高中数学-圆的方程知识点

高中数学-圆的方程知识点
高中数学-圆的方程知识点

圆与方程知识点

一、标准方程

()()

22

2x a y b r -+-=

1.求标准方程的方法——关键是求出圆心

(),a b 和半径r

2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件 方程形式 圆心在原点

()2220x y r r +=≠

过原点

()()

()22

22220x a y b a b a b -+-=++≠

圆心在x 轴上

()

()2

220x a y r r -+=≠

圆心在

y 轴上 ()()2

220x y b r r +-=≠

圆心在x 轴上且过原点

()

()2

220x a y a a -+=≠

圆心在

y 轴上且过原点 ()()2

220x y b b b +-=≠

与x 轴相切

()()

()22

20x a y b b b -+-=≠

y 轴相切 ()()()2

2

20x a y b a a -+-=≠

与两坐标轴都相切 ()()

()22

20x a y b a a b -+-==≠

二、一般方程

()2222040x y Dx Ey F D E F ++++=+->

1.

220Ax By Cxy Dx Ey F +++++=表示圆方程则

2222

00

04040

A B A B C C D E AF D E F A A A ??

=≠=≠????

=?=????+->??????+-?> ? ??????

? 2.求圆的一般方程一般可采用待定系数法: 3.2

240D

E F +->常可用来求有关参数的范围

三、点与圆的位置关系

1.判断方法:点到圆心的距离d 与半径r 的大小关系

d r ?点在圆外

2.涉及最值:

(1)圆外一点B ,圆上一动点P ,讨论PB

的最值

min PB BN BC r ==- max PB BM BC r ==+

(2)圆内一点A ,圆上一动点P ,讨论PA 的最值

min PA AN r AC ==- max PA AM r AC ==+

思考:过此

A 点作最短的弦?(此弦垂直AC )

四、直线与圆的位置关系

1.判断方法(d 为圆心到直线的距离) (1)相离?没有公共点?

0d r ?

(2)相切?只有一个公共点?0d r ?=?= (3)相交?有两个公共点?0d r ?>?<

这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆相切 (1)知识要点 ①基本图形

②主要元素:切点坐标、切线方程、切线长等 问题:直线l 与圆C 相切意味着什么? 圆心C 到直线l 的距离恰好等于半径r (2)常见题型——求过定点的切线方程

①切线条数:点在圆外——两条;点在圆上——一条;点在圆内——无 ②求切线方程的方法及注意点... i )点在圆外 如定点()00,P

x y ,圆:()()

22

2x a y b r -+-=,[()()22

200x a y b r -+->]

第一步:设切线l 方程

()00y y k x x -=-第二步:通过d r =k ?,从而得到切线方程

特别注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上 如:过点()1,1P

作圆2246120x y x y +--+=的切线,求切线方程.答案:3410x y -+=和1x =

ii )点在圆上

1) 若点

()00x y ,

在圆222x y r +=上,则切线方程为200x x y y r += 会在选择题及填空题中运用,但一定要看清题目. 2) 若点

()00x y ,

在圆()()2

2

2x a y b r -+-=上,则切线方程为

()()()()200x a x a y b y b r --+--=

碰到一般方程则可先将一般方程标准化,然后运用上述结果.

由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是——判断点与圆的位置关系,得出切线的条数.

③求切线长:利用基本图形,

22

2AP CP r AP =-?=

求切点坐标:利用两个关系列出两个方程1AC AP

AC r

k k ?=??=-?

3.直线与圆相交

(1)求弦长及弦长的应用问题 垂径定理....及勾股定理——常用

弦长公式:

12l

x =-=

(2)判断直线与圆相交的一种特殊方法(一种巧合):直线过定点,而定点恰好在圆内. (3)关于点的个数问题 例:若圆

()()

22

235x y r -++=上有且仅有两个点到直线4320x y --=的距离为

1,则半径

r

的取值范围是

_________________. 答案:()4,6

4.直线与圆相离 五、对称问题(举例) 1.若圆()2

22120x

y m x my m ++-+-=,关于直线10x y -+=,则实数m 的值为____.

答案:3(注意:1m =

-时,2240D E F +-<,故舍去)

变式:已知点

A 是圆C :22450x y ax y +++-=上任意一点,A 点关于直线210x y +-=的对称点在圆C 上,则实数

a =_________.

2.圆

()()

22

131x y -+-=关于直线0x y +=对称的曲线方程是________________.

