核医学知识点总结笔记复习整理
核医学复习重点总结

第一章总论核医学定义:是一门研究核素和核射线在医学中的应用及其理论的学科。
主要任务是用核技术进行诊断、治疗和疾病研究。
核医学三要素:研究对象放射性药物核医学设备一、核物理基础(一)基本概念:元素---凡质子数相同的一类原子称为一种元素核素---质子数、中子数、质量数及核能态均相同的原子称为一种核素。
放射性核素----能自发地发生核内结构或能级变化,同时从核内放出某种射线而转变为另一种核素,这种核素称为放射性核素。
(具有放射性和放出射线)稳定性核素----能够稳定地存在,不会自发地发生核内结构或能级的变化。
不具有放射性的核素称为稳定性核素。
(无放射性)同位素----具有相同的原子序数(质子数相同),但质量数(中子数)不同的核素互为同位素。
同质异能素----- 核内质子数、中子数相同,但处在不同核能态的一类核素互为同质异能素。
(质量数相同,能量不同,如99mTc和99Tc)(二)核衰变类型四种类型五种形式α衰变释放出α粒子的衰变过程,并伴有能量释放。
β衰变放射出β粒子或俘获轨道电子的衰变。
β衰变后,原子序数可增加或减少1,质量数不变。
•β-衰变•β+衰变•电子俘获(EC)γ衰变核素由激发态或高能态向基态或低能态跃迁时,放射出γ射线的衰变过程γ衰变后子核的质量数和原子序数均不变,只是核素的能态发生改变。
放射性核素的原子核不稳定,随时间发生衰变,衰变是按指数规律发生的。
随时间延长,放射性核素的原子核数呈指数规律递减。
N=N0e-λtN0:t=0时原子核数N:t时间后原子核数e:自然对数的底(e≈2.718)λ:衰变常数(λ=0.693/T1/2)物理半衰期(T1/2)生物半衰期(Tb)有效半衰期(Te)1/Te=1/T1/2+1/ Tb放射性活度描述放射性核素衰变强度的物理量。
用单位时间内核衰变数表示,国际制单位:贝可(Becquerel,Bq)定义为每秒1次衰变(s-1),旧制单位:居里(Ci)、毫居里(mCi)、微居里(μCi)换算关系:1Ci=3.7×1010Bq比活度单位质量物质内所含的放射性活度。
核医学期末考试重点笔记

一、名词解释。
1.核医学:是一门研究核技术在医学的应用及其理论的学科,是用放射性核素诊断,治疗疾病和进行医学研究的医学学科。
2.核素:是指质子数和中子数相同,并处于同一能级状态的原子,称为一种核素。
3.全身骨显像:是指给患者注射显像剂一定时间后,利用核医学显像设备(如γ相机,SPECT)的探测器沿患者体表做匀速运动,从头至足(或从足至头)依次采集全身各部位的显像剂分布信息,组成一幅完整的前位和后位的全身骨骼系统影像4.超级骨显像:是显像剂异常浓聚的特殊表现,显像剂在全身骨骼分布呈均匀,对称性异常浓聚,或广泛多发异常浓聚,软组织分布很少,骨骼影像异常清晰,肾和膀胱影像常缺失。
常见于以成骨为主的恶性肿瘤广泛性骨转移,甲旁亢等患者。
5.代谢性骨病:是指一组以骨代谢异常为主要表现的疾病,如原发性甲状旁腺功能亢进,骨质疏松症,肾性骨营养不良综合症,畸形性骨炎等。
通常弥漫性累及全身骨骼,并伴有血清甲状腺旁激素的升高以及骨转换率的增高。
6.甲状腺静态显像:口服放射性碘后,通过观察甲状腺部位放射性分布,可判别甲状腺病变,即甲状腺静态显像。
7.放射性药品:是指用于临床诊断或者治疗的放射性核素制剂或其标记药品。
8.放射性核素纯度:放射性核素纯度是指放射性药品中所要求的放射性核素其活度占样品放射性总活度的百分比。
