20-21版:习题课 正弦定理和余弦定理(创新设计)
正弦定理教学设计(精选5篇)

正弦定理教学设计正弦定理教学设计什么是教学设计教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。
正弦定理教学设计(精选5篇)作为一名专为他人授业解惑的人民教师,通常会被要求编写教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。
那么教学设计应该怎么写才合适呢?下面是小编精心整理的正弦定理教学设计(精选5篇),仅供参考,大家一起来看看吧。
正弦定理教学设计1一、教学内容分析本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。
因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、学情分析对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。
根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、设计思想:培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。
如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。
高三(创新班)数学复习试题:第二十一讲_正弦定理与余弦定理_word版缺答案

第二十一讲 正弦定理与余弦定理A 卷一、选择题(每小题6分,共36分)1.在ABC ∆中,579AB BC AC ===,,,D 为AC 上一点,且5BD =,则AD ∶DC =( )A .7∶5B .11∶6C .13∶5D .19∶82.在ABC ∆中,601ABC A b S ∆==,,sin sin sin a b cA B C ++++的值等于( )A BCD .3.在ABC ∆中,A B >是sin sin A B >的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.在ABC ∆中,A ∶B ∶4C =∶2∶1,ABC ∆的对边分别为a b c ,,,则有( ) A .111a b c+= B .111b c a +=C .111c a b+=D .以上均不对5.在ABC ∆中,若445a b A ===,,则满足条件的三角形的个数是( )A .1B .2C .0D .无数6.锐角ABC ∆的三边分别为a b c ,,,它的外心到三边的距离分别为m n p ,,,则m ∶n ∶p=( ) A .1a ∶1b ∶1cB .a ∶b ∶cC .cos A ∶cos B ∶cos CD .sin A ∶sin B ∶sin C二、填空题(每小题9分,共54分)7.三角形的三边分别是a b c ,,,且满足()()3a b c a b c ab +++-=,则c 的对角等于 . 8.在ABC ∆中,若2cos sin sin B A C =,则ABC ∆的形状为 .9.已知ABC ∆的面积为2221()4S a b c =+-,则2log sin C = .10.在ABC ∆中,三边,,a b c 满足2a c b +=,且3A C π-=,则sin B = .11.已知三角形两边之和为16,其夹角为60,则三角形面积的最大值为 . 12.设ABC ∆的三个内角A B C ,,成等比数列,且公比3q =,则cos cos cos cos B C C A +cos cos =A B + .三、解答题(每小题20分,共60分)13.在ABC ∆中,若角A B C ,,所对的边分别是a b c ,,,且2b ac =,求1sin 2sin cos By B B+=+的取值范围.14.已知ABC ∆的三个内角A B C ,,满足112cos cos A C B A C +=+=, ,求cos 2A C-的值.15.求证:若ABC ∆的三边分别为a b c ,,,则有2221111(sin sin sin )(cot cot cot )()()2A B C A B C a b c ab bc ca ++++=++++.B 卷一、选择题(每小题6分,共36分)1.设a b c d ,,,是四边形MNPQ 的MN NP PQ ,,和QM 的长,若A 是四边形的面积,则( )A .当且仅当MNPQ 为矩形时,22a c b d A ++=⋅B .当且仅当MNPQ 为矩形时,22a cb d A ++⋅≤ C .当且仅当MNPQ 为平行四边形时,22ac bd A ++⋅≤D .当且仅当MNPQ 为平行四边形时,a c b d A ++⋅≥ 2.点A B C D ,,,在一直径为1的圆上,点X 在直径AD 上,且3BX CX BAC BXC =∠=∠,36︒=,那么AX =( )A .cos6cos12sec18︒︒︒B .cos6sin12csc18︒︒︒C .cos6sin12sec18︒︒︒D .sin 6sin12csc18︒︒︒3.锐角三角形ABC 中,2B A =,则:b a 的取值范围是( )A .(22)-,B .(02),C .2)D .4.在ABC ∆中,若223cos cos C A a c b +=,则三边的关系式为( )A .2a b c +=B .2a c b +=C .2b c a +=D .a b c ==5.已知ABC ∆中,2222014a b c +=,则cot C =( )A .2014B .1007C .2013D .201326.设A B C ,,是ABC ∆的三内角,方程2(sin sin )(sin sin )(sin sin )0A B x C A x B C -+-+-=有两相等实根,则有( )A .60B ︒=B .60B ︒≥C .60B ︒≤D .90B ︒=二、填空题(每小题9分,共54分)7.一个三角形三边长分别为4,5,6,则其外接圆的半径为 .8.ABC ∆中,60sin 3sin ABC A C B S ︒∆∠===, ,AD 是BAC ∠的平分线,E 为AD 延长线上一点,且BE CE =,则AE 的长为 .9.ABC ∆中,BC 的长为定值a ,AB AC +为定长d ,A 为定角,则面积为 . 10.锐角ABC ∆是一单位圆的内接三角形,p 为半周长,则p 与cos cos cos A B C ++的大小关系为 .11.设A B C ,,为ABC ∆的三个内角,则S =的最大值为 .12.ABC ∆满足23436a b c ++=,则222()()()1cos 1cos 1cos a p a b p b c p c A B C ---+++++的最大值为 . 三、解答题(每小题20分,共60分)13.如图,设BC a CA b AB c ===,,,在AB 上截取12AP BP =,在BC 上截取12BR CR =,在 CA 上截取12CQ AQ =,求证:111222PQ R P Q R S S ∆∆=.14.在ABC ∆顶点作//l AB ,A ∠的平分线交BC 于D ,交l 于E ,B ∠的平分线交AC 于F ,交l 于G ,如果DE GF =,求证:AC BC =.15.设半径为R 和r 的圆是一个内角为α的三角形的外接圆和内切圆,证明:21sin (1sin )R r αα-≥.BAC2P1P1R 2R1Q2Q。
