,A A ∠=∠,故要找边的条件,只要不是这两对角的夹边即可.【详解】解:∵B C ∠=∠,A A ∠=∠,∴若用“AAS ”判断ABE ACD ≌,可补充的条件是BE CD =或AE AD =;故答案为:BE CD =或AE AD =.【点睛】本题考查了全等三角形的判定,熟知掌握判定三角形全等的条件是解题的关键.七年级期末)如图,在ABC 中, 【答案】ASA【分析】由AD BC ⊥、AD 平分BAC ∠、AD AD =可得出两个三角形对应的两个角及其夹边相等,于是可以利用ASA 判定这两个三角形全等.【详解】∵AD BC ⊥,∴90BDA CDA ︒=∠=∠.∵AD 平分BAC ∠,∴BAD ∠CAD =∠.在ABD △与ACD 中,BDA CDA AD AD BAD CAD ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABD ACD ≌.故答案为:ASA【点睛】本题考查了三角形全等的判定条件,解题的关键是找到两个三角形对应的边角相等. 13.(2023春·陕西榆林·七年级统考期末)如图,AB CD ⊥,且AB CD =,连接AD ,CE AD ⊥于点E ,BF AD ⊥于点F .若8CE =,5BF =,4EF =,则AD 的长为________.【答案】9【分析】只要证明(AAS)ABF CDE ≌,可得8AF CE ==,5BF DE ==,推出AD AF DF =+即可得出答案.【详解】解:∵AB CD ⊥,CE AD ⊥,BF AD ⊥,∴90AFB CED ∠=∠=︒,90A D ∠+∠=︒,90C D ∠=∠=︒,∴A C ∠=∠,∵AB CD =,∴(AAS)ABF CDE ≌,∴8AF CE ==,5BF DE ==,∵4EF =,∴()8549AD AF DF =+=+−=,故答案为:9.【点睛】本题考查全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 14.(2023春·山东枣庄·七年级统考期末)如图,A ,B 两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF ,且使BF AB ⊥,在BF 上截取BC CD =,过D 点作DE BF ⊥,使E C A ,,在一条直线上,测得16DE =米,则A ,B 之间的距离为______米.【答案】16【分析】根据已知条件可得ABC EDC △≌△,从而得到DE AB =,从而得解.【详解】∵BF AB DE BF ⊥⊥,,∴90B EDC ∠=∠=°,∵90B EDC ∠=∠=,BC CD BCA DCE =∠=∠,,∴()ASA ABC EDC ≌△△,∴DE AB =.又∵16DE =米,∴16AB =米,即A B ,之间的距离为16米.【点睛】此题主要考查全等三角形的应用,解题的关键是熟知全等三角形的判定方法.15.(2023·广东茂名·统考一模)如图,点A 、D 、C 、F 在同一直线上,AB DE ∥,AD CF =,添加一个条件,使ABC DEF ≌△△,这个条件可以是______.(只需写一种情况)【答案】BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =(答案不唯一)【分析】先证明A EDF ∠=∠及AC DF =,然后利用全等三角形的判定定理分析即可得解.【详解】解∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =,理由是∶∵AB DE ∥,∴A EDF ∠=∠,∵AD CF =,∴AD CD CF CD +=+即AC DF =,当BC EF ∥时,有BCA EFD ∠=∠,则() ASA ABC DEF ≌, 当BCA EFD ∠=∠时,则() ASA ABC DEF ≌, 当B E ∠=∠时,则() AAS ABC DEF ≌, 当AB DE =时,则() SAS ABC DEF ≌,故答案为∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =.【点睛】本题考查了对全等三角形的判定定理的应用,掌握全等三角形的判定定理有SAS , ASA , AAS , SSS 是解题的关键. 16.(2023春·上海虹口·七年级上外附中校考期末)如图,有一种简易的测距工具,为了测量地面上的点M 与点O 的距离(两点之间有障碍无法直接测量),在点O 处立竖杆PO ,并将顶端的活动杆PQ 对准点M ,固定活动杆与竖杆的角度后,转动工具至空旷处,标记活动杆的延长线与地面的交点N ,测量点N 与点O 的距离,该距离即为点M 与点O 的距离.此种工具用到了全等三角形的判定,其判定理由是______.【答案】两个角及其夹边对应相等的两个三角形全等【分析】根据全等三角形的判定方法进行分析,即可得到答案.【详解】解:在POM 和PON △中,90OP OPPOM PON ⎪=⎨⎪∠=∠=︒⎩, ()ASA POM PON ∴≌,∴判定理由是两个角及其夹边对应相等的两个三角形全等,故答案为:两个角及其夹边对应相等的两个三角形全等.