生物物理学 (学科代码:071011)

生物物理学 (学科代码:071011)
生物物理学 (学科代码:071011)

学科分类与代码表

附件3 学科分类与代码表 110数学 110.11数学史 110.14数理逻辑与数学基础 110.17数论 110.21代数学 110.24代数几何学 110.27几何学 110.31拓扑学 110.34数学分析 110.37非标准分析 110.41函数论 110.44常微分方程 110.47偏微分方程 110.51动力系统 110.54积分方程 110.57泛函分析 110.61计算数学 110.64概率论 110.67数理统计学 110.71应用统计数学 110.74运筹学 110.77组合数学 110.81离散数学 110.84模糊数学 110.87应用数学 110.99数学其他学科 120信息科学与系统科学 120.10信息科学与系统科学基础学科120.20系统学 120.30控制理论 120.40系统评估与可行性分析 120.50系统工程方法论 120.60系统工程 120.99信息科学与系统科学其他学科130力学 130.10基础力学 130.15固体力学 130.20振动与波 130.25流体力学 130.30流变学 130.35爆炸力学 130.40物理力学 130.45统计力学 130.50应用力学 130.99力学其他学科 140物理学 140.10物理学史 140.15理论物理学 140.20声学 140.25热学 140.30光学 140.35电磁学 140.40无线电物理 140.45电子物理学 140.50凝聚态物理学 140.55等离子体物理学140.60原子分子物理学140.65原子核物理学 140.70高能物理学 140.75计算物理学 140.80应用物理学 140.99物理学其他学科 150化学 150.10化学史 150.15无机化学 150.20有机化学 150.25分析化学 150.30物理化学 150.35化学物理学

论生物医学工程的现状及发展前景

论生物医学工程的现状及发展前景 生物医学工程(Biomedical Engineering, BME)崛起于20世纪60年代。其内涵是: 工程科学的原理和方法与生命科学的原理和方法相结合, 认识生命运动的规律,并用以维持、促进人的健康。它的兴起有多方面的原因,其一是医学进步的需要;其二则是医疗器械发展的需要。 四十年来, 生物医学工程已经深入于医学,从临床医学到医学基础,并深刻地改变了医学本身, 而且预示着医学变革的方向。可以说,没有生物医学工程就没有医学的今天。另一方面, 生物医学工程的兴起和发展不仅推动了医疗器械产业的发展,而且使它发生了质的改变,最根本的是,将使用对象和使用者以及医疗装置看作是一个系统整体, 强调其间的相互作用, 进而用系统工程的观念研究发展所需要的医疗装置,实现预定的医疗目的。 生物医学工程学科是一门高度综合的交叉学科,这是它最大的特点。所谓交叉学科是指由不同学科、领域、部门之间相互作用,彼此融合形成的一类学科群。从学科发展的历史长河来看,新学科的产生大都是传统或成熟学科相互交叉作用产生的结果。而且,生物医学工程所指的学科交叉,不是生物医学同哪一个工程学科分支的简单结合,而是多学科、广范围、高层次上的融合。近年来,高分子材料科学、电子学、计算机科学等自然科学的不断发展,极大地推动了生物医学工程学科的发展。 此外,生物医学工程学科所涉及的领域非常广泛。可以说,有多少理工科分支,就会产生多少生物医学工程领域,这种多学科的交叉融合涉及到所有的理、工学科和所有的生物学和医学分支。这样一来,当任何一个学科取得突破进展时都能影响到生物医学工程的发展,使其发展的速度异常迅速。 发达国家生物医学工程的现状 在美国以及欧洲等经济发达国家,早在上世纪50年代就指出生物医学工程的重要性,基于其强大的经济、科技实力,经过近半个世纪的努力均取得了各自的成果。如今,这些国家在生物医学工程方面处于世界前列。但是面对当今科技飞速发展的新形势,他们仍在想尽一切办法努力前进。在美国,许多著名大学根据自身条件和生物医学工程学科的特点以及社会需要采用各种方式积极推进“学科交叉计划”。这样一来,生物医学工程在这一有利条件下迅速发展,朝向以整合生物、医学、物理、化学及工程科学等高度交叉跨领域方向发展。这种发展方向既促进了传统性专业的提升,又为逐步形成新专业创造了条件。 另外,美国政府因认识到新的世纪生物医学工程对促进卫生保障事业发展所具有极大的重要性,急需扭转美国生物医学工程领域研发工作群龙无首的分散局面,美国第106届国会于2000年1月24日通过立法。在国立卫生研究院内设立了国家生物医学成像和生物工程研究所,规定由该所负责对美国生物医学工程领域的科研创新、开发应用、教育培训和信息传播等进行统一协调和管理,促进生物学、医学、物理学、工程学和计算机科学之间的基本了解、合作研究以及跨学科的创新。这也大大推动了美国的生物医学工程学科的发展。 国内生物医学工程的现状 我国的生物医学工程学科相对国外发达国家来说起步比较低。自上世纪70年代以来,经过40多年的发展,目前全国已有很多所高校内设有此专业,在一些理、工科实力较强的高校内均建有生物医学工程专业。由于这些学校的理、工等学科在全国都有重要的影响,且大都设有国家级重点学科,他们开展起来十分方便,这些院校均是以科研性学科设置的。此外,还有一些医学院校则是以医学作为基底学科,置入某些工程学科的