正弦定理与余弦定理练习题(5篇模版)

正弦定理与余弦定理练习题(5篇模版)第一篇:正弦定理与余弦定理练习题正弦定理与余弦定理1.△ABC的内角A、B、C的对边分别为a、b、c,若c=2,b=6,B=120°,则a等于2.在△ABC中,角A、B、C的对边分别为a、b、c,若(a+c-b)tanB=3ac,则角B的值为3.下列判断中正确的是A.△ABC中,a=7,b=14,A=30°,有两解B.△ABC中,a=30,b=25,A=150°,有一解C.△ABC中,a=6,b=9,A=45°,有两解D.△ABC中,b=9,c=10,B=60°,无解4.在△ABC中,若2cosBsinA=sinC,则△ABC一定是()()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形5.在△ABC中,A=120°,AB=5,BC=7,则A.85sinB的值为sinC5335()B.458C.D.()6.△ABC中,若a+b+c=2c(a+b),则∠C的度数是A.60°B.45°或135°C.120°D.30°7.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=7,c=3,则B=.8.在△ABC中,A=60°,AB=5,BC=7,则△ABC的面积为.9.在△ABC中,角A、B、C所对的边分别为a、b、c.若(b-c)cosA=acosC,则cosA10.在△ABC中,已知a=3,b=2,B=45°,求A、C和c.11.在△ABC中,a、b、c分别是角A,B,C的对边,且cosBb=-.cosC2a+c(1)求角B的大小;(2)若b=,a+c=4,求△ABC的面积.12.在△ABC中,a、b、c分别表示三个内角A、B、C的对边,如果(a+b)sin(A-B)=(a-b)sin(A+B),判断三角形的形状.2213.已知△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC 的面积为S,且2S=(a+b)-c,求tanC的值.14.已知△ABC的三个内角A、B、C的对边分别为a、b、c,若a、b、c成等差数列,且2cos2B-8cosB+5=0,求角B的大小并判断△ABC的形状.15.在△ABC中,角A、B、C的对边分别为a、b、c,已知a+b=5,c=7,且4sin(1)求角C的大小;(2)求△ABC的面积.7A+B-cos2C=.22第二篇:正弦定理和余弦定理练习题【正弦定理、余弦定理模拟试题】一.选择题:1.在∆ABC中,a=23,b=22,B=45︒,则A为()A.60︒或120︒B.60︒C.30︒或150︒D.30︒sinAcosB2.在∆AB C中,若=,则∠B=()abB.45︒C.60︒D.90︒A.30︒3.在∆ABC中,a2=b2+c2+bc,则A等于()B.45︒C.120︒D.30︒A.60︒→→→→→→→|AB|=1,|BC|=2,(AB+BC)⋅(AB+BC)=5+23,4.在∆ABC中,则边|AC|等于()A.5B.5-23C.5-23D.5+235.以4、5、6为边长的三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角或钝角三角形6.在∆ABC中,bcosA=acosB,则三角形为()A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形7.在∆ABC中,cosAcosB>sinAsinB,则∆ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形8.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为()A.52B.213C.16 D.4二.填空题:9.在∆ABC中,a+b=12,A=60︒,B=45︒,则a=_______,b=________10.在∆ABC中,化简bcosC+ccosB=___________11.在∆ABC中,已知sinA:sinB:sinC=654::,则cosA=___________12.在∆ABC中,A、B均为锐角,且cosA>sinB,则∆ABC是_________三.解答题:13.已知在∆ABC中,∠A=45︒,a=2,c=6,解此三角形。
第21讲 正弦定理和余弦定理-2021年新高考数学一轮专题复习(新高考专版)(解析版)

第21讲-正弦定理和余弦定理一、 考情分析1.掌握正弦定理、余弦定理.2.能解决一些简单的三角形度量问题.二、 知识梳理1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理公式a sin A =b sin B =csin C =2Ra 2=b 2+c 2-2bc cos__A ;b 2=c 2+a 2-2ca cos__B ; c 2=a 2+b 2-2ab cos__C 常见变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin__C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R ; (3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C ; (4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的个数一解两解一解一解无解[微点提醒]1.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ;(3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C 2. 2.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 3.在△ABC 中,两边之和大于第三边,两边之差小于第三边,A >B ⇔a >b ⇔sin A > sin B ⇔cos A <cos B .三、 经典例题考点一 利用正、余弦定理解三角形【例1】 (1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若 (a +b )(sin A -sin B )=(c -b )sin C ,则A =( ) A.π6 B.π3 C.5π6 D.2π3(3)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B.π3C.π4D.