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题关键.【答案】 = 180BCA α∠+∠=︒【分析】①求出90BEC AFC ∠=∠=︒,CBE ACF ∠=∠,根据AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果;②求出CBE ACF ∠=∠,由AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果.【详解】解:①90BCA ∠=︒,90α∠=︒,90BCE CBE ∴∠+∠=︒,90BCE ACF ∠+∠=︒,CBE ACF ∴∠=∠,在BCE 和CAF V 中,BEC CFACB CA ⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△,BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,②α∠与BCA ∠应满足180BCA α∠+∠=︒,在BCE 中,180180CBE BCE BEC α∠+∠=︒−∠=︒−∠,180BCA α∠=︒−∠,BCA CBE BCE ∴∠=∠+∠,ACF BCE BCA ∠+∠=∠,CBE ACF ∴∠=∠,在BCE 和CAF V 中,CBE ACF BEC CFACB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△, BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,故答案为:=,180BCA α∠+∠=︒.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质、三角形的面积计算、三角形的外角性质等知识;解题的关键是判断出BCE CAF ≌△△. ABC 的角平分线,过点【答案】4【分析】延长CE 与BA 的延长线相交于点F ,利用ASA 证明ABD △和ACF △全等,进而利用全等三角形的性质解答即可.【详解】解:如图,延长CE 与BA 的延长线相交于点F ,90EBF F ∠+∠=︒,90ACF F ∠+∠=︒,EBF ACF ∴∠=∠,在ABD △和ACF △中,EBF ACF AB ACBAC CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ABD ACF ∴≌, BD CF ∴=,BD Q 是ABC ∠的平分线,EBC EBF ∴∠=∠.在BCE 和BFE △中,BE BECEB FEB ⎪=⎨⎪∠=∠⎩,()ASA BCE BFE ∴≌, CE EF ∴=,2CF CE ∴=,24BD CF CE ∴===.故答案为:4.【点睛】本题主要考查了全等三角形的性质和判定,理解题意、灵活运用全等三角形的判定与性质是解题的关键.三、解答题【答案】(1)见解析(2)5【分析】(1)首先根据垂直判定AB EF ∥,得到ABC F ∠=∠,再利用AAS 证明即可;(2)根据全等三角形的性质可得9AB CF ==,4BC EF ==,再利用线段的和差计算即可.【详解】(1)解:∵CD AB ⊥,EF CE ⊥,∴AB EF ∥,∴ABC F ∠=∠,在ABC 和CFE 中,ACB EAC CE ⎪∠=∠⎨⎪=⎩, ∴()AAS ABC CFE △△≌; (2)∵ABC CFE △△≌, ∴9AB CF ==,4BC EF ==,∴5BF CF BC =−=.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,解题的关键是找准条件,证明三角形全等. 20.(2023春·陕西西安·七年级西安市铁一中学校考期末)如图,A ,C ,D 三点共线,ABC 和CDE 落在AD 的同侧,AB CE ∥,BC DE =,B D ∠=∠.求证:AB CE AD +=.【答案】见解析【分析】证明()AAS ABC CDE ≌,得出AB CD =,BC CE =,即可证明结论.【详解】解:∵AB CE ∥,∴A DCE ∠=∠,∵B D ∠=∠,BC DE =,∴()AAS ABC CDE ≌,∴AB CD =,BC CE =,∴AB CE CD AC AD +=+=.【点睛】本题主要考查了平行线的性质,三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法证明ABC CDE △≌△.21.(2022秋·八年级课时练习)已知αβ∠∠,和线段a (下图),用直尺和圆规作ABC ,使A B AB a αβ∠=∠∠=∠=,,.【答案】见解析 【分析】先作出线段AB a =,再根据作与已知角相等的角的尺规作图方法作DAB EBA αβ∠=∠∠=∠,即可得到答案.【详解】解:作法如下图.1.