9.肾图:静脉注射由肾小球滤过和肾小管上皮细胞分泌而不再被重吸收的放射性示踪剂,在体外应用肾图仪连续记录双肾的时间-放射性活度曲线,以反应双肾血流灌注、肾实质功能及尿液排泄的的生理过程,称为肾图10.小肾图:双侧对比,一侧肾图正常,而另一侧肾图幅度明显减低,峰值差>30%,但曲线形态保持正常,多见于一侧肾动脉狭窄或先天性一侧肾脏发育不良。
11.有效半衰期:放射性核素因生物代谢与物理衰变共同作用而致在生物体内放射性活性降低到一半所需的时间。
12放射性活度:用来描述放射性物质衰变强弱的物理量,表示单位时间内发生衰变的原子核数。
核医学总结汇总

一、核医学基础知识同位素:同一元素中,有些原子质子数相同而中子数不同,则称为该元素的同位素,如上例各种碘互为碘的同位素。
同质异能素:如果原子的质子数相同,中子数也相同,但是核的能级状态不同,那么它们互为同质异能素。
核素:把质子数相同,中子数也相同,核能级处于同一状态的一类原子,称为一种核素。
核衰变:放射性核素发生核内结构或能级的变化,同时自发地放出而变为出一种或一种以上的射线而转变成另一种核素的过程为“核衰变”。
1、5种衰变方式: α、β─、β╋、k、γα衰变:AZX--A-4Z-2Y+42He+Qα粒子特性:←α粒子实质上是He原子核,←α衰变发生在原子序数大于82的重元素核素←α粒子的速度约为光速的1/10,即2万km/s,2s绕地球1周。
←在空气中的射程约为3-8cm,在水中或机体内为0.06-0.16mm。
←因其质量大,射程短,穿透力弱,一张纸即可阻挡←但α粒子的电离能力很强。
β衰变:←核衰变时放射出β粒子或俘获轨道电子的衰变。
←β衰变后核素的原子序数可增加或减少但质量数不变。
←分β-衰变、β+衰变和电子俘获三种类型。
←β粒子的速度为20万km/s。
β-粒子的特性:←β-粒子实质是负电子;←衰变后质量数不变,原子序数加1。
←能量分布具有连续能谱,穿透力比a粒子大←电离能量比a粒子弱,能被铝和机体吸收,←β-粒子在软组织中的射程为厘米水平。
β+粒子的特性:←β+粒子实质是正电子;←衰变后子核质量数不变,但质子数减1.←β+也为连续能谱;←天然核素不发生β+衰变,只有人工核素才发生。
电子俘获(electron capture,EC):核衰变时原子核从内层轨道(K)俘获一个电子,使核内一个质子转化为一个中子。
它是核内中子数相对不足所致。
γ衰变:核素由激发态向基态或高能态向低能态跃迁时放出γ射线的过程也称为γ跃迁(γtransition);γ衰变后子核质量数和原子序数均不变,只是能量改变。
γ射线特性:←γ射线为光子流,不带电,穿透力强,电离能力弱;←γ射线在真空中速度为30万km/s。
核医学知识总结

核医学知识总结一、核医学基本概念核医学是一门利用核技术来研究生物和医学问题的科学。
它涉及到核辐射、放射性核素、核素标记化合物以及相关的仪器和测量技术。
核医学在临床诊断、治疗和科研方面都有着广泛的应用。
二、核辐射与防护核辐射是指原子核在发生衰变时释放出的能量。
核辐射可以分为电离辐射和非电离辐射两类。
在核医学中,主要涉及的是电离辐射,它可以对生物体产生不同程度的损伤。
因此,在核医学实践中,必须采取有效的防护措施,确保工作人员和患者的安全。
三、放射性核素与标记化合物放射性核素是指具有不稳定原子核的元素,它们能够自发地释放出射线。
在核医学中,放射性核素可以用于显像、功能研究、体外分析和治疗等多种应用。
标记化合物是指将放射性核素标记到特定的化合物上,使其具有放射性,以便进行测量和分析。
四、核医学成像技术核医学成像技术是指利用放射性核素发出的射线,通过相应的仪器和测量技术,获得生物体内的图像。