π6 【解析】 (1)由正弦定理,得sin B =b sin C c =6×323=22, 结合b <c 得B =45°,则A =180°-B -C =75°. (2)∵(a +b )(sin A -sin B )=(c -b )sin C ,∴由正弦定理得(a +b )(a -b )=c (c -b ),即b 2+c 2-a 2=bc . 所以cos A =b 2+c 2-a 22bc =12, 又A ∈(0,π),所以A =π3.(3)因为a 2+b 2-c 2=2ab cos C ,且S △ABC =a 2+b 2-c 24,所以S △ABC =2ab cos C 4=12ab sin C ,所以tan C =1.又C ∈(0,π),故C =π4.规律方法 1.三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.2.已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数.考点二判断三角形的形状【例2】(1)在△ABC中,角A,B,C所对的边分别为a,b,c,若cb<cos A,则△ABC为()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形(2)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定【解析】(1)由cb<cos A,得sin Csin B<cos A,又B∈(0,π),所以sin B>0,所以sin C<sin B cos A,即sin(A+B)<sin B cos A,所以sin A cos B<0,因为在三角形中sin A>0,所以cos B<0,即B为钝角,所以△ABC为钝角三角形.(2)由正弦定理得sin B cos C+sin C cos B=sin2A,∴sin(B+C)=sin2A,即sin A=sin2A.∵A∈(0,π),∴sin A>0,∴sin A=1,即A=π2,∴△ABC为直角三角形.规律方法 1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系;(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制.考点三和三角形面积、周长有关的问题角度1 与三角形面积有关的问题【例3-1】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 【解析】(1)由sin A +3cos A =0及cos A ≠0, 得tan A =-3,又0<A <π, 所以A =2π3.由余弦定理,得28=4+c 2-4c ·cos 2π3. 即c 2+2c -24=0,解得c =-6(舍去),c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6. 故△ABD 与△ACD 面积的比值为12AB ·AD sin π612AC ·AD =1.又△ABC 的面积为12×4×2sin ∠BAC =23, 所以△ABD 的面积为 3.角度2 与三角形周长有关的问题【例3-2】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________. 【解析】 由正弦定理a sin A =bsin B ,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A . 又在△ABC 中,sin B >0,∴sin A =3cos A , 即tan A = 3. ∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A=(b +c )2-3bc ≥(b +c )2-3⎝⎛⎭⎪⎫b +c 22, 则(b +c )2≤64,即b +c ≤8(当且仅当b =c =4时等号成立), ∴△ABC 周长=a +b +c =4+b +c ≤12,即最大值为12.规律方法 1.对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.2.与面积周长有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. [方法技巧]1.正弦定理和余弦定理其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系.2.在已知关系式中,既含有边又含有角,通常的解题思路是:先将角都化成边或边都化成角,再结合正弦定理、余弦定理即可求解.3.在△ABC 中,若a 2+b 2<c 2,由cos C =a 2+b 2-c 22ab <0,可知角C 为钝角,则△ABC 为钝角三角形.4.在利用正弦定理解有关已知三角形的两边和其中一边的对角解三角形时,有时出现一解、两解,所以要进行分类讨论.另外三角形内角和定理起着重要作用,在解题中要注意根据这个定理确定角的范围,确定三角函数值的符号,防止出现增解等扩大范围的现象.5.在判断三角形的形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.四、 课时作业1.(2020·安徽省舒城中学高一月考(文))在ABC 中,a =c =60A =︒,则C =( ). A .30° B .45°C .45°或135°D .60°【答案】B【解析】由正弦定理得2,sinC ,45sin 60sin 2c a C C =∴=<∴=.2.(2020·四川外国语大学附属外国语学校高一月考)在ABC ∆中,,,a b c 分别为,,A B C 的对边,60,1A b ==,则a =( )A .2BC .D【答案】D 【解析】依题意11sin 1sin 60322S bc A c ==⋅⋅=,解得4c =,由余弦定理得13a ==.3.(2020·浙江省高一期中)在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,222c a b =+,则C =( ) A .60 B .30C .60或120D .120【答案】B【解析】222c a b =+,222a b c ∴+-=,由余弦定理得222cos 2a b c C ab +-==, 0180C <<,因此,30C =.4.(2020·金华市江南中学高一期中)钝角三角形ABC 的面积是12,AB=1,,则AC=( )A .5BC .2D .1【答案】B【解析】由面积公式得:1122B =,解得sin B =,所以45B =或135B =,当45B =时,由余弦定理得:21245AC =+-=1,所以1AC =,又因为AB=1,,所以此时ABC ∆为等腰直角三角形,不合题意,舍去;所以135B =,由余弦定理得:212AC =+-=5,所以AC =故选B.5.(2020·全国高三(文))在锐角ABC ∆中,若2C B =,则cb的范围( )A .B .)2C .