【生物医学论文】生物医学工程学科发展思路

生物医学工程学科发展思路 摘要:生物医学工程,是综合了工程学、物理学、生物学、医学等学科,以预防和治疗疾病、保障人体健康为主要目的的新兴学科。生物医学工程致力于研发新的生物学制品和生物学材料,改进医疗技术,在现代医学领域中占有重要的地位。本文将追溯我国生物医学工程学科的发展历程,提出发展过程中存在的一些问题,为解决这些问题提供一些可行的策略。 关键词:生物医学工程;学科发展;学科建设 电子学、光电子学、计算机技术、物理学、化学、精密仪器制造等科学技术的高速发展,对现代医学产生了极大的促进作用,生物医学工程就是在这些技术背景下产生的新型医学分支学科。生物医学工程利用现代工程技术来对人体进行研究,分析疾病的机理,从而制定有效的治疗措施,极大提高了现代医学的治疗水平。但是,我国在建设和发展生物医学工程学科的过程中,也遇到了一些问题,必须对这些问题加以解决,才能够促进生物医学工程学科的发展。 1生物医学工程的发展历程

生物医学工程的历史可以追溯到20世纪50年代,起源于美国。这一学科一经产生,就迅速受到世界各国的重视。1965年,国际医学和生物工程联合会建立,后来改名为国际生物医学工程协会[1]。生物医学工程之所以受到世界各国的重视,是因为具有广阔的应用前景,能够产生极大的经济效益与社会效益。生物医学工程将现代科学的技术成果与医学联系起来,极大地提高了人体对疾病的预防水平和治疗水平。欧美等地区的先进国家,在20世纪70年代初就已经成立了针对这一学科的研究部门,负责生物医学工程学科的发展与建设。而我国的生物医学工程起步相对较晚,而且应用范围比较窄,仅限于医院设备保管和维修、医疗物资采购等方面,生物医学工程学科的建设还有很大的提升空间。 2我国生物医学工程存在的问题 我国在生物医学工程的学科建设方面起步比较晚,应用也处于初级水平。导致这种局面的原因主要来自于以下2个方面。首先,历史遗留的体制问题。我国的各级医院,负责生物医学工程的科室没有统一的名称,也没有明确的职责范围,各级医院都是根据自己的理解,设定有关部门的名称、职责范围、人员编制、归属单位等情况,具有很大的随意性。

中科院生物物理所2011-2016年细胞生物学考博真题

目录 2011生物物理所秋季博士入学考试真题 (2) 2012生物物理所秋季博士入学考试真题 (3) 2013生物物理所秋季博士入学考试真题 (4) 2014生物物理所秋季博士入学考试真题 (5) 2015年生物物理所秋季博士入学考试真题 (6) 2016生物物理所秋季博士入学考试真题 (7)

简答题:8分/题 1.IPS 2.脂筏模型 3.细胞自噬 4.核糖体功能 5.端粒酶功能 论述题:20分/题 1.你实验室的现有结果表面A蛋白的量升高将导致B蛋白功能增加,如果你接下来以此 作为博士课题,你怎样开展后续工作。 2.囊跑运输的作用于调控? 3.写出你所知道的肿瘤发生和表观遗传的关系?

简答题 1.细胞器的结构和其功能的联系? 2.胚胎干细胞的特性及其功能? 3.蛋白质翻译后修饰的作用? 4.细胞骨架的主动调节机理? 5.细胞与细胞间是如何联系的? 6.为什么核膜在细胞周期中要崩解? 论述题 1.细胞衰老机制及你认为该如何研究? 2.给你一个新基因如何研究它的功能,用到什么技术? 3.控制细胞大小的重要性以及控制细胞大小的机制? 4.生化是工具,遗传是基础,细胞是主人,发育是未来。你怎么看这句话?

简答题 1.蛋白质分选的机制? 2.细胞间连接的类型及功能? 3.钙稳态及其维持机制? 4.细胞凋亡的检测方法有哪些? 5.细胞自噬? 论述题:10分/题 1.什么是细胞周期?说明各个时期的复制、转录、翻译的变化。 2.以表观遗传学的角度谈谈你对细胞分化的认识。 3.如何设计实验来研究线粒体膜定位蛋白的功能。 4.谈谈你对细胞核重新编程的认识(2012年诺贝尔生理或医学奖)。

学科分类及数据代码表

湖南省社会科学成果评审委员会课题申报 学科分类及数据代码表 学科层级: 1.学科门类代码学科门类名称 2.一级学科代码一级学科名称 3.二级学科代码二级学科名称 01哲学 0101 哲学 010101 马克思主义哲学 010102 中国哲学 010103 外国哲学 010104 逻辑学 010105 伦理学 010106 美学 010107 宗教学 010108 科学技术哲学 02 经济学 0201 理论经济学 020101 政治经济学 020102 经济思想史 020103 经济史 020104 西方经济学 020105 世界经济 020106 人口、资源与环境经济学 0202 应用经济学 020201 国民经济学 020202 区域经济学 020203 财政学(含:税收学) 020204 金融学(含:保险学) 020205 产业经济学 020206 国际贸易学 020207 劳动经济学 020208 统计学 020209 数量经济学 020210 国防经济

03 法学 0301 法学 030101 法学理论 030102 法律史 030103 宪法学与行政法学 030104 刑法学 030105 民商法学(含:劳动法学、社会保障法学) 030106 诉讼法学 030107 经济法学 030108 环境与资源保护法学 030109 国际法学(含:国际公法、国际私法、国际经济法) 030110 军事法学 0302 政治学 030201 政治学理论 030202 中外政治制度 030203 科学社会主义与国际共产主义运动 030204 中共党史(含:党的学说与党的建设) 030206 国际政治 030207 国际关系 030208 外交学 0303 社会学 030301 社会学 030302 人口学 030303 人类学 030304 民俗学(含:中国民间文学) 0304 民族学 030401 民族学 030402 马克思主义民族理论与政策 030403 中国少数民族经济 030404 中国少数民族史 030405 中国少数民族艺术 0305 马克思主义理论 030501 马克思主义基本原理 030502 马克思主义发展史 030503 马克思主义中国化研究 030504 国外马克思主义研究 030505 思想政治教育 0306公安学 030601公安学 04 教育学 0401 教育学 040101 教育学原理