目前常用的核医学成像技术包括SPECT、PET和PET/CT等。
这些技术可以在分子水平上对生物体进行无创、无痛、无损的检测,对于疾病的早期发现和治疗具有重要的意义。
五、核素显像与功能研究核素显像是核医学中的一种重要应用,它可以用于显示生物体内的生理和病理过程。
通过注射放射性核素标记的显像剂,利用相应的成像技术,可以获得器官或组织的图像,进而了解其功能状态。
核素显像在心血管、神经、肿瘤等多个领域都有广泛的应用。
六、体外分析技术体外分析技术是指利用放射性核素标记的化合物,通过测量其放射性强度,来分析生物体内的成分或生理过程。
体外分析技术具有高灵敏度、高特异性和定量准确等优点。
常用的体外分析技术包括放射免疫分析、受体结合试验等,它们在临床诊断和科研中都有着广泛的应用。
七、放射性药物与治疗放射性药物是指将放射性核素标记到特定的药物上,使其具有治疗作用。
放射性药物可以用于治疗肿瘤等疾病,通过射线的作用,破坏病变组织或抑制其生长。
核医学总结

一、平时笔记:第一章、核射线及其与物质的相互作用1.核素(P4)2.四种核衰变方式(P6-7)3.物理半衰期(P10)必考点4.放射性活度、比活度(P10)第二章、放射性测量1.实验室测量X、β射线最常用的是NaI(I131、I125)(P20 )2.道宽、微分测量、积分测量(P23)3.cpm与dpm(P28)4.漏计、液体闪烁测量(P29)5.平均测量、非平均测量(P31-32)6.淬灭(P37-39)必考点7.统计涨落按照泊松分布特点(P46-47)第三章、电离辐射生物效应与放射防护1.什么情条件下选择吸收剂量、当量剂量、有效剂量、比稀动能;吸收剂量的单位(P52-53)2.随机效应与确定性效应(P60)3.影响生物学作用的主要因素(P57-59)4.放射性废物特点及治理途径、放射危险标志物(P69-70)第四章、放射性核素标记化合物1.放射性浓度、放射化学纯度、放射性比活度(P72)2.I125适合做示踪实验的原因(P82)3.碘标记的前提、部位、原理(P83)4.几种碘化反应的优缺点比较及影响标记的因素(P84-85)5.什么情况下标记化合物要进行鉴定及纯化(P90)6.标记率、纸层析(P90)7.放射性比活度的测定(P95)8.辐射自分解的方式及控制方法(P97-98)选择题第六章、放射性核素示踪1.放射性核素示踪的特点(P128)2.放射性核素示踪实验注意问题(P130-131)3.直接稀释法(P134)4.参入实验(P137)可能考实验设计5.物质吸收、分布及排泄示踪研究(P142)可能考实验设计第七章、放射自显影术(ARG)1.放射自显影的主要类型、基本方法(P170-171)2.放射自显影的分辨力及影响因素(P177-179)必考点3.放射自显影的本底、效率,扩散性示踪剂(P179-180)第八章、放射免疫分析1.放射免疫分析法原理(P190)2.放射免疫分析的基本试剂(P192)3.RIA的基本步骤(P194)4.质量控制的简称及指标(P198)5.免疫放射分析的主要特点(P202)第九章、受体的放射性配基结合分析1.RBA与RRA(P216)必考点2.受体与配体结合的基本特征(P218)3.受体调节的增敏与失敏(P221)4.简单单位点系统受体与配体结合(P222-P228)必考点5.RRA与RIA区别(P243)二、最后一次理论课老师强调的重点(一)计算题1.放射性量的测量、计算(淬灭校正)------P26-422.受体计算------P222-P2283.血容量、体液容量-----P133-1344.放射性衰变计算----P105.标记率-----P906.比活度------P95、P11、P727.强度比值?(二)实验设计(二选一)主要应用同位素标记技术:点标记蛋白等。