()0,2D .)2【答案】A【解析】由正弦定理得c sinC sin2B sinB sinBb ===2cosB ,∵△ABC 是锐角三角形,∴三个内角均为锐角, 即有 0<B <2π, 0<C=2B <2π,0<π-A-B=π-3B <2π,解得6π<B <4π,余弦函数在此范围内是减函数.故2<cosB ∴c b ∈,故选A .6.(2020·全国高三(文))在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cosC 等于 ( ) A .23B .23-C .13-D .14-【答案】D【解析】由正弦定理可得;sinA :sinB :sinC=a :b :c=2:3:4可设a=2k ,b=3k ,c=4k (k >0)由余弦定理可得,cosC=1-4,选D7.(2020·山东省枣庄八中高一开学考试)在ABC 中,π3A =,b 2=,其面积为sin sin A Ba b++等于( )A .14B .13C D 【答案】A【解析】因为在ABC 中,π3A =,b 2=,其面积为所以12bcsinA =,因此4c =, 所以22212416224122a b c bccosA =+-=+-⨯⨯⨯=,所以a = 由正弦定理可得:a b sinA sinB=,所以sin sin sin 14A B Aa b a +===+. 8.(2020·四川省高三二模(文))ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若sin 2sin B A =,3C π=,则ca的值为( )A B C .2 D .12【答案】A【解析】由sin 2sin B A =,据正弦定理有2b a =,又3C π=,根据余弦定理有222cos 2a b c C ab +-=,即222214222a a c a+-=⨯,223c a =故ca=9.(2020·秦皇岛市抚宁区第一中学高二月考(理))在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知sin cos 2A a B b c -=-,则A = A .6πB .4π C .3π D .23π 【答案】C【解析】由已知和正弦定理得sin sin cos 2sin sin B A A B B C -=-,sin sin cos 2sin sin()B A A B B A B -=-+,()sin sin cos 2sin sin cos cos sin B A A B B A B A B -=-+sin 2sin cos sin B A B A B =-,因为sin 0B ≠,cos 2A A +=,即sin 16A π⎛⎫+= ⎪⎝⎭,所以262A k πππ+=+,即23A k ππ=+,又(0,)A π∈,所以3A π=,故选C .10.(2020·金华市江南中学高一期中)在ABC ∆中,内角,,A B C 所对的边分别为,,,a b c若a =60A ︒=,45B ︒=,则b 的长为( )A.2B .1 CD .2【答案】C 【解析】在ABC ∆中,内角,,A B C 所对的边分别为,,,a b c且a =60A ︒=,45B ︒=由正弦定理sin sin a b A B= 得:sin sin a Bb A===故选:C.11.(2020·浙江省高二学业考试)已知ABC 的三个内角A ,B ,C 所对的三条边为a ,b ,c ,若::1:1:4A B C =,则::a b c =( )A .1:1:4B .1:1:2C .1:1:3D .1:1:3【答案】D【解析】设A x =,则,4B x C x ==,所以4180x x x ++=︒,解得30x =︒, 则30,30,120A B C =︒=︒=︒,则::sin :sin :sin sin 30:sin 30:sin1201:1:3a b c A B C ==︒︒︒=,故选:D. 12.(2020·威远中学校高一月考(文))在△ABC 中,a=3,b=5,sinA=,则sinB=( ) A . B .C .D .1【答案】B【解析】由正弦定理得,故选B .13.(2020·石嘴山市第三中学高三其他(理))在三角形ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且满足22265b c a bc +=+,则sin 2B C +⎛⎫= ⎪⎝⎭( ) A .22B 5C .25D 25【答案】D【解析】∵22265b c a bc +=+,即22265a b c bc -=+,由余弦定理可得2222cos a b c bc A =+-, ∴62cos 5bc A bc =, ∴3cos 5A =,则02A π<<, ∵ABC π++=, ∴1cos 25sin cos 222B C A A ++⎛⎫===⎪⎝⎭,故选:D . 14.(2020·山东省高三其他)在3世纪中期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这可视为中国古代极限观念的佳作.割圆术可以视为将一个圆内接正n 边形等分成n 个等腰三角形(如图所示),当n 变得很大时,等腰三角形的面积之和近似等于圆的面积.运用割圆术的思想,可得到sin 3°的近似值为( )(π取近似值3.14)A .0.012B .0.052C .0.125D .0.235【答案】B【解析】当120n =时,每个等腰三角形的顶角为360=3120︒︒,则其面积为21sin 32S r ∆=︒, 又因为等腰三角形的面积之和近似等于圆的面积, 所以221120sin 3sin 30.052260r r ππ⨯︒≈⇒︒≈≈,故选:B 15.(2020·全国高三(文))在ABC ∆中,若cos cos a cA C b++=,则ABC ∆的形状是( ) A .C 为直角的直角三角形 B .C 为钝角的钝角三角形 C .B 为直角的直角三角形 D .A 为锐角的三角形【答案】C【解析】因为cos cos a cA C b++=, 所以22222222b c a a b c a c bc ab b+-+-++=, 所以222222()()2()a b c a c a b c ac a c +-++-=+, 所以233()()()b a c a c ac a c +-+=+,所以222()()()()b a c a c a ac c ac a c +-+-+=+, 因为0a c +>,所以222()b a ac c ac --+=, 所以222a c b +=, 所以B 为直角.16.(2020·四川省成都外国语学校高一期中(文))在锐角..ABC 中, 2,2a B A ==,则b 的取值范围是( ) A .(2,23B .(22,23C .()2,4D .()23,4【答案】B【解析】由题得3,C B A A ππ=--=-因为三角形是锐角三角形,所以0202,,cos 2642032A B A A A C A ππππππ⎧<<⎪⎪⎪<=<∴<<<<⎨⎪⎪<=-<⎪⎩. 由正弦定理得22,,4cos sin sin sin 22sin cos sin b b b b A B A A A A A=∴==∴=.