医学学科分类及代码全

医学学科分类及代码 180 生物学 180.11 生物数学(包括生物统计学等) 180.14 生物物理学 180.17 生物化学 180.1710 多肽与蛋白质生物化学180.1715 核酸生物化学 180.1720 多糖生物化学 180.1725 脂类生物化学 180.1730 酶学 180.1735 膜生物化学 180.1740 激素生物化学 180.1745 生殖生物化学 180.1750 免疫生物化学 180.1755 毒理生物化学 180.1760 比较生物化学 180.1765 应用生物化学 180.1799 生物化学其他学科 180.21 细胞生物学 180.2110 细胞生物物理学 180.2120 细胞结构与形态学

180.2130 细胞生理学 180.2140 细胞进化学 180.2150 细胞免疫学 180.2160 细胞病理学 180.2199 细胞生物学其他学科180.24 生理学 180.2411 形态生理学 180.2414 新陈代谢与营养生理学180.2417 心血管生理学 180.2421 呼吸生理学 180.2424 消化生理学 180.2427 血液生理学 180.2431 泌尿生理学 180.2434 内分泌生理学 180.2437 感官生理学 180.2441 生殖生理学 180.2444 骨骼生理学 180.2447 肌肉生理学 180.2451 皮肤生理学 180.2454 循环生理学 180.2457 比较生理学 180.2461 年龄生理学

180.2464 特殊环境生理学 180.2467 语言生理学 180.2499 生理学其他学科 180.27 发育生物学 180.31 遗传学 180.3110 数量遗传学 180.3115 生化遗传学 180.3120 细胞遗传学 180.3125 体细胞遗传学 180.3130 发育遗传学(亦称发生遗传学) 180.3135 分子遗传学 180.3140 辐射遗传学 180.3145 进化遗传学 180.3150 生态遗传学 180.3155 免疫遗传学 180.3160 毒理遗传学 180.3165 行为遗传学 180.3170 群体遗传学 180.3199 遗传学其他学科 180.34 放射生物学 180.3410 放射生物物理学 180.3420 细胞放射生物学

生物物理学发展史

生物物理学的发展史 从16世纪末开始,人们就开展了生物物理现象的研究,直到20世纪40年代薛定谔(Schr?dinger)在都柏林大学关于“生命是什么”的讲演之前,可以 算是生物物理学发展的早期。19世纪末叶,生理学家开始用物理概念如力学、流体力学、光学、电学及热力学的知识深入到生理学领域,这样就逐渐形成一个新的分支学科,许多人认为这就是最初的生物物理学。实际上物理学与生物学的结合很早以前就已经开始。例如克尔肖(Kircher)在17世纪描述过生物发光的现象;波莱利(Borrelli)在其所著《动物的运动》一书中利用力学原理分析了血液循环和鸟的飞行问题。18世纪伽伐尼(Galvani)通过青蛙神经由于接触两种金属引起肌肉收缩,从而发现了生物电现象。19世纪,梅那(Mayer)通过热、功和生理过程关系的研究建立了能量守恒定律。 20世纪40年代,《医学物理》介绍生物物理内容时,涉及面已相当广泛,包括听觉、色觉、肌肉、神经、皮肤等的结构与功能(电镜、荧光、X射线衍射、电、光电、电位、温度调节等技术),并报道了应用电子回旋加速器研究生物对象。著名的量子物理学家薛定谔专门作了“生命是什么”的报告中提出的几个观点,如负熵与生命现象的有序性、遗传物质的分子基础,生命现象与量子论的协调性等,以后陆续都被证明是极有预见性的观点,而且均得到证实。这有力地说明了近代物理学在推动生命科学发展中的作用。 20世纪50年代,物理学在各方面取得重大成就之后,物理学实验和理论的发展为生物物理学的诞生提供了实验技术和理论方法。例如,用X射线晶体衍射技术对核酸和蛋白质空间结构的研究开创了分子生物学的新纪元,将生命科学的许多分支都推进到分子水平,同时也把这些成就逐步扩大到细胞、组织、器官等,

全球生物医学工程十大领域科研成果

龙源期刊网 https://www.360docs.net/doc/9a2517418.html, 全球生物医学工程十大领域科研成果 作者: 来源:《大学生》2017年第12期 2016年3月,艾伦脑科学研究所(Allen Institute for Brain Science)、哈佛医学院(Harvard Medical School)和Flanders神经电子学研究中心(NERF)的研究人员共同领导的 国际小组发布了迄今为止最大的大脑皮层神经元连接网络,揭示了大脑中有关网络组织机制的几个关键要素。 2016年8月,美国国家卫生研究院(National Institutes of Health,NIH)开发了一种神经成像技术,让人们第一次看到了人脑中基因开关的位置,为了解影响精神健康的基因提供了有力工具,将来有望用于检测老年性痴呆、精神分裂或其他脑病的早期迹象。 2016年3月,中美科学家合作开发出一种新的再生医学方法治疗婴儿白内障——移除婴 儿眼睛中的先天性白内障,激活剩余的干细胞再生出功能性的晶状体。三个月后,接受这种新治疗方法的12名婴儿眼中出现了一种再生的明亮的双凸形晶状体。 2016年5月,美国和英国的两个研究小组分别将人类胚胎体外发育的时间提高到10天以上,打破了此前的“7天极限”。2016年9月,纽约新希望生育中心(New Hope Fertility Center)的华裔生育学家张进(John Zhang)证实世界上首例经核移植操作的“三亲婴儿”哈桑 在墨西哥出生。这个婴儿的父母来自中东,手术在未限制“三父母”技术的墨西哥进行。婴儿的母亲1/4的线粒体携带有亚急性坏死性脑病的基因,曾经4次流产,生下的2个小孩也因这种遗传疾病而分别死亡。为帮助这名女性,张进团队采用了“三父母”技术,即利用捐赠者卯子的健康线粒体替换其有缺陷的线粒体,再实施体外受精。最终获得的婴儿除了拥有父母的基因外,还拥有捐赠女子的线粒体遗传物质。 2016年3月,美國天普大学的研究者们成功使用CRISPR基因编辑工具,将整个HIV病 毒从病人被感染的免疫细胞中去除。 2016年10月28日,四川华西医院的一位非小细胞肺癌病人成为首个接受编辑细胞治疗的患者,医院团队成功将经过“CRISPR-Cas9”基因编辑技术修饰的细胞植入了人体。 2016年2月,Nature在线发表美国梅奥诊所的一项研究成果,证实衰老细胞(不再发生细胞分裂且随着年龄增加而不断堆积的细胞)会对健康产生负面影响。 2016年8月,华盛顿大学生物化学家David Baker教授发明了一种高速生产上万种结构稳定的微型蛋白质的方法。 2016年11月,加州理工学院Kan博士和她的团队成功诱导活细胞生成碳一硅键,首次证明了大自然可以将地球上最丰富的元素之一硅融入到生命的基石中。

