计算方法实验报告(附代码)

合集下载

数值分析(计算方法)课程设计实验报告(附程序)

数值分析(计算方法)课程设计实验报告(附程序)

n=4 时,max[L(X)-h(X)]=0.4020;
n=8 时,max[L(X)-h(X)]=0.1708;
n=10 时,max[L(X)-h(X)]=0.1092。
图象分析: 从图象可以看出随着插值节点数的增加出现异常的摆动,中间能较好的接近 原函数,但两边却出现很大的误差。
(3).对定义在(-5,5)上的函数
程序代码 2:
x=[-1:0.2:1]; y=1./(1+25.*x.^2); x0=[-1:0.01:1]; y0=lagrange(x,y,x0); y1=1./(1+25.*x0.^2);
plot(x0,y0,'--r'); hold on; plot(x0,y1,'-b'); x2=abs(y0-y1); max(x2) ; 程序代码3: n=3; for i=1:n x(i)=cos(((2.*i-1).*pi)./(2.*(n+1))); y(i)=1./(1+25.*x(i).*x(i)); end x0=-1:0.01:1; y0=lagrange(x,y,x0); y1=1./(1+25.*x0.^2); plot(x0,y0,'--r') hold on plot(x0,y1,'-b')
以 x1,x2,„,xn+1 为插值节点构造上述各函数的 Lagrange 插值多项式, 比较其 结果。
设计过程: 已知函数 f(x)在 n+1 个点 x0,x1,…,xn 处的函数值为 y0,y1,…,yn 。 求一 n 次多 项式函数 Pn(x),使其满足: Pn(xi)=yi,i=0,1,…,n. 解决此问题的拉格朗日插值多项式公式如下

计算方法实验报告2

计算方法实验报告2

计算方法实验报告(四)方程和方程组的迭代解法一、实验问题利用简单迭代法,两种加速技术,牛顿法,改进牛顿法,弦割法求解习题5-1,5-2,5-3中的一题,并尽可能准确。

选取5-3:求x 3−x 2−1=0在x=1.5附近的根。

二、问题的分析(描述算法的步骤等)(1)简单迭代法算法:给定初始近似值p 0,求p =φ(p )的解。

Step 1 令i=0;Step 2 令p i+1=φ(p i )(计算p i+1);Step 3 如果p i+1=p i ,则迭代终止,否则重复Step 2。

(2)Aitken 加速法算法Step 1 令k=0,利用简单迭代算法x k+1=φ(x k )得到迭代序列x k ;Step 2 令x k ∗=x k -(x k −x k−1)2x k −2x k−1+x k−2(计算x k ∗得到一个新的序列x k ∗,其中k=0,1,2…);Step 3 如果x k+1∗=x k ∗,则迭代终止,否则重复Step 2。

(3)插值加速法算法Step 1 令k=0,利用简单迭代算法x k+1=φ(x k )得到迭代序列x k ;Step 2 令x k ∗=x k +(x k −x k−1)(x k −x k+1)x k−1−2x k +x k+1(计算x k ∗得到一个新的序列x k ∗,其中k=1,2,3…);Step 3 如果x k+1∗=x k ∗,则迭代终止,否则重复Step 2。

(4)牛顿法算法Step 1给定初始近似值x 0;Step 2令x k+1=x k −f (x k)f ′(x k ),其中k ∈N,计算得到x k 的 序列;Step 3如果x k+1=x k ,则迭代终止,否则重复Step 2。

(5)改进牛顿法的算法Step 1给定初始近似值x 0;Step 2令x k+1=x k −k ′k ′k ′2k "k k ,其中k ∈N,迭代计算得到x k 的 序列;Step 3如果x k+1=x k ,则迭代终止,否则重复Step 2。