所以b ∈.17.(2020·四川省高一月考(理))在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若,23C c π==,当ABC 面积最大时,此时的ABC 为( )A .直角三角形B .钝角三角形C .等边三角形D .不能对形状进行判断 【答案】C【解析】1sin 23ABC S ab π==,当ab 取最大值,面积最大, 由余弦定理可得,2242a b ab ab ab ab =+-≥-=,解得4ab ≤,当2a b ==等号成立,所以ABC 为等边三角形.故选:C.18.(2020·宁夏回族自治区银川一中高三其他(文))已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的外接圆的面积为3π,且222cos cos cos 1sin sin A B C A C -+=+,则ABC 的最大边长为( )A .3B .4C .5D .6【答案】A【解析】因为222cos cos cos 1sin sin A B C A C -+=+,所以222sin sin sin sin sin A C B A C +-=-,由正弦定理得222a cb ac +-=-,所以2221cos 22a c b B ac +-==-,120B =︒,所以b 边最大, 设ABC 外接圆半径为R ,则23R ππ=,R =, 由2sin b R B=得2sin 3b R B ==︒=. 19.(2020·辽宁省高三月考(文))已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足6a =,c =2sin tan tan cos C A B A +=,则ABC S =( ) A.B. C. D.【答案】B 【解析】由2sin tan tan cos C A B A +=,得sin cos cos sin 2sin cos cos cos A B A B C A B A +=,即sin 2sin cos C C B=. 因为sin 0C ≠,所以1cos ,(0,)2B B π=∈,所以3B π=,因此11sin 622ABC S ac B ==⨯⨯△=20.(2020·威远中学校高一月考(文))在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若ABC ∆的面积为S ,且221,41a S b c ==+-,则ABC ∆外接圆的面积为( ) A .2π B .2π CD.4【答案】A【解析】∵由余弦定理可得:222222cos 1bc A b c a b c =+-=+-, 又∵1sin 2S bc A =,可得42sin S bc A =, ∵2241S b c =+-,可得:2cos 2sin bc A bc A =,即tan 1A =,∵()0,A π∈,∴4A π=,设ABC 外接圆的半径为R ,由正弦定理可得: 2sin R Aa =,22R =得:2R =,∴ABC 外接圆的面积22S R ππ==,故选:A.21.(2020·山东省高三其他)已知ABC △同时满足下列四个条件中的三个: ①π3A =;②2cos 3B =-;③ 7a =;④ 3b =. (Ⅰ)请指出这三个条件,并说明理由;(Ⅱ)求ABC △的面积.【解析】(Ⅰ)解:ABC △同时满足①,③,④.理由如下:若ABC △同时满足①,②. 因为21cos 32B =-<-,且(0,π)B ∈,所以2π3B >. 所以πA B +>,矛盾.所以ABC △只能同时满足③,④.所以a b >,所以A B >,故ABC △不满足②.故ABC △满足①,③,④.(Ⅱ)解:因为2222cos a b c bc A =+-, 所以222173232c c =+-⨯⨯⨯. 解得8c =,或5c =-(舍).所以△ABC 的面积1sin 2S bc A ==22.(2020·山东省枣庄八中高一开学考试)一道题目因纸张破损,其中的一个条件不清楚,具体如下:在ABC ∆中,已知a =_______,)22cos 1cos 2A C B +=,经过推断破损处的条件为该三角形一边的长度,且该题的答案为60A =︒,那么缺失的条件是什么呢?问题:(1)如何根据题目条件求出,B C 的大小?(2)由求得的,B C 的值和正弦定理如何求出,b c 的值?(3)破损处的条件应该用b 边的长度还是用c 边的长度,还是二者均可?为什么?【解析】(1)由()22cos=1+cos 2A C A C ++, 即()22cos =1+cos 1cos 2A C A CB ++=-又)22cos 1cos 2A C B +=所以cos 2B =,又()0,180B ∈ 所以45B =,则180456075C =--=(2)由sin sin sin a b c A B C ==且a =所以可知2sin 2sin a B b A ===由()6sin 75sin 4530+=+=所以62sin sin 2a C c A +=== (3)只能用c 若用b =sin sin aB A b == 那么60A =或120,故有两个值,所以不能用b =23.(2020·肥城市教学研究中心高三其他)在ABC 中,,,a b c 分别为角,,A B C 所对的边,且22()b a ac c -=-.(1)求角B .(2)若 b =2a c +的最大值.【解析】(1)22()b a a c c -=-即222b a c ac =+-2222cos b a c ac B =+-1cos 2B ∴= (0,)B π∈3B π∴=(2)由sin sin a c A C ==可得,2sin ,2sin a A c C ==24sin 2sin a c A C ∴+=+ 2+3A C π= 23C A π∴=- 224sin 2sin 3a c A A π∴+=+-() 5sin A A=)A ϕ=+(其中tan ϕ=) 203A π<< 2ac ∴+的最大值为24.(2020·山东省高三其他)已知,,a b c 分别为ABC ∆内角,,A B C 的对边试从下列①②条件中任选一个作为已知条件并完成下列(1)(2)两问的解答①sin sin sin sin A C A B b a c --=+;②2cos cos cos c C a B b A =+. (1)求角C(2)若c =a b +=求ABC ∆的面积. 【解析】(1)选择①根据正弦定理得a c a b b a c--=+, 从而可得222a c ab b -=-,根据余弦定理2222cos c a b ab C =+-,解得1cos 2C =, 因为()0,πC ∈,故π3C =. 选择②根据正弦定理有sin cos sin cos 2sin cos A B B A C C +=,即()sin 2sin cos A B C C +=,即sin 2sin cos C C C =因为()0,πC ∈,故sin 0C ≠,从而有1cos 2C =, 故π3C = (2)根据余弦定理得2222cos c a b ab C =+-,得223a b ab =+-,即()233a b ab =+-,解得83ab =, 又因为ABC 的面积为1sin 2ab C , 故ABC 的面积为23. 