软科生物医学工程学科排名

软科生物医学工程学科排名,上海交通大学世界第二,苏州大学第五 近日,软科发布2020“软科世界一流学科排名”,在生物医学工程学科排名中,哈佛大学取得世界第一的好成绩,上海交通大学紧随其后,位列第二位,在前十名的榜单中还有复旦大学、苏州大学、北京大学、浙江大学,分别位列第四、第五、第八、第九名。 图片来源软科

上海交通大学 上海交通大学是由教育部直属、中央直管副部级建制的全国重点大学,位列“世界一流大学建设高校(A类)”、“985工程”、“211工程”,为九校联盟、Universitas 21、环太平洋大学联盟、21世纪学术联盟、国际应用科技开发协作网、新工科教育国际联盟成员。 在全国第四轮学科评估中,上海交通大学有生物学、机械工程、船舶与海洋工程等5个一级学科评估为A+,生物医学工程为A。

复旦大学 复旦大学是教育部直属、中央直管副部级建制的全国重点大学,世界一流大学建设高校(A类),国家“985工程”、“211工程”重点建设高校,九校联盟(C9)、环太平洋大学联盟、东亚研究型大学协会、新工科教育国际联盟、医学“双一流”建设联盟、长三角研究型大学联盟创始成员。 在全国第四轮学科评估中,复旦大学有哲学、理论经济学、政治学等5个一级学科评估为A+,生物医学工程为B+。

苏州大学 苏州大学是教育部与江苏省政府共建的国家“世界一流学科建设高校”,国家“211工程”、“2011计划”首批入选高校,国家国防科技工业局与江苏省政府共建高校,江苏省属重点综合性大学。 在全国第四轮学科评估中,苏州大学有软件工程、设计学等2个一级学科评估为A-,生物医学工程为C。

学科分类与代码表.pdf

学科分类与代码表 110数学 110.11数学史 110.14数理逻辑与数学基础 110.17数论 110.21代数学 110.24代数几何学 110.27几何学 110.31拓扑学 110.34数学分析 110.37非标准分析 110.41函数论 110.44常微分方程 110.47偏微分方程 110.51动力系统 110.54积分方程 110.57泛函分析 110.61计算数学 110.64概率论 110.67数理统计学 110.71应用统计数学 110.74运筹学 110.77组合数学 110.81离散数学 110.84模糊数学 110.87应用数学 110.99数学其他学科 120信息科学与系统科学 120.10信息科学与系统科学基础学科120.20系统学 120.30控制理论 120.40系统评估与可行性分析 120.50系统工程方法论 120.60系统工程 120.99信息科学与系统科学其他学科130力学 130.10基础力学 130.15固体力学 130.20振动与波 130.25流体力学 130.30流变学 130.35爆炸力学 130.40物理力学 130.45统计力学 130.50应用力学 130.99力学其他学科 140物理学 140.10物理学史 140.15理论物理学 140.20声学 140.25热学 140.30光学 140.35电磁学 140.40无线电物理 140.45电子物理学 140.50凝聚态物理学 140.55等离子体物理学140.60原子分子物理学140.65原子核物理学 140.70高能物理学 140.75计算物理学 140.80应用物理学 140.99物理学其他学科 150化学 150.10化学史 150.15无机化学 150.20有机化学 150.25分析化学 150.30物理化学 150.35化学物理学 150.40高分子物理 150.45高分子化学 150.50核化学 150.55应用化学 150.99化学其他学科180.24生理学 180.27发育生物学 180.31遗传学 180.34放射生物学 180.37分子生物学 180.41生物进化论

生物医学工程对生活的影响和前景

作者:楼佳枫1223020057 信息与工程学院电气2班 学科导论作业:(部分参考于百度知道) -----生物医学工程对生活的影响和前景大学,我选择的专业是电气信息类:它未来将分为生物医学工程,计算机科学与技术,电子信息技术三个大类。现在,我很高兴和大家谈谈我对生物医学工程的认识及看法。 生物医学工程在国际上做为一个学科出现,始于20世纪50年代,特别是随着宇航技术的进步、人类实现了登月计划以来,生物医学工程有了快速的发展。就生物医学工程的发展渊源,还得追溯到显微镜的发明:17世纪Lee Wenhock 发明了光学显微镜,推动了解剖学向微观层次发展,使人们不但可以了解人体大体解剖的变化,而且可以进一步观察研究其细胞形态结构的变化。随着光学显微镜的出现,医学领域相继诞生了细胞学、组织学、细胞病理学,从而将医学研究提高到细胞形态学水平。普通光学显微镜的分辨能力只能达到微米(μm)级水平,难以分辨病毒及细胞的超微细结构、核结构、DNA等大分子结构。而20世纪60年代出现的电子显微镜,使人们能观察到纳米(nm )级的微小个体,研究细胞的超微结构。光学显微镜和电子显微镜的发明都是医学工程研究的成果,它们对推动医学的发展起了重要作用。 生物医学的一个重要的领域,就是大家所熟知的生物影像技术。自从琴伦射线的发现和应用于医学诊断开始,影像