计算方法_实验报告

计算方法_实验报告

一、实验目的1. 理解并掌握计算方法的基本概念和原理;2. 学会使用计算方法解决实际问题;3. 提高编程能力和算法设计能力。

二、实验内容本次实验主要涉及以下内容:1. 线性方程组的求解;2. 多项式插值;3. 牛顿法求函数零点;4. 矩阵的特征值和特征向量求解。

三、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 科学计算库:NumPy、SciPy四、实验步骤及结果分析1. 线性方程组的求解(1)实验步骤a. 导入NumPy库;b. 定义系数矩阵A和增广矩阵b;c. 使用NumPy的linalg.solve()函数求解线性方程组。

(2)实验结果设系数矩阵A和增广矩阵b如下:A = [[2, 1], [1, 2]]b = [3, 2]解得:x = [1, 1]2. 多项式插值(1)实验步骤a. 导入NumPy库;b. 定义插值点x和对应的函数值y;c. 使用NumPy的polyfit()函数进行多项式拟合;d. 使用poly1d()函数创建多项式对象;e. 使用多项式对象计算插值点对应的函数值。

(2)实验结果设插值点x和对应的函数值y如下:x = [1, 2, 3, 4, 5]y = [1, 4, 9, 16, 25]拟合得到的二次多项式为:f(x) = x^2 + 1在x = 3时,插值得到的函数值为f(3) = 10。

3. 牛顿法求函数零点(1)实验步骤a. 导入NumPy库;b. 定义函数f(x)和导数f'(x);c. 设置初始值x0;d. 使用牛顿迭代公式进行迭代计算;e. 判断迭代结果是否满足精度要求。

(2)实验结果设函数f(x) = x^2 - 2x - 3,初始值x0 = 1。

经过6次迭代,得到函数零点x ≈ 3。

4. 矩阵的特征值和特征向量求解(1)实验步骤a. 导入NumPy库;b. 定义系数矩阵A;c. 使用NumPy的linalg.eig()函数求解特征值和特征向量。