25.(2020·四川外国语大学附属外国语学校高一月考)如图,在四边形ABCD 中,AD AB ⊥,60CAB ︒∠=,120BCD ︒∠=,2AC =.(1)若15ABC ︒∠=,求DC ;(2)记ABC θ∠=,当θ为何值时,BCD ∆的面积有最小值?求出最小值.【解析】(1)在四边形ABCD 中,因为AD AB ⊥,120BCD ∠=,15ABC ︒∠=所以135ADC ︒∠= ,在ACD ∆中,可得906030CAD ︒︒︒∠=-=,135ADC ︒∠=,2AC =由正弦定理得:sin sin CD AC CAD ADC=∠∠,解得:2CD = . (2)因为60CAB ∠=,AD AB ⊥可得30CAD ∠=,四边形内角和360得150ADC θ∠=-,∴在ADC ∆中,()()21sin 30sin 150sin 150DCDC θθ=⇒=--. 在ABC ∆中,2sin 60sin sin BC BC θθ=⇒=, ()131sin12024sin 150sin BCDS DC BC θθ∆∴=⋅⋅=⨯- 334422444==)34360=+, 当75θ=时,S 取最小值6-.。
正弦定理和余弦定理习题及答案

正弦定理和余弦定理习题及答案正弦定理和余弦定理 测试题一、选择题:1.在△ABC 中,a =15,b =10,A =60°,则cos B =( )A .-223 B.223 C .-63D.632.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°3.E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ∠ECF =( )A.1627B.23C.33D.344.△ABC 中,若lg a -lg c =lgsin B =-lg 2且B ∈⎝ ⎛⎭⎪⎫0,π2,则△ABC的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形5.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3 C.3+33D .2+ 36.已知锐角A 是△ABC 的一个内角,a 、b 、c 是三角形中各内角的对应边,若sin 2A -cos 2A =12,则( )A .b +c =2aB .b +c <2ªC .b +c ≤2aD .b +c ≥2a7、若ABC ∆的内角A 满足2sin 23A =,则sin cos A A +=15.15.53 D .53-8、如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形9、ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,则角C 的大小为(A)6π (B)3π (C) 2π (D) 23π10、已知等腰ABC △的腰为底的2倍,则顶角A 的正切值是( ) A.323 C.158D.15720、已知ABC △21,且sin sin 2A B C +=.(I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.21、△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ,b ,c 成等比数列,.43cos =B(Ⅰ)求cot A +cot C 的值; (Ⅱ)设32BA BC ⋅=,求a +c 的值.22、 某海轮以30海里/小时的速度航行,在A 点测得海面上油井P 在南偏东︒60,向北航行40分钟后到达B 点,测得油井P 在南偏东︒30,海轮改为北偏东︒60的航向再行驶80分钟到达C 点,求P 、C 间的距离.答案1.解析:依题意得0°<B <60°,由正弦定理得a sin A =bsin B得sin B =b sin A a =33,cos B =1-sin 2B =63,选D. 2.解析:由sin C =23sin B 可得c =23b ,由余弦定理得cos A =b 2+c 2-a 22bc =-3bc +c 22bc =32,于是A =30°,故选A. 3.解析:设AC =1,则AE =EF =FB =13AB =23,由余弦定理得CE =CF =AE 2+AC 2-2AC ·AE cos45°=53,所以cos ∠ECF =CE 2+CF 2-EF 22CE ·CF =45,所以tan ∠ECF =sin ∠ECF cos ∠ECF=1-⎝ ⎛⎭⎪⎫45245=34. 答案:D 4.解析:∵lg a -lg c =lgsin B =-lg 2,∴lg a c =lgsin B =lg 22.∴a c =sin B =22. ∵B ∈⎝⎛⎭⎪⎫0,π2,∴B =π4,由c =2a , 得cos B =a 2+c 2-b 22ac=3a 2-b 222a2=22. ∴a 2=b 2,∴a =b . 答案:D5.解析:2b =a +c ,12ac ·12=12⇒ac =2,a 2+c 2=4b 2-4,b 2=a 2+c 2-2ac ·32⇒b 2=4+233⇒b =3+33. 答案:C6.解析:由sin 2A -cos 2A =12,得cos2A =-12, 又A 是锐角,所以A =60°,于是B +C =120°. 所以b +c 2a =sin B +sin C2sin A=2sinB +C2cosB -C23=cosB -C2≤1,b +c ≤2a . 答案:c7.解:由sin2A =2sinAcosA >0,可知A 这锐角,所以sinA +cosA >0, 又25(sin cos )1sin 23A A A +=+=,故选A8.解:111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由211211211sin cos sin()2sin cos sin()2sin cos sin()2A A A B B B C C C πππ⎧==-⎪⎪⎪==-⎨⎪⎪==-⎪⎩,得212121222A A B B C C πππ⎧=-⎪⎪⎪=-⎨⎪⎪=-⎪⎩,那么,2222A B C π++=,所以222A B C ∆是钝角三角形。
正弦定理和余弦定理(习题课1)

§1.3 正弦定理和余弦定理(习题课1)
1. 进一步熟悉正、余弦定理内容;
一、课前准备
复习1:写出正弦定理及其变式
2.写出余弦定理及其变式
复习2:
1. 已知三角形两边及其夹角(用余弦定理解决);
2. 已知三角形三边问题(用余弦定理解决);
3. 已知三角形两角和一边问题(用正弦定理解决);
4. 已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解
和无解三种情况).