作一条线段AB a =.2.分别以A ,B 为顶点,在AB 的同侧作DAB EBA αβ∠=∠∠=∠,,DA 与EB 相交于点C .ABC 就是所求作的三角形.【点睛】本题主要考查了三角形的尺规作图,熟知相关作图方法是解题的关键.22.(2023春·全国·七年级专题练习)如图,已知ABC ,请根据“ASA”作出DEF ,使DEF ABC ≌.【答案】见解析【分析】先作MEN B ∠=∠,再在EM 上截取ED BA =,在EN 上截取EF BC =,从而得到DEF ABC ≌.【详解】解:如图,DEF 为所作.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定. 23.(2023春·山西太原·七年级校考阶段练习)如图,点B 、F 、C 、E 在同一条直线上,已知FB CE =,AB DE ∥,ACB DFE ∠=∠,试说明:AC DF =.【答案】见解析【分析】利用ASA 定理证明三角形全等,然后利用全等三角形的性质分析求解.【详解】解:∵FB CE =,∴FB FC CE FC +=+,即BC EF =,∵AB DE ∥,∴B E ∠=∠,在ABC 和DEF 中B E BC EF ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABC DEF ≌△△, ∴AC DF =.【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法:SSS 、SAS 、ASA 、AAS 、HL .三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.(2020秋·广东广州·八年级海珠外国语实验中学校考阶段练习)如图,已知:EC AC =,BCE DCA ∠=∠,A E ∠=∠.求证:AB ED =.【答案】见解析【分析】先求出ACB ECD ∠=∠,再利用“角边角”证明ABC 和EDC △全等,然后根据全等三角形对应边相等证明即可.【详解】证明:∵BCE DCA ∠=∠,∴BCE ACE DCA ACE ∠+∠=∠+∠,即ACB ECD ∠=∠.在ABC 和EDC △中,∵ACB ECD AC ECA E ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABC EDC ≌△△.∴AB ED =.【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.25.(2023春·福建宁德·七年级校考阶段练习)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△; (2)若10BE =,3BF =,求FC 的长度.【答案】(1)见解析(2)4【分析】(1)由AB DE ∥,得ABC DEF ∠=∠,而AB DE =,A D ∠=∠,即可根据全等三角形的判定定理“ASA ”证明ABC DEF ≌△△; (2)根据全等三角形的性质得BC EF =,则3BF CE ==,即可求得FC 的长度.【详解】(1)解:证明:∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 和DEF 中,A D AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABC DEF ≌△△; (2)解:由(1)知()ASA ABC DEF ≌△△,∴BC EF =, ∴BF FC CE FC +=+,∴3BF CE ==,∵10BE =,∴10334FC BE BF CE =−−=−−=,∴FC 的长度是4.【点睛】此题重点考查全等三角形的判定与性质、平行线的性质等知识,根据平行线的性质证明ABC DEF ∠=∠是解题的关键. 26.(2023·浙江·八年级假期作业)如图,ABC 中,BD CD =,连接BE ,CF ,且BE CF ∥.(1)求证:BDE CDF ≌;(2)若15AE =,8AF =,试求DE 的长.【答案】(1)证明见解析(2)72【分析】(1)根据平行线的性质可得BED CFD Ð=Ð,根据全等三角形的判定即可证明;(2)根据全等三角形的性质可得DE DF =,即可求得.【详解】(1)证明:∵BE CF ∥,∴BED CFD Ð=Ð,∵BDE CDF ∠=∠,BD CD =,∴()AAS BDE CDF ≌;(2)由(1)结论可得DE DF =,∵1587EF AE AF =−=−=,∴72DE =.【点睛】全等三角形的判定和性质,熟练掌握平行线的性质,全等三角形的判定和性质是解题的关键. 27.(2023春·江西鹰潭·七年级校考阶段练习)将两个三角形纸板ABC 和DBE 按如图所示的方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,AC DE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=︒,求BED ∠的度数.