学就开始了她的飞速发展,当之无愧得成为了20世纪医学诊断最重要、发展最快的领域之一。50年代X光透视和摄片是临床最常用的影像学诊断方法,而今天由于X线CT技术的出现和应用,使影像学诊断水平发生了飞跃,从而极大地提高了临床诊断水平。即计算机体断层摄影(computed tomography CT),即是利用计算机技术处理人体组织器官的切面显像。X线CT片提供给医生的信息量,远远大于普通X线照片观察所得的信息。目前,螺旋CT(spiral CT 或helicalet CT)已经问世,能快速扫描和重建图像,在临床应用中取代了多数传统的CT,提高了诊断准确率。医学工程研究利用生物组织中氢、磷等原子的核磁共振(nu clear magnetic resonance)原理。研制成功了核磁共振计算机断层成像系统(MRI),它不仅可分辨病理解剖结构形态的变化,还能做到早期识别组织生化功能变化的信息,显示某些疾病在早期价段的改变,有利于临床早期诊断。可以认为MRI 工程的进步,促进了医学诊断学向功能与形态相结合的方向发展,向超快速成像、准实时动态MRI、MRA、FMRI、MRS 发展。根据核医学示踪,利用正电子发射核素(18F,11C,13N)的原理,创造的正电子发射体层摄影(PET),是目前最先进的影像诊断技术。美国新闻媒体把PET列为十大医学生物技术的榜首。PET问世不过30年历史,但它已显示出对肿瘤学、心脏病学、神经病学、器官移植,新药开发等研究

生物医学工程学概论考试重点

生物医学工程(Biomedical Engineering,BME),是用自然科学和工程技术的理论方法,研究解决医学防病治病,增进人民健康的一门理、工、医相结合的边缘科学。它综合运用工程学的理论和方法,深入研究、解释、定义和解决医学上的有关问题。 生物传感器应有以下几个条件:①高可靠;②少损伤或无损伤;③微型化; ④重复性好;⑤数字信号输出;⑥组织相容性好;⑦寿命长;⑧容易制造。 生物工程(bioengineering)亦称生物技术(biotechnology) , 它是通过工程技术手段,利用生物有机体或生物过程,生产有经济价值的产品的技术科学。它的实际应用包括对生物有机体及其亚细胞组分在制造业、服务性工业以及环境管理等方面的应用。细胞工程(cell engineering)是应用细胞生物学和分子生物学技术,按照预定的设计改变或创造细胞遗传物质,使之获得新的遗传性状,通过体外培养,提供细胞产品,或培育出新的品种,甚至新的物种。 细胞工程的三个发展阶段: 第一阶段:~70年代中期,确立了细胞培养技术、核型分析技术、细胞融合技术及其应用 第二阶段:70年代后期~80年代后期,基因工程与细胞工程结合,应用DNA 导入技术分析了人体基因的微细结构。 第三阶段:80年代后期~,基因打靶为基础,胚胎发生工程与基因工程结合作为新的研究发展趋势。即在培养细胞水平上同源基因重组的“基因打靶” “基因打靶”是指利用基因转移方法,将外源DNA序列导入靶细胞后通过外源DNA序列与靶细胞内染色体上同源DNA序列间的重组,将外源基因定点整合入靶细胞基因组上某一确定的点,或对某一预先确定的靶位点进行定点突变的技术 细胞融合(cell fusion)是指用自然或人工方法,使两个或更多个不同的细胞融合成一个细胞的过程。它包括质膜的连接与融合,胞质合并,细胞核、细胞器和酶等互成混合体系。 应用:淋巴细胞杂交瘤技术,其产物为单克隆抗体单克隆抗体(monoclonal antibody, McAb)是由单一克隆(clone)的B淋巴细胞产生的抗单一抗原的高度特异性抗体。

国家标准学科分类与代码表

学科分类与代码 共设5个门类、58个一级学科、573个二级学科、近6000个三级学科。 学科分类代码是基于一定原则对现实科学体系按其内在联系加以归类并以符合逻辑的排列形式表述出来且赋予代码的一种学科。《学科分类与代码》国家标准,是科学发展、教育、科技统计、学科建设等方面工作的一个重要依据。鉴于学科分类在科学发展中所具有的特殊地位,联合国、美国、德国和日本等国际组织与世界发达国家都很重视学科分类体系标准化工作,纷纷制定相应的学科分类与代码标准。 《学科分类与代码》使用说明 中华人民共和国国家标准学科分类与代码表GB/T13745-92。 Classification and code disciplines。 1.主题内容: 本标准规定了学科的分类与代码。 2. 适用范围: 本标准适用于国家宏观管理和科技统计。 本标准的分类对象是学科,不同于专业和行业,不能代替文献、情报、图书分类及学术上的各种观点。 3. 相关术语: 3.1 学科: 学科是相对独立的知识体系。 3.2 学科群: 学科群是具有某一共同属性的一组学科。每个学科群包含了若干个分支学科。 4. 分类原则: 4.1 科学性原则: 根据学科研究对象的客观的、本质的属性和主要特征及其之间的相关联系,划分不同的从属关系和并列次序,组成一个有序的学科分类体系。 4.2 实用性原则: 对学科进行分类和编码,直接为科技政策和科技发展规划,以及科研经费、科技人才、科研项目、科技成果统计和管理服务。 4.3 简明性原则: 对学科层次的划分和组合,力求简单明了。 4.4 兼容性原则: 考虑国内传统分类体系的继承性和实际使用的延续性,并注意提高国际可比性。 4.5 扩延性原则: 根据现代科学技术体系具有高度动态性特征,应为萌芽中的新兴学科留有余地,以便在分类体系相对稳定的情况下得到扩充和延续。 4.6 唯一性原则: 在标准体系中,一个学科只能用一个名称、一个代码。 5. 分类依据: 本标准依据学科研究对象,研究特征、研究方法,学科的派生来源,研究目的、目标等五方面进行划分。 6.编制原则: 6.1 本标准所列学科应具备其理论体系和专门方法的形成;有关科学家群体的出现;有关研究机构和教学单位以及学术团体的建立并展开有效的活动;有关专著和出版物的问世等条件。