二.合作探究
1.已知∆ABC的顶点为A(1,1),B(m+4,m-4),C(0,0),cosC=-0.6,求常数m的值。
2.已知∆ABC的顶点为A(2,0),B(-1,4),C(5,1),求三个内角的余弦值。
三.收获总结
四.达标检测
1. 已知∆ABC 的顶点为A (3,4),B (8,6),C (2,k ),k 为常数,若A B ∠=∠,求k 的值。
2. 在∆ABC 中,已知sinA=2sinBcosC,试分别用正余弦定理与和角公式两种方法证明∆ABC 是等腰三角形。
3.在∆ABC 中,已知
cos cos cos a b c A B C ==,求证这个三角形为等边三角形。
【新教材教案】6.4.3 余弦定理、正弦定理(第2课时)正弦定理 教学设计(1)-人教A版必修第二册

6.4.3 余弦定理、正弦定理第2课时 正弦定理本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A 版)第六章《平面向量及其应用》,本节课主要学习正弦定理,用正弦定理来解三角形。
《正弦定理》是三角形理论中的一个重要内容,与初中学习的三角形的边和角的基本关系有密切的联系。
在此之前,学生已经学习过了正弦函数和余弦函数、余弦定理,知识储备已足够。
它是后续课程中解三角形的理论依据,也是解决实际生活中许多测量问题的工具。
因此熟练掌握正弦定理能为接下来学习解三角形打下坚实基础,并能在实际应用中灵活变通。
A理解并掌握正弦定理的证明;B.运用正弦定理解三角形;C.探索正弦定理的证明过程,并能掌握多种证明方法。
1.教学重点:正弦定理的内容,正弦定理的证明及应用;2.教学难点:正弦定理的探索及证明,已知两边和一对角解三角形时三角形解的个数。
多媒体教学过程 教学设计意图 核心素养目标一、复习回顾,温故知新 1.余弦定理及其推论 【答案】B ac c a b A bc c b a cos 2cos 2222222-+=-+=,C ab b a c cos 2222-+=ac b c a B bc a c b A 2cos 2cos 222222-+=-+=,,ab c b a C 2cos 222-+=二、探索新知探究:余弦定理及其推论分别给出了已知两边及其夹角,已知三边直接解三角形的公式。
如果已知两角和一边,是否也有相应的直接解三角形的公式呢?在直角三角形中,能得到三边、三角之间的什么关系式?【分析】 在直角三角形ABC 中,由锐角三角函数, 再根据正弦函数的定义,可得c bB c a A ==sin ,sin ,所以c B bA a ==sin sin ,因为1sin =C ,所以CcB b A a sin sin sin == 思考1:对于一般的三角形,CcB b A a sin sin sin ==仍然成立吗? 【解析】分锐角三角形、钝角三角形证明。
(新)高中数学高考一轮复习正弦定理和余弦定理复习课教学设计

(新)高中数学高考一轮复习正弦定理和余弦定理复习课教学设计(新)高中数学高考一轮复习:正弦定理和余弦定理复习课教学设计《正弦定理和余弦定理》复习课教学设计设计意图:学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。
作为复习课一方面要将本章知识作一个梳理,另一方面要通过整理归纳帮助学生学会分析问题,合理选用并熟练运用正弦定理、余弦定理等知识和方法解决三角形综合问题和实际应用问题。
数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。
虽然是复习课,但我们不能一味的讲题,在教学中应体现以下教学思想:⑴重视教学各环节的合理安排:设疑探究拓展实践循环此流程在生活实践中提出问题,再引导学生带着问题对新知进行探究,然后引导学生回顾旧知识与方法,引出课题。
激发学生继续学习新知的欲望,使学生的知识结构呈一个螺旋上升的状态,符合学生的认知规律。
⑵重视多种教学方法有效整合,以讲练结合法、分析引导法、变式训练法等多种方法贯穿整个教学过程。
⑶重视提出问题、解决问题策略的指导。
⑸注意避免过于繁琐的形式化训练。
从数学教学的传统上看解三角形内容有不少高度技巧化、形式化的问题,我们在教学过程中应该注意尽量避免这一类问题的出现。
二、实施教学过程评述:利用正弦定理,将命题中边的关系转化为角间关系,从而全部利用三角公式变换求解.思考讨论:该题若用余弦定理如何解决【例2】已知a、b、c分别是△ABC的三个内角A、B、C所对的边,(1)若△ABC的面积为,c=2,A=600,求边a,b的值;(2)若a=ccoB,且b=cinA,试判断△ABC的形状。
(五)变式训练、归纳整理【例3】已知a、b、c分别是△ABC的三个内角A、B、C所对的边,若bcoC=(2a-c)coB(1)求角B(2)设,求a+c的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题课 正弦定理和余弦定理
学习目标 1.进一步熟练掌握正弦、余弦定理在解各类三角形中的应用;2.提高对
正弦、余弦定理应用范围的认识;3.初步应用正弦、余弦定理解决一些和三角函
数、向量有关的综合问题.