【答案】(1)见解析(2)36BED ∠=︒【分析】(1)利用AAS 证明三角形全等即可;(2)全等三角形的性质,得到BED BCA ∠=∠,证明()SSS DBC ABC ≌,得到1362BCD BCA ACD ∠=∠=∠=︒,即可得解.【详解】(1)解:因为DBA CBE ∠=∠,所以DBA ABE CBE ABE ∠+∠=∠+∠,即DBE ABC ∠=∠.在ABC 和DBE 中,ABC DBE BAC BDEAC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, 所以()AAS ABC DBE ≌. (2)因为ABC DBE ≌△△, 所以BD BA =,BCA BED ∠=∠.在DBC △和ABC 中,DC AC CB CBBD BA =⎧⎪=⎨⎪=⎩, 所以()SSS DBC ABC ≌, 所以1362BCD BCA ACD ∠=∠=∠=︒,所以36BED BCA ∠=∠=︒.【点睛】本题考查全等三角形的判定和性质.解题的关键是证明三角形全等. 28.(2023春·河南驻马店·七年级统考期末)如图,线段AD 是ABC 的中线,分别过点B 、C 作AD 所在直线的垂线,垂足分别为E 、F .(1)请问BDE 与CDF 全等吗?说明理由;(2)若ACF △的面积为10,CDF 的面积为6,求ABE 的面积.【答案】(1)BDE CDF ≌△△,见解析 (2)22【分析】(1)利用AAS 证明三角形全等即可.(2)根据中线性质,得到,ABD ACD ACF CDF CDF ==+=△△△△△BDE △S S S S S S ,结合ABEABD BDE S S S =+△△△计算即可. 【详解】(1)BDE CDF ≌△△,理由如下: ∵AD 是ABC 的中线,∴BD CD =,∵BE AE ⊥,CF AE ⊥,∴90BED CFD ∠=∠=︒,在BDE 和CDF 中,BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS BDE CDF ≌.(2)∵10ACF S =△,6CDF S =△,BDE CDF ≌,∴10616ACD ACF CDF S S S =+=+=△△△,6BDE CDF S S ==,∵BD CD =∴ABD △和ACD 是等底同高的三角形∴16ABD ACD S S ==△△∴16622ABE ABD BDE S S S =+=+=△△△.【点睛】本题考查了三角形全等的判定和性质,中线的性质,三角形面积的计算,熟练掌握三角形全等的判定和性质,中线的性质是解题的关键. 29.(2019·七年级单元测试)(1)求证:等边三角形内的任意一点到两腰的距离之和等于定长.(提示:添加辅助线证明)(2)如图所示,在三角形ABC 中,点D 是三角形内一点,连接DA 、DB 、DC ,若,=∠=∠AB AC ADB ADC ,求证:AD 平分BAC ∠.【答案】(1)详见解析;(2)详见解析.【分析】(1)已知点P 是等边三角形ABC 内的任意一点,过点P 分别作三边的垂线,分别交三边于点D 、点E 、点F .求证PD PE PF ++为定长,即可完成证明;(2)(面积法)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.因为ADB ADC ∠=∠,所以ADE ADF ∠=∠,因此(AAS)ADF ADE ≅,得到AF AE =.进而AFC AEB ≅,得到ABD ACD ∠=∠,因此BAD CAD ∠=∠,即AD 平分BAC ∠.【详解】(1) 已知:等边如图三角形ABC ,P 为三角形ABC 内任意一点,PD ⊥AB, PF ⊥AC, PE ⊥BC, 求证:PD+PE+PF 为定值.证明:如图:过点A 作AG BC ⊥,垂足为点G ,分别连接AP 、BP 、CP .∵ABC ABP BCP CAP S S S S =++, ∴11112222BC AG BC PE AC PF AB PD =++又∵BC=AB=AC∴AG=PE+PF+PD,即PD PE PF AG ++=定长.∴等边三角形内的任意一点到两腰的距离之和等于定长.(2)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.∵ADB ADC ∠=∠,∴ADE ADF ∠=∠,又∵AD=AD∴(AAS)ADF ADE ≅,∴AF AE =∴AFC AEB ≅,∴ABD ACD ∠=∠,∴BAD CAD ∠=∠,即AD 平分BAC ∠.【点睛】本题考查了等边三角形的性质和全等三角形的性质和判定,其中做出辅助线是解答本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18.3全等三角形的判定(一)
本次说课的内容选自上海教育出版社七年级第十八章第三节《三角形全等的判定(一)》第一课时,我从以下几方面进行教学设计。