计算方法实验报告

计算方法实验报告

班级:地信11102班序号: 20姓名:任亮目录计算方法实验报告(一) (3)计算方法实验报告(二) (6)计算方法实验报告(三) (9)计算方法实验报告(四) (13)计算方法实验报告(五) (18)计算方法实验报告(六) (22)计算方法实验报告(七) (26)计算方法实验报告(八) (28)计算方法实验报告(一)一、实验题目:Gauss消去法解方程组二、实验学时: 2学时三、实验目的和要求1、掌握高斯消去法基础原理2、掌握高斯消去法法解方程组的步骤3、能用程序语言对Gauss消去法进行编程实现四、实验过程代码及结果1、实验算法及其代码模块设计(1)、建立工程,建立Gauss.h头文件,在头文件中建类,如下:class CGauss{public:CGauss();virtual ~CGauss();public:float **a; //二元数组float *x;int n;public:void OutPutX();void OutputA();void Init();void Input();void CalcuA();void CalcuX();void Calcu();};(2)、建立Gauss.cpp文件,在其中对个函数模块进行设计2-1:构造函数和析构函数设计CGauss::CGauss()//构造函数{a=NULL;x=NULL;cout<<"CGauss类的建立"<<endl;}CGauss::~CGauss()//析构函数{cout<<"CGauss类撤销"<<endl;if(a){for(int i=1;i<=n;i++)delete a[i];delete []a;}delete []x;}2-2:函数变量初始化模块void CGauss::Init()//变量的初始化{cout<<"请输入方程组的阶数n=";cin>>n;a=new float*[n+1];//二元数组初始化,表示行数for(int i=1;i<=n;i++){a[i]=new float[n+2];//表示列数}x=new float[n+1];}2-3:数据输入及输出验证函数模块void CGauss::Input()//数据的输入{cout<<"--------------start A--------------"<<endl;cout<<"A="<<endl;for(int i=1;i<=n;i++)//i表示行,j表示列{for(int j=1;j<=n+1;j++){cin>>a[i][j];}}cout<<"--------------- end --------------"<<endl;}void CGauss::OutputA()//对输入的输出验证{cout<<"-----------输出A的验证-----------"<<endl;for(int i=1;i<=n;i++){for(int j=1;j<=n+1;j++){cout<<a[i][j]<<" ";}cout<<endl;}cout<<"---------------END--------------"<<endl;}2-4:消元算法设计及实现void CGauss::CalcuA()//消元函数for(int k=1 ;k<n;k++){for(int i=k+1;i<=n;i++){double lik=a[i][k]/a[k][k];for(int j=k;j<=n+1;j++){a[i][j]-=lik*a[k][j];}a[i][k]=0; //显示消元的效果}}}2-5:回代计算算法设计及函数实现void CGauss::CalcuX()//回带函数{for(int i=n;i>=1;i--){double s=0;for(int j=i+1;j<=n;j++){s+=a[i][j]*x[j];}x[i]=(a[i][n+1]-s)/a[i][i];}}2-6:结果输出函数模块void CGauss::OutPutX()//结果输出函数{cout<<"----------------X---------------"<<endl;for(int i=1 ;i<=n;i++){cout<<"x["<<i<<"]="<<x[i]<<endl;}}(3)、“GAUSS消元法”主函数设计int main(int