核医学重点知识整理

第一章核医学:是一门研究核技术在医学中的应用及其理论的学科,是用放射性核素诊断,治疗疾病和进行医学研究的医学学科。
我国核医学分为临床核医学和实验核医学。
核素(nuclide):具有相同的质子数、中子数和核能态的一类原子同位素(isotope):是表示核素间相互关系的名称,凡具有相同的原子序数(质子数)的核素互称为同位素,或称为该元素的同位素。
同质异能素(isomer):具有相同质子数和中子数,处于不同核能态的核素互称为同质异能素。
稳定性核素(stable nuclide):原子核极为稳定而不会自发地发生核内成分或能态的变化或者变化的几率极小放射性核素(radionuclide):原子核不稳定,会自发地发生核内成分或能态的变化,而转变为另一种核素,同时释放出一种或一种以上的射线核衰变(nuclear decay):放射性核素自发地释放出一种或一种以上的射线并转变为另一种核素的过程,核衰变实质上就是放射性核素趋于稳定的过程衰变类型:α衰变(产生α粒子);β–衰变(产生β¯粒子(电子));β+衰变(正电子衰变)与电子不同的是带有正电荷;电子俘获;γ衰变。
α粒子的电离能力极强,故重点防护内照射。
β-粒子的射程较短,穿透力较弱,而电离能力较强,因此不能用来作显像,但可用作核素内照射治疗。
γ衰变(γdecay):核素由激发态向基态或由高能态向低能态跃迁时发射出γ射线的衰变过程,也称为γ跃迁。
γ衰变只是能量状态改变,γ射线的本质是中性的光子流。
电子俘获衰变:一个质子俘获一个核外轨道电子转变成一个中子和放出一个中微子。
电子俘获时,因核外内层轨道缺少了电子,外层电子跃迁到内层去补充,外层电子比内层电子的能量大,跃迁中将多余的能量,以光子形式放出,称其为特征x射线,若不放出特征x射线,而把多余的能量传给更外层的电子,使其成为自由电子放出,此电子称为俄歇电子内转换(internal conversation)核素由激发态向基态或由高能态向低能态跃迁时,除发射γ射线外也可将多余的能量直接传给核外电子(主要是K层电子),使轨道电子获得足够能量后脱离轨道成为自由电子,此过程称为内转换,这种自由电子叫做内转换电子衰变公式:Nt=No e衰变常数:某种放射性核素的核在单位时间内自发衰变的几率它反映该核素衰变的速度和特性;λ值大衰变快,小则衰变慢,不受任何影响不同的放射性核素有不同的λ一定量的放射性核素在一很短的时间间隔内发生核衰变数除以该时间间隔,即单位时间的核衰变次数;A=dN/dt放射性活度是指放射性元素或同位素每秒衰变的原子数,目前放射性活度的国际单位为贝克(Bq),也就是每秒有一个原子衰变,一克的镭放射性活度有3.7×1010Bq。
核医学知识点笔记复习整理

四、心血管系统心肌灌注显像显像剂:99m Tc-MIBI心肌葡萄糖代显像显像剂:18F-FDG极坐标靶心图:影像的中心为心尖,周边为基底,上部为前壁,下部为下壁和后壁,左侧为前、后间壁,右侧为前、后侧壁。
心肌灌注显像和心肌葡萄糖代显像临床应用:1、冠心病心肌缺血的评价⑴冠心病心肌缺血的早期诊断。
①心肌缺血的典型表现是负荷试验心肌灌注影像出现显像分布稀疏或缺损,而静息或再分布影像呈正常或明显充填,提示为可逆性心肌缺血。
②可以准确评价心肌缺血的部位、围、程度和冠脉的储备功能。