变式:已知圆

1C :()()2

2

421x y -+-=与圆2C :()()2

2

241x y -+-=关于直线l

对称,则直线

l 的方程为

_______________. 3.圆

()()

2

2

311x y -++=关于点()2,3对称的曲线方程是__________________.

六、最值问题

方法主要有三种:(1)数形结合;(2)代换;(3)参数方程 1.已知实数x ,

y 满足方程22410x y x +-+=,求:

(1)5

y

x -的最大值和最小值;——看作斜率

(2)y x -的最小值;——截距(线性规划)

(3)2

2x

y +的最大值和最小值.——两点间的距离的平方

2.已知AOB ?中,3OB =,4OA =,5AB =,点P 是AOB ?内切圆上一点,求以PA ,PB

PO 为直径的三

个圆面积之和的最大值和最小值. 数形结合和参数方程两种方法均可! 3.设(),P

x y 为圆()

2

211x y +-=上的任一点,欲使不等式0x y c ++≥恒成立,则c 的取值范围是____________. 答案:

1c ≥-(数形结合和参数方程两种方法均可!)

七、圆的参数方程

()222cos 0sin x r x y r r y r θ

θ

=?+=>??

=?,θ为参数 ()()

()22

2cos 0sin x a r x a y b r r y b r θ

θ=+?-+-=>??

=+?

,θ为参数 八、圆与圆的位置关系

1.判断方法:几何法(d 为圆心距) (1)12d r r >+?外离 (2)12d r r =+?外切

(3)1212r r d r r -<<+?相交 (4)12d r r =-?内切 (5)12d

r r <-?内含

2.两圆公共弦所在直线方程 圆1C :2

21110x y D x E y F ++++=,圆2C :222220x y D x E y F ++++=,

()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程.

补充说明:

若1C 与2C 相切,则表示其中一条公切线方程;若1C 与2C 相离,则表示连心线的中垂线方程. 3. 圆系问题 (1)过两圆

1

C :

221110

x y D x E y F ++++=和

2

C :

222220

x y D x E y F ++++=交点的圆系方程为

()22221112220x y D x E y F x y D x E y F λ+++++++++=(1λ≠-)

说明:1)上述圆系不包括2C ;2)当1λ

=-时,表示过两圆交点的直线方程(公共弦)

(2)过直线

Ax By C ++=与

220

x y Dx Ey F ++++=交点的圆系方程为

()220x y Dx Ey F Ax By C λ+++++++=

(3)两圆公切线的条数问题

①相内切时,有一条公切线;②相外切时,有三条公切线;③相交时,有两条公切线;④相离时,有四条公切线 九、轨迹方程

(1)定义法(圆的定义):略

(2)直接法:通过已知条件直接得出某种等量关系,利用这种等量关系,建立起动点坐标的关系式——轨迹方程.

例:过圆2

21x y +=外一点()2,0A 作圆的割线,求割线被圆截得的弦的中点的轨迹

方程. 分析:

222

OP AP OA

+=

(3)相关点法(平移转换法):一点随另一点的变动而变动

↓ ↓

动点 主动点

特点为:主动点一定在某一已知的方程所表示的(固定)轨迹上运动. 例1.如图,已知定点

()2,0A ,点Q 是圆221x y +=上的动点,AOQ ∠的平分线交

AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程.

分析:角平分线定理和定比分点公式. 例2.已知圆O :2

29x

y +=,点()3,0A ,B 、C 是圆O 上的两个动点,A 、B 、C 呈逆时针方向排列,且3

BAC π

∠=

求ABC ?的重心G 的轨迹方程. 法1:3

BAC π

∠=

Q

,BC ∴为定长且等于33

设(),G x y ,则33333A B C B C A B C B C x x x x x x y y y y y y ++++?

==???

+++?==??取BC 的中点为33,24E

x ??

∈-????,333,42E y ??∈- ? ??

2

2

2

OE CE OC

+=Q ,2

29

4

E

E x y ∴+=

L L (1)

2222B C E B C E B C E B C E

x x x x x x y y y y y y +?=?+=????

?+=+??=??,3233322323E E E E x x x x y y y

y +-??==????∴?????==????

故由(1)得:()22

22

333933110,,,12242x y x y x y ??-??????+=?-+=∈∈- ? ? ??? ????????

法2:(参数法) 设()3cos ,3sin B

θθ,由223

BOC BAC π

∠=∠=

,则

223cos ,3sin 33C ππθθ?????

?+

+ ? ? ??????

?

设(),G

x y ,则

()()233cos 3cos 231cos cos 133323sin 3sin 23sin sin 2333A B C A B C x x x x y y y y πθθπθθπθθπθθ??