生物物理学课后习题及答案详解-袁观宇编著

第一章 1为何蛋白质的含氮量能表示蛋白质相对量?实验中又是如何依此原理计算蛋白质含量的? 答:因为蛋白质中氮的含量一般比较恒定,平均为16%。这是蛋白质元素组成的一个特点,也是凯氏定氮测定蛋白质含量的计算基础。蛋白质的含量计算为:每克样品中含氮克数×6.25×100即为100克样品中蛋白质含量(g%)。(P1) 2.蛋白质有哪些重要的生物学功能?蛋白质元素组成有何特点? 答:蛋白质是生命活动的物质基础,是细胞和生物体的重要组成部分。构成新陈代谢的所有化学反应,几乎都在蛋白质酶的催化下进行的,生命的运动以及生命活动所需物质的运输等都需要蛋白质来完成。蛋白质一般含有碳、氢、氧、氮、硫等元素,有些蛋白质还含有微量的磷、铁、铜、碘、锌和钼等元素。氮的含量一般比较恒定,平均为16%。这是蛋白质元素组成的一个特点。(P1) 3.组成蛋白质的氨基酸有多少种?如何分类? 答:组成蛋白质的氨基酸有20种。根据R的结构不同,氨基酸可分为四类,即脂肪族氨基酸、芳香族氨基酸、杂环族氨基酸、杂环亚氨基酸。根据侧链R的极性不同分为非极性和极性氨基酸,极性氨基酸又可分为极性不带电荷氨基酸、极性带负电荷氨基酸、极性带正电荷氨基酸。(P5) 4.举例说明蛋白质的四级结构。 答:蛋白质的四级结构含有两条或更多的肽链,这些肽链都成折叠的α-螺旋。它们相互挤在一起,并以弱键互相连接,形成一定的构象。四级结构的蛋白质中每个球状蛋白质称为亚基。亚基通常由一条多肽链组成,有时含有两条以上的多肽链,单独存在时一般没有生物活性。以血红蛋白为例:P11-12。 5、举例说明蛋白质的变构效应。 蛋白质的变构效应:当某种小分子物质特异地与某种蛋白质结合后,能够引起该蛋白质的构象发生微妙而有规律的变化,从而使其活性发生变化,P13。 血红蛋白(Hb)就是一种最早发现的具有别构效应的蛋白质,它的功能是运输氧和二氧化碳,运输氧的作用是通过它对O2的结合与脱结合来实现。Hb有两种能够互变的天然构象,一种为紧密型T,一种为松弛型R。T型对氧气亲和力低,不易于O2结合;R型则相反,它与O2的亲和力高,易于结合O2。 T型Hb分子的第一个亚基与O2结合后,即引起其构象开始变化,将构象变化的“信息”传递至第二个亚基,使第二、第三和第四个亚基与O2的亲和力依次增高,Hb分子的构象由T型转变成R型…这就微妙的完成了运送O2的功能。书P13最后两段,P14第一段 6.常用的蛋白质分离纯化方法有哪几种?各自的原理是什么? 1、沉淀:向蛋白质水溶液中加入浓的无机盐溶液,可使蛋白质的溶解度降低,而从溶液中析出。 2、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。根据支撑物不同,有薄膜电泳、凝胶电泳等。 3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。 4、层析:a.离子交换层析,利用蛋白质的两性游离性质,在某一特定pH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。 b.分子筛,又称凝胶过滤。小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能进入孔内而径直流出。5、超速离心:既可以用来分离纯化蛋白质,也可以用作测定蛋白质的分子量。不同蛋白质因其密度与形态各不相同而分开。 7.什么是核酸?怎样分类?各类中包括哪些类型? 核酸是生物体内极其重要的生物大分子,是生命的最基本的物质之一。(P15第一段) 核酸分为脱氧核糖核酸DNA和核糖核酸RNA。(P15第一段)