教材分析:
教材的地位和作用:全等三角形是实验几何的最后一章,又是后续内容进入论证几何的学习的入口。

对判定两个三角形全等的说理,其实质就是证明,说理的格式就是证明的格式。

掌握三角形全等的判断方法,一方面培养了学生的逻辑思维能力,又为今后证明线段、角相等以及辅助线的添加作好了准备。

本节课是全等三角形判定的第一节课,通过第一个判定定理的推出和应用,使学生明白什么是全等三角形的判定,如何运用全等三角形的判定去证明两个三角形全等,怎样正确地表述证明过程,为下面其他判定定理的学习和应用打好基础。

教学目标:
知识目标:熟记角边角定理、角角边推论的内容。

能灵活利用角边角定理、角角边推论解决相关问题。

能力目标:通过"角边角" 定理的发现,培养学生观察、实验、综合、分析、概括能力以及几何动态意识。

通过"角边角"定理,角角边推论的运用培养学生逻辑思维。

情感目标:使学生在自主学习中体验获取数学知识的感受,培养学生勇于创新,多方位思考问题的技巧。

教学重点:理解并熟练掌握定理及其推论来证明两个三角形全等。

教学难点:在图形中,找出证明两个三角形全等的条件。

教学用具:三角板 、量角器、圆规 实物投影、模型
教学方法:讲解法和发现法等,通过观察、实验、推理论证进行教学。

学法:让学生自己制作学具,边画边实验由自己猜想、归纳、发现"角边角"定理。

教学过程:我主要从以下几个环节来安排教学内容的:(1)让学生合作探究,由"画图"--"猜想"--"实验"--" 揭示"发现"角边角"定理,掌握定理的内容。

(2)指导学生运用定理解决问题,发展学生创造性思维。

(3)引导学生运用"角边角"定理获得角角边推论,并利用已学判定进行实际运用,让学生学到数学知识,提高解题能力。

新课引入:我们知道根据定义判定两个三角形全等,需要知道三条边对应相等和三个角对应相等,实际上,要确定两个三角形全等,并不需要那么多的条件,那么到底是什么条件,能既简单又准确地判定两个三角形全等呢?
情景创设:教师拿出一个信封,从其中抽出三角形△ABC的
一部分(两个角及其夹边)。

(使学生产生疑问,对下面的学习激起兴趣。


如图所示,已知∠A=70°,∠B=40°,AB=5cm。

根据上述给出的条件,我们能画出一个三角形吗?
如果行的话,你打算如何操作?
A
给学生适当的思考时间,请一位学生回答,师生共同补充完善
画△A/B/C/,使∠A/=∠A,∠B/=∠B,B/C/= BC B 学生在下面自己完成再集体辨析。

教师在下面指导学生用量角器、尺等用具画图。

这样,充分发挥了学生的主体作用,提高了学生的辨析能力。

1、 猜想:你所画的三角形与信封中的三角形△ABC可能存在什么关系?(两个三角形全
等)
2、 实验验证:让学生将画好的三角形上来与△ABC叠合。

观察实验现象回答下列问题:
1)通过实验我们发现了什么事实?(两个三角形完全重合)
(△A/B/C与△ABC完全重合,即△ABC≌△A/B/C/)使前面的假设得以证实。