③可检出无症状的心肌缺血。
⑵冠心病危险度分级。
Ⅰ高危的影像有以下特征:①在两支以上冠状动脉供血区出现多发性可逆性缺损或出现较大围的不可逆性灌注。
②定量或半定量分析有较大围的可逆性灌注缺损。
③运动负荷后心肌显像剂肺摄取增加。
④运动后左心室立即呈暂时性扩大或右心室暂时性显影。
⑤左主干冠状动脉分布区的可逆性灌注缺损。
⑥休息时LVEF降低。
Ⅱ若低危表现或SPECT负荷心肌灌注显像正常,提示心脏事件年发生率低于1%,预后良好。
⑶负荷心肌灌注显像对冠心病的预测价值。
在冠心病概率较低的人群中阳性结果预测价值为36%,而在冠心病概率较高的人群中阳性结果预测价值为99%。
⑷缺血性心脏病治疗后的疗效评估。
冠心病患者在治疗前表现为病变部位可逆性缺损,治疗后择期进行心肌灌注显像,如出现可逆性损伤,则高度提示再狭窄或治疗无效。
如出现正常,则提示血管通畅,治疗有效。
2、心肌梗死的评价⑴急性心梗的诊断。
①负荷/静息心肌灌注图像表现为病变部位不可逆损伤。
②可较准确地判断心肌梗死的部位、大小和并发症的缺血面积。
③急性心梗是负荷试验的禁忌症,只能做静息显像。
心梗6h后即可表现为病变部位的灌注异常。
⑵急性胸痛的评估。
①在急性心梗的患者,一般静息心肌显像时都会发现有灌注缺损。
②临床上急诊心肌显像为正常的患者中,几乎没有急性心梗或不稳定性心绞痛发生,而心肌显像为异常的患者,80%以上的病人后来证实为急性心梗可不稳定性心绞痛。
核医学知识点笔记复习整理

核医学知识点笔记复习整理第一章中枢神经系统1.脑血流灌注显像及负荷显像的原理、方法、适应症、结果判断和临床应用。
2.脑脊液间隙显像的原理、方法、适应症、影像分析和临床应用。
第二章骨骼系统1.骨显像原理,骨显像的放射性药物,骨显像的方法以及适应证。
2.影像分析要点正常影像,异常影像。
3.骨显像的临床应用第三章泌尿系统1.肾图的原理、适应症、检查方法、正常肾图及其分析指标、异常肾图及临床意义。
2.肾动态显像的原理、适应症、正常影像、异常影像及临床意义。
3.介入试验巯甲丙脯酸试验的原理、适应症、方法及结果分析;利尿剂介入试验的原理、适应症、方法、及曲线结果分析与临床意义。
4.肾有效血浆流量与肾小球滤过率测定的原理、适应症、显像剂、方法、影像分析与临床价值。
5.肾静态显像的原理、适应症、显像方法、正常影像、异常影像及临床意义。
6.膀胱输尿管返流测定的原理、适应症、显像方法及结果分析。
7.生殖器官显像阴囊及睾丸显像的原理;放射性核素子宫输尿管造影术的方法及影像解释第四章消化系统1.胃肠道出血的原理、方法、影像分析和临床应用。
2.异位胃粘膜显像的原理、影像分析和临床应用。
3.唾液腺显像的原理、方法、影像分析和临床应用。
4.放射性核素肝胆动态显像的原理、显像剂、方法、适应症、影像分析和临床应用。
5.肝血流灌注和肝血池显像的概述、原理、显像技术、适应证、影像分析和临床应用。
6.胃幽门螺杆菌检测的原理、方法、适应证、结果分析和临床应用第五章内分泌系统1.甲状腺摄131碘试验的原理、方法、结果判定、影响因素和临床意义;血清甲状腺激素水平测定的原理、正常值、影响因素和临床应用;甲状腺功能测定的综合评价。
2.甲状腺显像的原理、方法、正常影像和临床应用;甲状腺结节的功能判断。
3.甲状旁腺显像的原理、方法、正常影像和临床应用;肾上腺髓质显像的原理、方法、正常影像和临床应用。
第六章血液、淋巴系统1.血液和淋巴显像的原理。