?+++ ??++?????===+++ ????

?

???++ ??++????===++? ????

L L L 4,33ππθ??∈ ???,由()()()22112-+得:()22

33110,,,12x y x y ????-+=∈∈- ??? ????

参数法的本质是将动点坐标(),x y 中的x 和y 都用第三个变量(即参数)表示,通过消参..

得到动点轨迹方程,通过参数的范围得出x ,

y 的范围.

(4)求轨迹方程常用到得知识

①重心(),G x y ,33A B C A B C x x x x y y y y ++?

=???

++?=??

②中点(),P x y ,12122

2

x x x y y y +?

=???

+?=??

③内角平分线定理:

BD AB

CD AC

=

④定比分点公式:AM

MB λ=,则1A

B M x x x λλ

+=+,

1A B

M y y y λλ

+=

+

⑤韦达定理.

高三总复习直线与圆的方程知识点总结及典型例题.

直线与圆的方程 、直线的方程 已知 L 上两点 P 1( x 1,y 1) P 2( x 2,y 2 ) 当 x 1 = x 2 时, =900 , 不存在。当 0 时, =arctank , <0 时, = ②任何一个关于 x 、y 的二元一次方程都表示一条直线。 5、直线系:(1)共点直线系方程: p 0(x 0,y 0)为定值, k 为参数 y-y 0=k (x-x 0) 特别: y=kx+b ,表示过( 0、 b )的直线系(不含 y 轴) ( 2)平行直线系:① y=kx+b ,k 为定值, b 为参数。 ② AX+BY+ 入=0 表示与 Ax+By+C=0 平行的直线系 ③ BX-AY+ 入 =0 表示与 AX+BY+C 垂直的直线系 ( 3)过 L 1,L 2交点的直线系 A 1x+B 1y+C 1+入( A 2X+B 2Y+C 2)=0(不含 L2) 6、三点共线的判定:① AB BC AC ,②K AB =K BC , ③写出过其中两点的方程,再验证第三点在直线上。 、两直线的位置关系 k= y 2 y 1 x 2 x 1 20 2 已知 方程 说明 斜截式 K 、b Y=kx+b 不含 y 轴和行平 于 y 轴的直点斜式 P 1=(x 1,y 1) k y-y 1=k(x-x 1) 不含 y 轴和平 行 于 y 轴的直线 两点式 P 1(x 1,y 1) P 2(x 2,y 2) y y 1 x x 1 不含坐标辆和 平行于坐标轴 的直线 y 2 y 1 x 2 x 1 截距式 a 、b xy 1 ab 不含坐标轴、平 行于坐标轴和 过原点的直线 一般式 Ax+by+c=0 A 、 B 不同时为 0 3、截距(略)曲线过原点 横纵截距都为 0。 4、直线方程的几种形式 几种特殊位置的直 线 ①x 轴: y=0 ② y 轴: x=0 ③平行于 x 轴: y=b ④平行于 y 轴: x=a ⑤过原点: y=kx y 的二元一 次方程。 1、倾斜角: 0< < k 0 2 = 不存在 2 +arctank 2、斜

高中数学直线与圆精选题目(附答案)

高中数学直线与圆精选题目(附答案) 一、两直线的位置关系 1.求直线斜率的基本方法 (1)定义法:已知直线的倾斜角为α,且α≠90°,则斜率k =tan α. (2)公式法:已知直线过两点P 1(x 1,y 1),P 2(x 2,y 2),且x 1≠x 2,则斜率k =y 2-y 1 x 2-x 1. 2.判断两直线平行的方法 (1)若不重合的直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1=k 2?l 1∥l 2. (2)若不重合的直线l 1与l 2的斜率都不存在,其倾斜角都为90°,则l 1∥l 2. 3.判断两直线垂直的方法 (1)若直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1·k 2=-1?l 1⊥l 2. (2)已知直线l 1与l 2,若其中一条直线的斜率不存在,另一条直线的斜率为0,则l 1⊥l 2. 1.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值. (1)l 1⊥l 2且l 1过点(-3,-1); (2)l 1∥l 2,且坐标原点到这两条直线的距离相等. [解] (1)∵l 1⊥l 2, ∴a (a -1)-b =0,① 又l 1过点(-3,-1), ∴-3a +b +4=0.② 解①②组成的方程组得??? a =2, b =2. (2)∵l 2的斜率存在,l 1∥l 2, ∴直线l 1的斜率存在. ∴k 1=k 2,即a b =1-a .③ 又∵坐标原点到这两条直线的距离相等,l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,