揭示:能否用一句话把这一事实表述出来?
教师提示:画图时题目中给了我们什么条件?(学生很快发现是两个角与它们的夹边对应相等。


引导学生用"如果...........那么............"的形式来描述。

(板书)角边角定理:在两个三角形中,如果有两个角及它们的夹边对应相等,那么这两个三角形全等。

(简写ASA)A--Angle(角) ;S--Side(边)
符号语言:在△ABC和△A′B′C′中
∠A′=∠A, (已知)
A′B′=AB, (已知)
∠B′=∠B。

(已知)
∴ △ABC≌△A′B′C′(ASA)
以后我们就可以用这条判定定理来判断两个三角形是否全等。

(强调三个条件书写的有序性即角边角)
(板书)18.3全等三角形的判定(一)
(先创设情景,再通过"画图"--"猜想"--"实验"--" 揭示"发现"角边角"定理,其中设计了一系列的小问题,层层深入。

在三角形全等概念教学的基础上生实践操作,培养他们直观判断能力。

学生通过画图重叠的活动,将静态的图形看成可动的图形准确的找出对应相等的元素,并将它们叠合在一起,通过观察作出判断。

这一过程既是复习前面的旧知识,如何由给出的条件画出三角形。

又为后面学生归纳概括判定打好了基础,同时培养了学生动手和创造能力。


五、练习应用:
例1:已知:如图,已知AB与CD相交于O,AO=BO,∠A=∠C。

说明△AOC≌△BOD。

解:(略)
分析:(设问程序)
 1)角边角判定需要几个条件?
 2)已知条件给出了几个?
 3)图形中可以得到几个条件?教师活动:在图中标出所有条件。

教师强调证明格式,和条件书写的有序性,如下所示。

在△-------和△-------中
∠-------=∠------- ( )
-------=-------,( )
∠-------=∠-------。

( )
∴ △-------≌△-------( )
(该例题是对角边角判定的应用,在获得题目中给出的已知条件不足的情况下,挖掘图形中的隐含条件。

目的在于培养学生发现、观察能力。


思考:
1.由问一问,引出问题,让同学想一想.
如图,△ABC中,∠A=∠M,∠B=∠N,BC=NP,△ABC≌△MNP吗?为什么?
设问程序:1)题目中给出了几个条件?请学生在图中标出。

2)是否满足角边角判定?
3)缺什么条件?
4)可否利用已学知识证明它们的相等关系?
2.学生讨论、交流,适当点拨,找学生代表口述证明思路。

解:略
在两个三角形中,如果有两个角及其一个角的对边对应相等,那么这两个三角形全等.简写成"角角边"或"AAS".
(利用已学内容三角形内角和等于180°和ASA全等三角形判定,证明以上结论的正确性。

既是对ASA全等三角形判定的又一次运用,又培养了学生分析、综合运用知识的能力。

) 例2已知:如图,已知∠1=∠2,∠B=∠C。

说明△ABC≌△ABD。

解:(略)
让学生读题后讨论,然后教师指名回答解题思路,最后教师指导。

注意让学生写清解题步骤,训练学生的推理论证能力和语言表达力。

(学生可观察图形,辨认两个三角形中的对应元素是否相等,然后选择适当的判定来判断两个三角形是否是全等三角形。

既培养了学生的识图能力又加深了对已学两个判定的理解。


课后练习:独立地完成书中的练习1,完成后小组互相检测交流,教师巡视指导,及时发现学生存在的问题。

小结:
这节课我们运用了"画图、猜想、实验、分析、归纳等数学方法得到了角边角、角角边这两种全等三角形的判定方法,并将它们进行了运用。

从已研究过判定方法来看,两个三角形必需具备三个元素对应相等才有可能全等。

除以上两种情况,1)元素对应相等的情况还有哪些?(1、三角对应相等;2、三边对应相等;3、两边和其中一边的对角对应相等;4、两边及其夹角对应相等。

)2)它们是否都能作为判定三角形全等的条件,这将是我们下面几节课讨论的问题。

(结尾即是本节课的一个小结,也是全等三角形判定的一个延续,为后面教学的开展打好铺垫。


作业:课后练习/2、3。

相关文档
最新文档