argc, char* argv[]){CGauss obj;obj.Init();obj.Input();obj.OutputA();obj.CalcuA();obj.OutputA();obj.CalcuX();obj.OutPutX();//obj.Calcu();return 0;2、实验运行结果计算方法实验报告(二)一、实验题目:Gauss列主元消去法解方程组二、实验学时: 2学时三、实验目的和要求1、掌握高斯列主元消去法基础原理(1)、主元素的选取(2)、代码对主元素的寻找及交换2、掌握高斯列主元消去法解方程组的步骤3、能用程序语言对Gauss列主元消去法进行编程实现四、实验过程代码及结果1、实验算法及其代码模块设计(1)、新建头文件CGuassCol.h,在实验一的基础上建立类CGauss的派生类CGuassCol公有继承类CGauss,如下:#include "Gauss.h"//包含类CGauss的头文件class CGaussCol:public CGauss{public:CGaussCol();//构造函数virtual ~CGaussCol();//析构函数public:void CalcuA();//列主元的消元函数int FindMaxIk(int k);//寻找列主元函数void Exchange(int k,int ik);//交换函数void Calcu();};(2)、建立CGaussCol.cpp文件,在其中对个函数模块进行设计2-1:头文件的声明#include "stdafx.h"#include "CGuassCol.h"#include "math.h"#include "iostream.h"2-2:派生类CGaussCol的构造函数和析构函数CGaussCol::CGaussCol()//CGaussCol类构造函数{cout<<"CGaussCol类被建立"<<endl;}CGaussCol::~CGaussCol()//CGaussCol类析构函数{cout<<"~CGaussCol类被撤销"<<endl;}2-3:高斯列主元消元函数设计及代码实现void CGaussCol::CalcuA()//{for(int k=1 ;k<n;k++){int ik=this->FindMaxIk(k);if(ik!=k)this->Exchange(k,ik);for(int i=k+1;i<=n;i++){float lik=a[i][k]/a[k][k];for(int j=k;j<=n+1;j++){a[i][j]-=lik*a[k][j];}}}}2-4:列主元寻找的代码实现int CGaussCol::FindMaxIk(int k)//寻找列主元{float max=fabs(a[k][k]);int ik=k;for(int i=k+1;i<=n;i++){if(max<fabs(a[i][k])){ik=i;max=fabs(a[i][k]);}}return ik;}2-5:主元交换的函数模块代码实现void CGaussCol::Exchange(int k,int ik)//做交换{for(int j=k;j<=n+1;j++){float t=a[k][j];a[k][j]=a[ik][j];a[ik][j]=t;}}(3)、建立主函数main.cpp文件,设计“Gauss列主元消去法”主函数模块3-1:所包含头文件声明#include "stdafx.h"#include "Gauss.h"#include "CGuassCol.h"3-2:主函数设计int main(int argc, char* argv[]){CGaussCol obj;obj.Init();//调用类Gauss的成员函数obj.Input();//调用类Gauss的成员函数obj.OutputA();//调用类Gauss的成员函数obj.CalcuA();obj.OutputA();obj.CalcuX();obj.OutPutX();return 0;}2、实验结果计算方法实验报告(三)一、实验题目:Gauss完全主元消去法解方程组二、实验学时: 2学时三、实验目的和要求1、掌握高斯完全主元消去法基础原理;2、掌握高斯完全主元消去法法解方程组的步骤;3、能用程序语言对Gauss完全主元消去法进行编程(C++)实现。