2.血液和淋巴显像的显像剂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核医学知识点总结笔记复习整理核医学使用的射线包括α、β-、β+和γ四种,而放射科使用的射线为X射线。
在核医学基础中,核素是指具有特定的质量数、原子序数和核能态,且其平均寿命长得足以被观测的一类原子。
同质异能素是指具有相同的原子序数和核子数,但核能态不同的核素。
放射性核素是指不稳定核素的原子核能自发地放出各种射线而转变为另一种核素。
放射性核衰变是指放射性核素的原子核自发地放出射线,并转变成新的原子核的过程。
β衰变是指由于核内中子数过多,中子和质子数不平衡,由中子转化为质子的同时,核内放射出β射线的过程,核素的质量数不变,原子序数增加1.β+衰变是指由于核内质子数过多,质子和中子数目不平衡,由质子转化为中子的同时,核内放射出β射线的过程,核素的质量数不变,原子序数减少1.γ衰变是指激发态的原子核以放出γ射线(光子)的形式释放能量而跃迁到较低能量级的过程,也称γ跃迁。
放射性活度是指单位时间内发生衰变的原子核数,单位时间为“秒”,其单位为贝可(Bq),1Bq表示放射性核素在一秒内发生一次核衰变,即1Bq=1/s。
物理半衰期是指在单一的放射性核素衰变过程中,放射性活度降至其原有值一半时所需要的时间,简称半衰期(T1/2)。
有效半衰期是指某生物系统中某单一放射性核素的活度,由物理衰变与生物代谢共同作用而使放射性活度减少至原有值的一半所需要的时间(Tc)。
电离是指带电粒子通过物质时,同原子的核外电子发生静电作用,使原子失去轨道电子而形成自由电子(负离子)和正离子的过程。
湮灭辐射是指β入射粒子与物质作用,其动能丧失殆尽时与自由电子结合,转化为方向相反能量各为0.511MeV的两个光子,这种辐射为湮灭辐射。
光电效应是指光子与物质相互作用时,将全部能量转移给原子的内层电子,使得电子脱离原子成为高速运行的光电子。
这一过程在核医学中被广泛应用。
放射性探测是用探测仪器将射线能量转换成可纪录和定量的电能、光能等,测定放射性核素的活度、能量、分布的过程。
闪烁探测器是一种常用的放射性探头,包括准置器、晶体(闪烁体)、光电倍增管和前置放大器四部分。
而准直器则是一种置于探头最前方的装置,用于对成像有用的射线进行筛选。
放射性药物是一类特殊制剂,含有放射性核素,用于医学诊断和治疗。
这些药物具有放射性,可以利用其放出的射线达到诊断、治疗疾病的目的。
但如果应用不当,也可能会造成不必要的放射性损伤或环境污染。
此外,放射性药物还具有特定的物理半衰期和有效半衰期,以及脱标和辐射自分解等特点。
在使用时,放射性药物以放射性活度为计量单位,需要注意使用量和生理、生化特性。
医用放射性核素的来源包括反应堆生产、加速器生产、经放射性核素发生器获得,以及从核废料或天然物质中提取。
放射性核素发生器是一种能从较长半衰期的放射性母体核素中分离出衰变后产生的较短半衰期子体放射性核素的装置。
在使用放射性药物时,需要注意其理想的生物学性能,以确保其在诊断和治疗中的有效性。
放射性药物在体内诊断中应具有良好的定位和排泄性能,靶/非靶器官比值较高,滞留时间合适,并且不会降低原生物学活性。
标记制备放射性药物必须采用简单、快速、理想的制备方法。
放射性药物应具有良好的化学稳定性、辐射稳定性、标记稳定性和体内稳定性,以及低辐射性,以达到诊疗目的。
放射性药物应具有适宜的物理性状和pH值,同时无菌、无毒、无热源,且具有较高的放核纯和放化纯。
在外照射防护中,时间防护、距离防护和屏蔽防护是必要的措施。
放射性核素示踪技术是根据研究需要,将放射性核素标记到被研究物质的分子上,通过对标记物发出的射线的检测,间接了解被研究物质在生物机体或生物体系中的动态变化规律,获得定性、定量及定位结果。