生物医学工程

生物医学工程(BiomedicalEngineering,简称BME)是一门由理、工、医相结合的边缘学科,是多种工程学科向生物医学生物医学渗透的产物。它是运用现代自然科学和工程技术的原理和方法,从工程学的角度,在多层次上研究人体的结构、功能及其相互关系,揭示其生命现象,为防病、治病提供新的技术手段的一门综合性、高技术的学科。有识之士认为,在新世纪随着自然科学的不断发展,生物医学工程的发展前景不可估量。生物医学工程学科是一门高度综合的交叉学科,这是它最大的特点 学科概况 生物医学工程(Biomedical-Engineering)是一门新兴的边缘学科,它综合工程学、生物学和医学的理论和方法,在各层次上研究人体系统的状态变化,并运用工程技术手段去控制这类变化,其目的是解决医学中的有关问题,保障人类健康,为疾病的预防、诊断、治疗和康复服 务。它有一个分支是生物信息、化学生物学等方面主要攻读生物、计算机信息技术和仪器分析化学等,微流控芯片技术的发展,为医疗诊断和药物筛选,以及个性化、转化医学提供了生物医学工程新的技术前景,化学生物学、计算生物学和微流控技术生物芯片是系统生物技术,从而与系统生物工程将走向统一的未来。 发展历程 生物医学工程兴起于20世纪50年代,它与医学工程和生物技术有着十分密切的关系,而且发展非常迅速,成为世界各国竞争的主要领域之一。 生物医学工程学与其他学科一样,其发展也是由科技、社会、经济诸因素所决定的。这个名词最早出现在美国。1958年在美国成立了国际医学电子学联合会,1965年该组织改称国际医学和生物工程联合会,后来成为国际生物医学工程学会。 生物医学工程学除了具有很好的社会效益外,还有很好的经济效益,前景非常广阔,是目前各国争相发展的高技术之一。以1984年为例,美国生物医学工程和系统的市场规模约为110亿美元。美国科学院估计,到2000年其产值预计可达400~1000亿美元。 生物医学工程学是在电子学、微电子学、现代计算机技术,化学、高分子化学、力学、近代物理学、光学、射线技术、精密机械和近代高技术发展的基础上,在与医学结合的条件下发展起来的。它的发展过程与世界高技术的发展密切相关,同时它采用了几乎所有的高技术成果,如航天技术、微电子技术等。 学科内容 生物力学是运用力学的理论和方法,研究生物组织和器官的力学特性,研究机体力学特征与其功能的关系。生物力学的研究成果对了解人体伤病机理,确定治疗方法有着重大意义,同时可为人工器官和组织的设计提供依据。 生物控制论是研究生物体内各种调节、控制现象的机理,进而对生物体的生理和病理现象进行控制,从而达到预防和治疗疾病的目的。其方法是对生物体的一定结构层次,从整体角度用综合的方法定量地研究其动态过程。 生物效应是研究医学诊断和治疗中,各种因素可能对机体造成的危害和作用。它要研究光、声、电磁辐射和核辐射等能量在机体内的传播和分布,以及其生物效应和作用机理。 生物材料是制作各种人工器官的物质基础,它必须满足各种器官对材料的各项要求,包括强度、硬度、韧性、耐磨性、挠度及表面特性等各种物理、机械等性能。由于这些人工器官大多数是植入体内的,所以要求具有耐腐蚀性、化学稳定性、无毒性,还要求与机体组织或血液有相容性。这些材料包括金属、非金属及复合材料、高分子材料等;目前轻合金材料的应用较为广泛。 医学影像是临床诊断疾病的主要手段之一,也是世界上开发科研的重点课题。医用影像设备主要采用X射线、超声、放射性核素磁共振等进行成像。 X射线成像装置主要有大型X射线机组、X射线数字减影(DSA)装置、电子计算机X射线断层成像装

高端低温电镜(Titan Krios Talos) - 中国科学院生物物理研究所蛋白质

Titan Krios用户申请须知 每份用户实验申请提交后将在一星期内转发给两位专家进行评审,评审时间约为一个月。此后将评审意见及机时安排的起始及终止日期通知用户。 符合以下情况的用户实验申请将为所申请的实验在一年中分批安排所申请的机时: 1 两位评审专家均同意该实验申请 2 一位专家同意实验申请,另一位不同意实验申请,而用户提交申请的同时附上曾依托本所实验平台的Titan Krios发表的论文(论文中清楚地注明依托本所实验平台的设备) 符合以下情况的用户实验申请将根据机时需求的紧张程度,在一年中为所申请的实验安排部分申请机时: 1一位专家同意实验申请,另一位不同意实验申请 2 两位专家均不同意实验申请,但用户提交申请的同时附上曾依托本所实验平台的Titan Krios发表的论文(论文中清楚地注明依托本所实验平台的设备) 以下情况的用户实验申请将不安排机时: 1两位专家均不同意实验申请 ――――――――――――――――――――――――――――――――――――――― 专家评审要点有以下四点: 第一,对用户实验的生物学或医学或方法学上的重要性做出评定。 第二,用户使用Titan Krios 的必要性。使用其它电镜或实验方法能否达到实验目的,使用本中心其他设备能否同样达到实验目的。 本中心尚有: 透射电镜Tecnai Spirit (120kV,钨灯丝,2K×2K 底插式eagle CCD,1K*1K 侧插式OSIS 冷CCD,电子断层扫描自动化数据收集软件,配有室温单倾样品杆、Gatan 927 室温双轴高倾样品杆、Gatan 626 低温样品杆,Gatan CT3500低温样品杆,样品台最大倾转角70度,物镜球差系数3.7mm,色差系数3.7mm,点分辨率0.34nm) 透射电镜FEI Tecnai20 (200kV,LaB6灯丝,2K×2K Gatan Ultrascan 894 CCD,电子断层扫描自动化数据收集软件,配有室温单倾样品杆、Gatan 927 室温双轴高倾样品杆、Gatan 626 低温样品杆,Gatan CT3500低温样品杆,样品台最大倾转角70度,物镜球差系数2.5mm,色差系数2.5mm,点分辨率0.25nm)。 第三,使用Titan Krios能否达到用户的实验目的。 本中心的Titan Krios配置为1. 配有场发射电子枪,最高加速电压300kV,三级聚光镜系统,实现一定范围内的平行光照明;2. 自动进样系统可同时存储12个冷冻样品,样品台可倾转最大角度70度,水平旋转90度;3. 恒功率模式的电磁透镜系统保证成像的高稳定性;4. 物镜球差系数2.7mm,色差系数2.7mm; 5. 点分辨率0.25nm,信息分辨极限 0.14nm; 6. 底插式Gatan Ultrascan 985 4K×4K CCD相机;7. Gatan GIF Tridium 能量过滤器; 8. STEM 暗场模式成像; 9. 用户界面友好,远程操作;10. 配有DM和TIA图像采集和分析软件;11. 配有Xplore3D电子断层扫描自动化数据收集软件。 第四,用户的实验设计是否合理,前期实验工作是否充分,所申请的机时是否合理。 本中心的机时以11小时为单位,每天分为两个时间段,中间间隔1小时。早九点至晚八点为一个时间段,晚九点到次日早八点为另一个时间段。