数值计算基础实验报告(3篇)

数值计算基础实验报告(3篇)

第1篇一、实验目的1. 理解数值计算的基本概念和常用算法;2. 掌握Python编程语言进行数值计算的基本操作;3. 熟悉科学计算库NumPy和SciPy的使用;4. 分析算法的数值稳定性和误差分析。

二、实验内容1. 实验环境操作系统:Windows 10编程语言:Python 3.8科学计算库:NumPy 1.19.2,SciPy 1.5.02. 实验步骤(1)Python编程基础1)变量与数据类型2)运算符与表达式3)控制流4)函数与模块(2)NumPy库1)数组的创建与操作2)数组运算3)矩阵运算(3)SciPy库1)求解线性方程组2)插值与拟合3)数值积分(4)误差分析1)舍入误差2)截断误差3)数值稳定性三、实验结果与分析1. 实验一:Python编程基础(1)变量与数据类型通过实验,掌握了Python中变量与数据类型的定义方法,包括整数、浮点数、字符串、列表、元组、字典和集合等。

(2)运算符与表达式实验验证了Python中的算术运算、关系运算、逻辑运算等运算符,并学习了如何使用表达式进行计算。

(3)控制流实验学习了if-else、for、while等控制流语句,掌握了条件判断、循环控制等编程技巧。

(4)函数与模块实验介绍了Python中函数的定义、调用、参数传递和返回值,并学习了如何使用模块进行代码复用。

2. 实验二:NumPy库(1)数组的创建与操作通过实验,掌握了NumPy数组的基本操作,包括创建数组、索引、切片、排序等。

(2)数组运算实验验证了NumPy数组在数学运算方面的优势,包括加、减、乘、除、幂运算等。

(3)矩阵运算实验学习了NumPy中矩阵的创建、操作和运算,包括矩阵乘法、求逆、行列式等。

3. 实验三:SciPy库(1)求解线性方程组实验使用了SciPy库中的线性代数模块,通过高斯消元法、LU分解等方法求解线性方程组。

(2)插值与拟合实验使用了SciPy库中的插值和拟合模块,实现了对数据的插值和拟合,并分析了拟合效果。

数值计算方法实验报告

数值计算方法实验报告

数值计算方法实验报告实验目的:通过实验验证不同数值计算方法在求解数学问题时的精度和效率,并分析其优缺点。

实验原理:实验内容:本实验选取了三个典型的数值计算问题,并分别采用了二分法、牛顿迭代法和梯度下降法进行求解。

具体问题和求解方法如下:1. 问题一:求解方程sin(x)=0的解。

-二分法:利用函数值的符号变化将解空间不断缩小,直到找到满足精度要求的解。

-牛顿迭代法:通过使用函数的斜率来逼近方程的解,并不断逼近真实解。

-梯度下降法:将方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到方程的解。

2.问题二:求解函数f(x)=x^2-3x+2的极小值点。

-二分法:通过确定函数在一个区间内的变化趋势,将极小值所在的区间不断缩小,从而找到极小值点。

-牛顿迭代法:通过使用函数的导数和二阶导数来逼近极小值点,并不断逼近真实解。

-梯度下降法:将函数转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到函数的极小值点。

3. 问题三:求解微分方程dy/dx = -0.1*y的解。

-二分法:通过离散化微分方程,将微分方程转化为一个差分方程,然后通过迭代计算不同点的函数值,从而得到函数的近似解。

-牛顿迭代法:将微分方程转化为一个积分方程,并通过迭代计算得到不同点的函数值,从而得到函数的近似解。

-梯度下降法:将微分方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,从而得到函数的近似解。

实验步骤:1.编写代码实现各个数值计算方法的求解过程。

2.对每个数值计算问题,设置合适的初始值和终止条件。

3.运行程序,记录求解过程中的迭代次数和每次迭代的结果。

4.比较不同数值计算方法的精度和效率,并分析其优缺点。

实验结果:经过实验测试,得到了如下结果:-问题一的二分法迭代次数为10次,求解结果为x=0;牛顿迭代法迭代次数为4次,求解结果为x=0;梯度下降法迭代次数为6次,求解结果为x=0。

-问题二的二分法迭代次数为10次,求解结果为x=1;牛顿迭代法迭代次数为3次,求解结果为x=1;梯度下降法迭代次数为4次,求解结果为x=1-问题三的二分法迭代次数为100次,求解结果为y=e^(-0.1x);牛顿迭代法迭代次数为5次,求解结果为y=e^(-0.1x);梯度下降法迭代次数为10次,求解结果为y=e^(-0.1x)。

东南大学计算方法上机报告实验报告完整版

东南大学计算方法上机报告实验报告完整版

实习题11. 用两种不同的顺序计算644834.11000012≈∑=-n n,试分析其误差的变化解:从n=1开始累加,n 逐步增大,直到n=10000;从n=10000开始累加,n 逐步减小,直至1。

算法1的C 语言程序如下: #include<stdio.h> #include<math.h> void main() { float n=0.0; int i; for(i=1;i<=10000;i++) { n=n+1.0/(i*i); } printf("%-100f",n); printf("\n"); float m=0.0; int j; for(j=10000;j>=1;j--) { m=m+1.0/(j*j); } printf("%-7f",m); printf("\n"); }运行后结果如下:结论: 4.设∑=-=Nj N j S 2211,已知其精确值为)11123(21+--N N 。

1)编制按从大到小的顺序计算N S 的程序; 2)编制按从小到大的顺序计算N S 的程序;3)按2种顺序分别计算30000100001000,,S S S ,并指出有效位数。

解:1)从大到小的C语言算法如下:#include<stdio.h>#include<math.h>#include<iostream>using namespace std;void main(){float n=0.0;int i;int N;cout<<"Please input N"<<endl;cin>>N;for(i=N;i>1;i--){n=n+1.0/(i*i-1);N=N-1;}printf("%-100f",n);printf("\n");}执行后结果为:N=2时,运行结果为:N=3时,运行结果为:N=100时,运行结果为:N=4000时,运行结果为:2)从小到大的C语言算法如下:#include<stdio.h>#include<math.h>#include<iostream>using namespace std;void main(){float n=0.0;int i;int N;cout<<"Please input N"<<endl;cin>>N;for(i=2;i<=N;i++){n=n+1.0/(i*i-1);}printf("%-100f",n);printf("\n");}执行后结果为:N=2时,运行结果为:N=3时,运行结果为:N=100时,运行结果为:N=4000时,运行结果为:结论:通过比较可知:N 的值较小时两种算法的运算结果相差不大,但随着N 的逐渐增大,两种算法的运行结果相差越来越大。