1.在△ABC中,sin A∶sin B∶sin C=3∶2∶3,则cos C的值为( )
A.13 B.-23
C.14 D.-14
解析 ∵在△ABC中,sin A∶sin B∶sin C=3∶2∶3,
∴a∶b∶c=3∶2∶3,设a=3k,b=2k,c=3k(k>0),
则cos C=a2+b2-c22ab=9k2+4k2-9k212k2=13,故选A.
答案 A
2.已知△ABC的面积S=a2-(b2+c2),则cos A等于( )
A.-4 B.1717
C.±1717 D.-1717
解析 ∵cos A=b2+c2-a22bc,面积S=12bcsin A=a2-(b2+c2),∴12bcsin A=-
2bccos A,
∴sin A=-4cos A,又sin2A+cos2A=1,联立解得cos A=-1717.故选D.
答案 D
3.△ABC的内角A,B,C的对边分别为a,b,c.已知sin B+sin A(sin C-cos C)
=0,a=2,c=2,则C=( )
A.π12 B.π6
C.π4 D.π3
解析 由题意得sin(A+C)+sin A(sin C-cos C)=0,
即sin Acos C+cos Asin C+sin Asin C-sin Acos C=0,
即sin C(sin A+cos A)=2sin CsinA+π4=0,因为sin C≠0,所以sinA+π4=0,
又因为A∈(0,π),所以A+π4=π,所以A=3π4.
由正弦定理asin A=csin C得2sin 3π4=2sin C,所以sin C=12,得C=π6,故选B.
答案 B
4.在△ABC中,内角A,B,C所对应的边分别是a,b,c,若c2=(a-b)2+6,C
=π3,则△ABC的面积是________.
解析 由c2=(a-b)2+6,可得c2=a2+b2-2ab+6,
由余弦定理,得c2=a2+b2-2abcos C=a2+b2-ab,
所以a2+b2-2ab+6=a2+b2-ab,所以ab=6;所以S△ABC=12absin C=12×6×
3
2
=332.
答案 332
题型一 利用正弦、余弦定理证明边角恒等式
【例1】 在△ABC中,A,B,C的对边分别为a,b,c,求证:a2-b2c2=sin(A-B)sin C.
证明 在△ABC中,由余弦定理得a2=b2+c2-2bccos A,
b2=a2+c2-2accos B,
∴a2-b2=b2-a2-2bccos A+2accos B,
∴2(a2-b2)=2accos B-2bccos A,
即a2-b2=accos B-bccos A,
∴a2-b2c2=acos B-bcos Ac.
由正弦定理得a=2Rsin A,b=2Rsin B,c=2Rsin C,
∴a2-b2c2=sin Acos B-cos Asin Bsin C=sin(A-B)sin C,
故等式成立.
规律方法 (1)证明三角恒等式,关键是消除等号两端三角函数式的差异.形式上一
般有:左⇒右;右⇒左或左⇒中⇐右三种.
(2)利用正弦、余弦定理证明三角形中的恒等式的途径有两种:一是把角的关系通
过正弦、余弦定理转化为边的关系;二是把边的关系转化为角的关系,一般是通
过正弦定理转化.
【训练1】 在△ABC中,若acos2C2+ccos2A2=3b2,求证:a+c=2b.
证明 由已知得a(1+cos C)+c(1+cos A)=3b,
即a+a·a2+b2-c22ab+c+c·b2+c2-a22bc=3b,
∴2ab+a2+b2-c2+2bc+b2+c2-a2=6b2,
整理得ab+bc=2b2,同除以b得a+c=2b,
故等式成立.
题型二 利用正弦、余弦定理解三角形
【例2】 在△ABC中,若c·cos B=b·cos C,且cos A=23,求sin B的值.
解 由c·cos B=b·cos C,结合正弦定理得,
sin Ccos B=sin Bcos C,
故sin(B-C)=0,∵0<B<π,0<C<π,
∴-π<B-C<π,∴B-C=0,B=C,故b=c.
∵cos A=23,∴由余弦定理得3a2=2b2,
再由余弦定理得cos B=66,又0°故sin B=306.
规律方法 (1)余弦定理和正弦定理一样,都是围绕着三角形进行边角互换的.在有
关三角形的题目中注意选择是应用正弦定理,还是余弦定理,必要时也可列方程
(组)求解.同时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓
住能利用某个定理的信息.
(2)解题时,还应注意,当把条件转化为角之间的关系时,还应注意三角恒等变换
公式的应用.
【训练2】 在锐角△ABC中,b2-a2-c2ac=cos(A+C)sin Acos A.
(1)求角A;
(2)若a=2,求bc的取值范围.
解 (1)由余弦定理可得:a2+c2-b2=2accos B,