放射性核素显像技术的方法学原理包括合成代谢、细胞吞噬、循环通路、选择性浓聚、选择性排泄、通透弥散、离子交换和特异性结合等。
这些原理可用于定位、定性诊断,以及观察排泄过程和通畅情况。
静态显像是指在显像剂在体内达到相对恒定的状态下进行的显像,而动态显像则是在引入显像剂后,以固定的显像时间连续显像,得到随时间变化的多帧连续图像的显像。
阳性显像指显像剂在病变组织内的摄取明显高于周围正常组织,而阴性显像则是指显像剂在病变组织内的摄取明显低于周围正常组织。
负荷显像则是在病人在药物或生理活动干预状态下达到负荷亚极限状态时引入体内显像剂进行的显像。
放射免疫分析法的基本原理是标记抗原和未标记抗原对抗体都有相同的结合能力,当抗体的量有限时,这种结合就呈现相互竞争,彼此抑制。
标记抗原的结合率将随未标记抗原量的增加而减少,呈负相关。
根据标记抗原的结合率,可以对应未标记抗原的量,绘出标准曲线。
通过标准曲线求出待测抗原的含量。
基本试剂包括抗体、标记抗原、标准品和对应分离方法的分离试剂,它们分别具有特定的特征和应用。
甲亢的诊断可以通过血清甲状腺激素浓度测定来进行。
体外分析法测定TT3、TT4、FT3、FT4、rT3均会升高。
另外,血清TSH测定也是一种诊断甲亢的方法。
TSH降低通常是甲亢的表现,但仅TSH降低则可能是甲亢早期或亚临床甲亢及甲亢治疗恢复期的表现。
甲状腺吸碘试验也可以用于甲亢的诊断。
在空腹状态下口服Na131I后,对甲状腺进行吸131I率测定,包括2小时、4小时、6小时和24小时,然后绘制吸131I 曲线。
如果24小时吸131I率明显高于正常曲线,或者高峰前移,或者2小时吸131I率/24小时吸131I率>80%,则符合甲亢的诊断标准。
甲亢的鉴别诊断包括:1、甲状腺素激(T4)抑制试验。
首次吸131I试验为甲亢性曲线,口服甲状腺素片一周后再作吸131I试验,如果曲线无变化则为甲亢,曲线呈明显降低或恢复正常则排除甲亢。
2、体外分析法测定XXX↓(结合FT3↑、FT4↑)诊断为甲亢,如果TSH↑则为垂体性甲亢。
3、体外分析法测定TGAb、TMAb、TPOAb。
如果明显升高,则需要进一步鉴别是否为甲亢。
4、体外分析法测定TSAb(甲状腺刺激抗体)。
如果呈阳性,则可以确诊为甲亢。
5、甲状腺显像可以显示两叶均匀性增大,不失蝴蝶状形态,腺体内放射性均匀性增高,血本底明显降低。
甲状腺机能减退的诊断方法包括:1、血清甲状腺激素浓度测定。
放射免疫分析法测定TT3、TT4、FT3、FT4均降低则诊断为甲减。
2、血清TSH测定。
如果TSH升高,则可以诊断为甲减,如果仅TSH升高则为亚临床甲减。
3、吸131I试验。
口服Na131I后对甲状腺进行吸131I率测定,包括2小时、4小时、6小时和24小时,绘制吸131I曲线。
如果曲线明显低于正常曲线或者曲线低平,则可以诊断为甲状腺机能减退。
甲状腺机能减退的鉴别诊断方法包括:1、促甲状腺激素(TSH)兴奋试验。
首次吸131I试验为甲减性曲线(低平),过敏试验阴性者肌肉注射牛TSH,24小时后再作吸131I试验。
如果曲线呈明显升高或恢复正常,则为继发性甲减,如果曲线无变化则为原发性甲减。
2、血清TSH、TRH测定。
如果TSH↑则为原发性甲减,TSH↓则为继发性甲减。
在诊断为继发性甲减后,测TRH↑为垂体性甲减,TRH↓为下丘脑性甲减。
3、放射免疫分析测定TGAb、TMAb、TPOAb。
如果明显升高,则可以诊断为原发性甲减。