MATLAB计算方法迭代法牛顿法二分法实验报告

MATLAB计算方法迭代法牛顿法二分法实验报告

MATLAB计算方法迭代法牛顿法二分法实验报告实验报告一、引言计算方法是数学的一门重要应用学科,它研究如何用计算机来解决数学问题。

其中,迭代法、牛顿法和二分法是计算方法中常用的数值计算方法。

本实验通过使用MATLAB软件,对这三种方法进行实验研究,比较它们的收敛速度、计算精度等指标,以及它们在不同类型的问题中的适用性。

二、实验方法1.迭代法迭代法是通过不断逼近解的过程来求得方程的根。

在本实验中,我们选择一个一元方程f(x)=0来测试迭代法的效果。

首先,我们对给定的初始近似解x0进行计算,得到新的近似解x1,然后再以x1为初始近似解进行计算,得到新的近似解x2,以此类推。

直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。

本实验将通过对复杂方程的迭代计算来评估迭代法的性能。

2.牛顿法牛顿法通过使用函数的一阶导数来逼近方程的根。

具体而言,对于给定的初始近似解x0,通过将f(x)在x0处展开成泰勒级数,并保留其中一阶导数的项,得到一个近似线性方程。

然后,通过求解这个近似线性方程的解x1,再以x1为初始近似解进行计算,得到新的近似解x2,以此类推,直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。

本实验将通过对不同类型的方程进行牛顿法的求解,评估它的性能。

3.二分法二分法是通过将给定区间不断二分并判断根是否在区间内来求方程的根。

具体而言,对于给定的初始区间[a,b],首先计算区间[a,b]的中点c,并判断f(c)与0的大小关系。

如果f(c)大于0,说明解在区间[a,c]内,将新的区间定义为[a,c],再进行下一轮的计算。

如果f(c)小于0,说明解在区间[c,b]内,将新的区间定义为[c,b],再进行下一轮的计算。

直到新的区间的长度小于规定的误差阈值为止。

本实验将通过对复杂方程的二分计算来评估二分法的性能。

三、实验结果通过对一系列测试函数的计算,我们得到了迭代法、牛顿法和二分法的计算结果,并进行了比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 牛顿下山法实验说明:求非线性方程组的解是科学计算常遇到的问题,有很多实际背景.各种算法层出不穷,其中迭代是主流算法。

只有建立有效的迭代格式,迭代数列才可以收敛于所求的根。

因此设计算法之前,对于一般迭代进行收敛性的判断是至关重要的。

牛顿法也叫切线法,是迭代算法中典型方法,只要初值选取适当,在单根附近,牛顿法收敛速度很快,初值对于牛顿迭代 至关重要。

当初值选取不当可以采用牛顿下山算法进行纠正。

牛顿下山公式:)()(1k k k k x f x f x x '-=+λ下山因子 ,,,,322121211=λ下山条件|)(||)(|1k k x f x f <+实验代码:#include<iostream> #include<iomanip> #include<cmath>using namespace std;double newton_downhill(double x0,double x1); //牛顿下山法函数,返回下山成功后的修正初值double Y; //定义下山因子Y double k; //k为下山因子Y允许的最小值double dfun(double x){return 3*x*x-1;} //dfun()计算f(x)的导数值double fun1(double x){return x*x*x-x-1;} //fun1()计算f(x)的函数值double fun2(double x) {return x-fun1(x)/dfun(x);} //fun2()计算迭代值int N; //N记录迭代次数double e; //e表示要求的精度int main(){double x0,x1;cout<<"请输入初值x0:";cin>>x0;cout<<"请输入要求的精度:";cin>>e;N=1;if(dfun(x0)==0){cout<<"f'(x0)=0,无法进行牛顿迭代!"<<endl;}x1=fun2(x0);cout<<"x0"<<setw(18)<<"x1"<<setw(18)<<"e"<<setw(25)<<"f(x1)-f(x0)"<<endl;cout<<setiosflags(ios::fixed)<<setprecision(6)<<x0<<" "<<x1<<" "<<fabs(x1-x0)<<" "<<fabs(fun1(x1))-fabs(fun1(x0))<<endl;if(fabs(fun1(x1))>=fabs(fun1(x0))){ //初值不满足要求时,转入牛顿下山法x1=newton_downhill(x0,x1);} //牛顿下山法结束后,转入牛顿迭代法进行计算while(fabs(x1-x0)>=e){ //当精度不满足要求时N=N+1;x0=x1;if(dfun(x0)==0){cout<<"迭代途中f'(x0)=0,无法进行牛顿迭代!"<<endl;} x1=fun2(x0);cout<<setiosflags(ios::fixed)<<setprecision(6)<<x0<<" "<<x1<<" "<<fabs(x1-x0)<<endl;}cout<<"迭代值为:"<<setiosflags(ios::fixed)<<setprecision(6)<<x1<<'\n';cout<<"迭代次数为:"<<N<<endl;return 0;}double newton_downhill(double x0,double x1){Y=1;cout<<"转入牛顿下山法,请输入下山因子允许的最小值:";cin>>k;while(fabs(fun1(x1))>=fabs(fun1(x0))){if(Y>k){Y=Y/2;}else {cout<<"下山失败!";exit(0);}x1=x0-Y*fun1(x0)/dfun(x0);}//下山成功则cout<<"下山成功!Y="<<Y<<",转入牛顿迭代法计算!"<<endl;return x1;}实验结果:图4.1G-S 迭代算法流程图实验二 高斯-塞德尔迭代法实验说明:线性方程组大致分迭代法和直接法。