医学生物物理学最终版

1、一级结构(Primary Structure):多聚体中组成单位的顺序排列。含义主要包括 1、链的数目; 2、每条链的起始和末端组分; 3、每条链中组分的数目、种类及其顺序; 4、链内或链间相互作用的性质、位置和数目。测定方法:1、生化方法:肽链的拆开、末段分析、氨基酸组成分析、多肽链降解、肽顺序分析 2、质谱技术(Mass Spectrometer)和色谱层析分析技术。 2、二级结构(Secondary Structure)是指多聚体分子主链(骨架)空间排布的规律性。测定方法:1、圆二色技术(Circular dichroism CD)、红外光谱(Infrared spectrum)和拉曼光谱(Raman spectrum )技术。 3、水化作用 (Hydration):离子或其他分子在水中将在其周围形成一个水层。 笼形结构(cage structure):疏水物质进入水后水分子将其包围同时外围水分子之间较容易互相以氢键结合而形成笼形结构。 4、能量共振转移(energy resonance transfer): 将分子视为一个正负电荷分离的偶极子,受激发后将以一定的频率振动,如果其附近有一个振动频率相同的另一分子存在,则通过这两个分子间的偶极-偶极相互作用,能量以非辐射的方式从前者转移给后者,这一现象称为~。 5、脂多形性(lipid polymorphism):不同的磷脂分子可形成不同的聚集态或不同的结构,称为“相”,同一磷脂分子在不同的条件下也可以形成不同的聚集态,这一性质称为脂多形性。 6、相分离(phase separation):由两种磷脂组成的脂质体,当温度在两种磷脂的相变温度之间时,一种磷脂已经发生相变处于液晶态,另一种磷脂仍处于凝胶态,这种两相共存的现象称为相分离。 7、相变:(phase transition):是指加热到一定稳定时脂双层结构突然发生变化,而脂双层仍然保留的现象。这一温度成为相变温度,温度以上成为液晶相,相变温度以下称为凝胶相。 8、协同运输(cotransport):细胞利用离子顺其跨膜浓度梯度运输时释放的能:量同时使另一分子逆其跨膜浓度梯度运输。 9、被动运输(passive transport):是指溶质从高浓度区域移动到一低浓度区域,最后消除两区域的浓度差,是以熵增加驱动的放能过程。这种转运方式称为被动运输。 10、主动运输(active transport):主动运输是指物质逆浓度梯度,在载体的协助下,在能量的作用下运进或运出细胞膜的过程。Na+、K+和Ca2+等离子,都不能自由地通过磷脂双分子层,它们从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量。 11、易化扩散(facilitated diffusion):在双层脂分子上存在一些特殊蛋白质能够大大增加融资的通透性,溶质也是从高浓度侧向低浓度侧运输,这种运输方式被称为易化扩散。这些蛋白质被称为运输蛋白。 12、离子通道(ion channel):是细胞膜的脂双层中的一些特殊大分子蛋白质,其中央形成能通过离子的亲水性孔道,允许适当大小和适当电荷的离子通过。 13、长孔效应(longpore effect):当一个离子从膜外进入孔道,要与孔道内的几个离子发生碰撞后才能通过孔道,这种现象称为长孔效应。 14、双电层(electrical double layer ):细胞表面的固定电荷与吸附层电荷的净电荷总量与扩散层电荷的性质相反,数值相等,形成一个双电层。 15、自由基( free radical FR ):能独立存在的、具有不配对电子的原子、原子团、离子或分子。 16、基团频率( group frequency ):一些化学基团(官能团)的吸收总在一个较狭窄的特定频率范围内,是红外光谱的特征性。在红外光谱中该频率表现基团频率位移,即特征吸收峰。 17、infrared spectroscopy(红外光谱):以波长或波数为横坐标,以强度或其他随波长变化的性质为纵坐标所得到的反映红外射线与物质相互作用的谱图。 18、圆二色谱(circular dichroism spectrum, CD):记录的是物质对紫外光与可见光波段左圆偏振光和右圆偏振光的吸收存在的差别与波长的关系,是分子中的吸收基团吸收电磁波能量引起物质电子能级跃迁,其波长范围包括近紫外区、远紫外区和真空紫外区。 19、圆二色性(activity of circular dichroism):手性物质对左右圆偏振光的吸收度不同,导致出射时左右圆偏振光电场矢量的振幅不同,通过样品后的左右圆偏振光再次合成的光是椭圆偏振光,而不再是线性偏振光,这种现象称为~。 20、旋光性(activity of optical ratation):左右圆偏振光在手性物中行进(旋转)速度不同,导致出射时的左右圆偏振光相对于入射光的偏振面旋转的角度不同,通过样品后的左右圆偏振光再次合成的光相对于入射光的偏振面旋转了一定的角度,称为~。 21、荧光(fluorescence):受光激发的分子从第一激发单重态的最低振动能级回到基态所发出的辐射。寿命为10-8~ 10 -11s。由于是相同多重态之间的跃迁,几率较大,速度大,速率常数kf为106~109s-1。分子产生荧光必须具备的条件(1)具有合适的结构(2)具有一定的荧光量子产率。

相关文档
最新文档