4、过氯酸钾释放试验。
在空腹状态下,口服Na131I后进行2小时的甲状腺吸131I率测定,然后口服过氯酸钾,在过2小时后重新测量甲状腺吸131I率。
如果比前次吸131I率有明显下降,则可以诊断为原发性甲减。
5、甲状腺显像可以显示甲状腺缩小或者不均匀性增大,放射性分布也不均匀。
热结节多见于高功能腺瘤和局部甲状腺组织增厚。
前者的甲状腺素抑制实验热结节无变化,而后者则会导致热结节消失。
如果TSH兴奋实验正常甲状腺仍不显影,那么就可能是废用性甲状腺或先天性单叶缺如。
温结节的功能接近正常甲状腺组织,多见于良性甲状腺腺瘤和结节性甲状腺肿。
凉结节的功能明显低于正常甲状腺组织,也多见于良性甲状腺腺瘤和结节性甲状腺肿。
但是,甲状腺癌的比率却会升高。
冷结节则是指结节无甲状腺功能,多见于良性甲状腺腺瘤和结节性甲状腺肿、炎性包块、囊肿、血肿等。
甲状腺癌多为冷结节。
当甲状腺癌阳性显像时,冷结节呈现放射性填充的“热结节”,一般为甲状腺癌。
对于功能性甲癌转移灶的诊断和定位,甲状腺的滤泡状腺癌和状腺癌的原发灶无滤泡生成,转移灶有滤泡生成;转移灶一般均能够浓聚131I而显影。
当正常甲状腺组织去除后,转移灶显影将更加清楚。
在颈前肿物的鉴别诊断中,甲状腺显影正常或有受压表现,且包块不显影,为甲状腺外包块。
甲状腺有放射性缺损且同包块位置对应,为甲状腺结节。
甲状腺位置外包块且放射性浓聚,为异位甲状腺。
腺内见冷结节,131I腺外包块显影为甲状腺癌转移灶。
脑血液灌注图像的原理是某些电中性、小分子、脂溶性化合物能够通过单向被动扩散快速通过血脑屏障进入脑细胞,该类化合物制备成放射性药物引入体内,即可在脑细胞内快速浓聚,致使脑细胞放射性升高。
放射性药物进入脑细胞的量,同该部位的血流量成正相关,因此脑细胞多、血流量大的部位放射性高,否则即反。
当脑血管病变致使局部脑组织血流量降低、缺血或梗塞时,该部位即呈现放射性稀疏或缺损;局部脑组织代谢旺盛、功能增强、血运增加时既呈现放射性浓聚增高。
在体外通过显像仪器既可得到rCBF及CBF影像。
临床上,99mTc-ECD可用于短暂性脑缺血发作和可逆性缺血性脑病的诊断。
TIA、PRINI的脑血流灌注显像表现为rCBF减低区放射性明显稀疏。
阳性检出率为50~60%,加用药物介入显像阳性率将进一步提高至87%。
症状消失1~2周的患者仍有rCBF灌注异常表现,X-CT则多为阴性。
此外,该方法也可用于急性脑梗死的诊断。
脑梗死的脑血流灌注显像表现为局部放射性缺损,周围放射性稀疏。
与X-CT异常区大致一致,但稀疏区范围明显大于X-CT。
脑血流灌注显像常常可见对侧小脑半球呈rCBF低灌注表现,称为交叉性小脑失联络(CCD)。
介入显像可提高失联络小脑rCBF量。
发病数日后,如果侧支循环丰富,在放射性缺损区周围可出现放射性增高区,称为过度灌注。
过度灌注和交叉性小脑失联络CT和MRI无法发现。
早老性痴呆(AD)的脑血流灌注显像表现为对称性的双侧颞叶、顶叶、枕叶,有时有双额叶局部放射性减低,rCBF减少。
介入显像能使缺血区放射性升高。
多发性脑梗死痴呆(MID)的脑血流灌注显像表现为不对称、多发性放射性稀疏、缺损区。
介入显像不能使缺血区放射性升高。
帕金森病(PD)的脑血流灌注显像表现为基底节前部和皮层内放射性降低,两侧基底节放射性不对称。
脑血流灌注显像在癫痫的发作期呈现局灶性放射性浓聚,rCBF增高;发作间期该区呈现放射性减低区,rCBF减少。
原发性恶性脑肿瘤手术治疗后,原病变部位瘢痕组织形成,组织密度增高,如肿瘤复发CT诊断较为困难。