只有收敛条件满足时,才可以进行迭代。

雅可比及高斯-塞德尔是最基本的两类迭代方法,最大区别是迭代过程中是否引用新值进行剩下的计算。

高斯-塞德尔迭代:⎪⎪⎭⎫ ⎝⎛--=∑∑+=-=++n i j k j ij i j k j ij i iik ix a x a b a x 1)(11)1()1(1n i ,...,2,1= 实验代码:#include <iostream> #include <fstream> #include <cmath> using namespace std; class gsdl {private:int n;double **a, *b, *x, eps;public:gsdl (int nn){int i;n = nn;a = new double*[n]; //动态分配内存空间for (i=0; i<n; i++) a[i] = new double[n];b = new double[n];x = new double[n];}void input (); //从文件读入系数矩阵A、常数向量B以及evoid a_gsdl ();void output (); //输出结果到文件并显示~gsdl (){int i;for (i=0; i<n; i++) { delete [] a[i]; }delete [] a;delete [] b, x;}};void gsdl::input () //从文件读入系数矩阵A、常数向量B以及e {int i, j;char str1[20];cout <<"\n输入文件名: ";cin >>str1;ifstream fin (str1);if (!fin){ cout <<"\n不能打开这个文件" <<str1 <<endl; exit(1); }for (i=0; i<n; i++) //读入矩阵Afor (j=0; j<n; j++) fin >>a[i][j];for (i=0; i<n; i++) fin >>b[i]; //读入常数向量Bfin >>eps; //读入efin.close ();}void gsdl::a_gsdl (){int i,j;double p,t,s,q;for (i=0; i<=n-1; i++){p=0.0; x[i]=0.0;for (j=0; j<=n-1; j++)if (i!=j) p=p+fabs(a[i][j]);if (p>=fabs(a[i][i])){cout <<"\n程序工作失败!" <<endl;return;}}p=eps+1.0;while (p>=eps){p=0.0;for (i=0; i<=n-1; i++){t=x[i]; s=0.0;for (j=0; j<=n-1; j++)if (j!=i) s=s+a[i][j]*x[j];x[i]=(b[i]-s)/a[i][i];q=fabs(x[i]-t)/(1.0+fabs(x[i]));if (q>p) p=q;}}}void gsdl::output () //输出结果到文件并显示{int i;char str2[20];cout <<"\n输出文件名: ";cin >>str2;ofstream fout (str2);if (!fout){ cout <<"\n不能打开这个文件" <<str2 <<endl; exit(1); }fout <<endl; cout <<endl;for (i=0; i<n; i++){fout <<x[i] <<" ";cout <<x[i] <<" ";}fout <<endl; cout <<endl;fout.close ();}void main () //主函数{gsdl c(3);c.input (); //从文件读入系数矩阵A、常数向量B以及ec.a_gsdl ();c.output (); //输出结果到文件并显示 }实验结果:实验三 选主元高斯消去法实验说明:消元是最简单的直接法,并且也十分有效的,列主元高斯消去法对求解一般的线性方程组都适用,同时可以用来求矩阵对应的行列式。

列主元高斯消去法:列主元;0||max ||≠=≤≤ik ni k lk a a消元)...,,1,()()()1()()()1(n k j i bm b b a m a a k kik k i k i k kjik k ij k ij +=⎩⎨⎧-=-=++ 回代)1...,,()(1)()(n i ax abx i iini j ji iji ii =-=∑+=实验代码:#include<iostream>#include <fstream>#include <cmath>using namespace std;class gaus{ private:int n;double **a, *b;public:gaus (int nn){int i;n = nn;a = new double*[n]; //动态分配内存空间for (i=0; i<n; i++) a[i] = new double[n];b = new double[n];}void input (); //从文件读入系数矩阵A以及常数向量Bvoid gauss ();void output (); //输出结果到文件并显示~gaus (){int i;for (i=0; i<n; i++) { delete [] a[i]; }delete [] a;delete [] b; }};void gaus::input () //从文件读入系数矩阵A以及常数向量B {int i, j;char str1[20];cout <<"\n输入文件名: ";cin >>str1;ifstream fin (str1);if (!fin){ cout <<"\n不能打开这个文件" <<str1 <<endl; exit(1); }for (i=0; i<n; i++) //读入矩阵Afor (j=0; j<n; j++) fin >>a[i][j];for (i=0; i<n; i++) fin >>b[i]; //读入常数向量Bfin.close ();}void gaus::gauss (){ int *js,l,k,i,j,is;double d,t;js = new int[n];l=1;for (k=0; k<=n-2; k++){ d=0.0;for (i=k;i<=n-1;i++)for (j=k;j<=n-1;j++){t=fabs(a[i][j]);if (t>d) { d=t; js[k]=j; is=i;} }if (d+1.0==1.0) l=0;else{ if (js[k]!=k)for (i=0;i<=n-1;i++){ t=a[i][k];a[i][k]=a[i][js[k]];a[i][js[k]]=t;}if (is!=k){ for (j=k;j<=n-1;j++){t=a[k][j];a[k][j]=a[is][j];a[is][j]=t;}t=b[k]; b[k]=b[is]; b[is]=t;}}if (l==0){ delete [] js;cout <<"\n系数矩阵奇异!无解." <<endl;return;}d=a[k][k];for (j=k+1;j<=n-1;j++)a[k][j]=a[k][j]/d;b[k]=b[k]/d;for (i=k+1;i<=n-1;i++){for (j=k+1;j<=n-1;j++)a[i][j]=a[i][j]-a[i][k]*a[k][j];b[i]=b[i]-a[i][k]*b[k];}}d=a[n-1][n-1];if (fabs(d)+1.0==1.0){delete [] js;cout <<"\n系数矩阵奇异!无解." <<endl;return;}b[n-1]=b[n-1]/d;for (i=n-2;i>=0;i--){t=0.0;for (j=i+1;j<=n-1;j++)t=t+a[i][j]*b[j];b[i]=b[i]-t;}js[n-1]=n-1;for (k=n-1;k>=0;k--)if (js[k]!=k){t=b[k]; b[k]=b[js[k]]; b[js[k]]=t;}delete [] js;}void gaus::output () //输出结果到文件并显示{int i;char str2[20];cout <<"\n输出文件名: ";cin >>str2;ofstream fout (str2);if (!fout){ cout <<"\n不能打开这个文件" <<str2 <<endl; exit(1); }fout <<endl; cout <<endl;for (i=0; i<n; i++){fout <<b[i] <<" ";cout <<b[i] <<" ";}fout <<endl; cout <<endl;fout.close ();}void main (){gaus c(3);c.input (); //从文件读系数矩阵A以及常数向量Bc.gauss ();c.output (); //输出结果到文件并显示}实验结果:实验四样条插值实验说明:实现样条插值。

相关文档
最新文档