即4 b =-(-b ).④ 由③④联立,解得??? a =2, b =-2或????? a =23 ,b =2. 经检验此时的l 1与l 2不重合,故所求值为 ??? a =2, b =-2或????? a =23 , b =2. 注: 已知两直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0 (1)对于l 1∥l 2的问题,先由A 1B 2-A 2B 1=0解出其中的字母值,然后代回原方程检验这时的l 1和l 2是否重合,若重合,舍去. (2)对于l 1⊥l 2的问题,由A 1A 2+B 1B 2=0解出字母的值即可. 2.直线ax +2y -1=0与直线2x -3y -1=0垂直,则a 的值为( ) A .-3 B .-4 3 C .2 D .3 解析:选D 由2a -6=0得a =3.故选D. 3.已知直线x +2ay -1=0与直线(a -1)x +ay +1=0平行,则a 的值为( ) A.32 B.32或0 C .0 D .-2 解析:选A 当a =0时,两直线的方程化为x =1和x =1,显然重合,不符合题意;当a ≠0时,a -11=a 2a ,解得a =3 2.故选A. 二、直线方程 1.直线方程的五种形式

高中数学直线与圆的方程知识点总结

高中数学直线与圆的方 程知识点总结 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程:

①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可 3、距离公式: ①两点间距离:2 2122121)()(y y x x P P -+-= ②点到直线距离:2 2 00B A C By Ax d +++= ③平行直线间距离:2 2 21B A C C d +-= 4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A ①AB 中点),(00y x :)2 ,2( 2 121y y x x ++ ②AB 三分点),(),,(2211t s t s :)3 2,32(2 1 21y y x x ++ 靠近A 的三分点坐标 )3 2,32(2 121 y y x x ++ 靠近B 的三分点坐标 中点坐标公式,在求对称点、第四章圆与方程中,经常用到。 三分点坐标公式,用得较少,多见于大题难题。 5.直线的对称性问题

高中数学 必修内容复习(7) 直线和圆的方程

高中数学必修内容复习(7)---直线和圆的方程 一、 选择题(每题3分,共54分) 1、在直角坐标系中,直线033=-+y x 的倾斜角是( ) A . 6 π B . 3 π C . 6 5π D . 3 2π 2、若圆C 与圆1)1()2(2 2 =-++y x 关于原点对称,则圆C 的方程是( ) A .1)1()2(2 2 =++-y x B .1)1()2(2 2=-+-y x C .1)2()1(2 2 =++-y x D .1)2()1(2 2 =-++y x 3、直线0=++c by ax 同时要经过第一、第二、第四象限,则c b a 、、应满足( ) A .0,0<>bc ab B .0,0<>bc ab C .0,0>>bc ab D .0,0<--y x 表示的平面区域在直线062=--y x 的( ) A .左上方 B .右上方 C .左下方 D .左下方 6、直线0943=--y x 与圆42 2 =+y x 的位置关系是( ) A .相交且过圆心 B .相切 C .相离 D .相交但不过圆心 7、已知直线)0(0≠=++abc c by ax 与圆12 2 =+y x 相切,则三条边长分别为c b a 、、的三角形( ) A .是锐角三角形 B .是直角三角形 C .是钝角三角形 D .不存在 8、过两点)9,3()1,1(和-的直线在x 轴上的截距是( ) A .2 3 - B .3 2- C . 5 2 D .2 9、点)5,0(到直线x y 2=的距离为( ) A . 2 5 B .5 C . 2 3 D . 2 5 10、下列命题中,正确的是( ) A .点)0,0(在区域0≥+y x 内 B .点)0,0(在区域01<++y x 内 C .点)0,1(在区域x y 2>内 D .点)1,0(在区域01<+-y x 内

高中数学直线和圆知识点总结

直线和圆 一.直线 1.斜率与倾斜角:tan k θ=,[0,)θπ∈ (1)[0, )2 π θ∈时,0k ≥;(2)2 πθ= 时,k 不存在;(3)( ,)2 π θπ∈时,0k < (4)当倾斜角从0? 增加到90? 时,斜率从0增加到+∞; 当倾斜角从90? 增加到180? 时,斜率从-∞增加到0 2.直线方程 (1)点斜式:)(00x x k y y -=- (2)斜截式:y kx b =+ (3)两点式: 1 21 121x x x x y y y y --=-- (4)截距式: 1x y a b += (5)一般式:0C =++By Ax 3.距离公式 (1)点111(,)P x y ,222(,)P x y 之间的距离:12PP = (2)点 00(,)P x y 到直线0Ax By C ++=的距离:d = (3)平行线间的距离: 10Ax By C ++=与20Ax By C ++=的距离:d = 4.位置关系 (1)截距式:y kx b =+形式 重合:1212 k k b b == 相交:12k k ≠ 平行:1212 k k b b =≠ 垂直:121k k ?=- (2)一般式:0Ax By C ++=形式 重合:1221A B A B =且1221A C A C =且1212B C C B = 平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠

垂直:12120A A B B += 相交:1221A B A B ≠ 5.直线系 1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所 有直线方程(不含2l ) 二.圆 1.圆的方程 (1)标准形式:2 2 2 ()()x a y b R -+-=(0R >) (2)一般式:2 2 0x y Dx Ey F ++++=(22 40D E F +->) (3)参数方程:00cos sin x x r y y r θ θ=+??=+? (θ是参数) 【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决. (4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--= 2.位置关系 (1)点00(,)P x y 和圆222 ()()x a y b R -+-=的位置关系: 当22200()()x a y b R -+-<时,点00(,)P x y 在圆222 ()()x a y b R -+-=内部 当22200()()x a y b R -+-=时,点00(,)P x y 在圆222 ()()x a y b R -+-=上 当22200()()x a y b R -+->时,点00(,)P x y 在圆222 ()()x a y b R -+-=外 (2)直线0Ax By C ++=和圆222 ()()x a y b R -+-=的位置关系: 判断圆心(,)O a b 到直线0Ax By C ++= 的距离d =R 的大小关系 当d R <时,直线和圆相交(有两个交点); 当d R =时,直线和圆相切(有且仅有一个交点); 当d R <时,直线和圆相离(无交点); 判断直线与圆的位置关系常见的方法 (1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. (2)代数法:联立直线与圆的方程消元后利用Δ判断. (3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.

高三总复习直线与圆的方程知识点总结

直线与圆的方程 一、直线的方程 1、倾斜角: ,围0≤α<π, x l //轴或与x 轴重合时,α=00 。 2、斜率: k=tan α α与κ的关系:α=0?κ=0 已知L 上两点P 1(x 1,y 1) 0<α< 02 >?k π P 2(x 2,y 2) α= κπ ?2 不存在 ?k= 1 212x x y y -- 022

二、两直线的位置关系 (说明:当直线平行于坐标轴时,要单独考虑) 2、L 1 到L 2的角为0,则1 21 21tan k k k k ?+-= θ(121-≠k k ) 3、夹角:1 21 21tan k k k k +-= θ 4、点到直线距离:2 2 00B A c By Ax d +++= (已知点(p 0(x 0,y 0),L :AX+BY+C=0) ①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0?2 221B A c c d +-= ②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022 =+B A d ③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是 02 2 1=++ +C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --'

高中文科数学直线和圆题目精选和答案

1 在直角坐标系中,直线033=-+y x 的倾斜角是( ) A . 6 π B . 3 π C . 6 5π D . 3 2π 2 若圆C 与圆1)1()2(2 2 =-++y x 关于原点对称,则圆C 的方程是( ) A .1)1()2(2 2=++-y x B .1)1()2(2 2=-+-y x C .1)2()1(2 2=++-y x D .1)2()1(2 2 =-++y x 4 已知直线22 1 :1+= x y l ,直线2l 过点)1,2(-P ,且1l 到2l 的夹角为ο45,则直线2l 的方程是( ) A .1-=x y B .5 3 31+= x y C .73+-=x y D .73+=x y 5 不等式062>--y x 表示的平面区域在直线062=--y x 的( ) A .左上方 B .右上方 C .左下方 D .左下方 6 直线0943=--y x 与圆42 2 =+y x 的位置关系是( ) A .相交且过圆心 B .相切 C .相离 D .相交但不过圆心 7 已知直线)0(0≠=++abc c by ax 与圆12 2 =+y x 相切,则三条边长分别为c b a 、、的三角形( ) A .是锐角三角形 B .是直角三角形 C .是钝角三角形 D .不存在 8 过两点)9,3()1,1(和-的直线在x 轴上的截距是( ) A .2 3- B .3 2- C . 5 2 D .2 9 点)5,0(到直线x y 2=的距离为( ) A . 2 5 B .5 C . 2 3 D . 2 5 10 下列命题中,正确的是( ) A .点)0,0(在区域0≥+y x 内 B .点)0,0(在区域01<++y x 内 C .点)0,1(在区域x y 2>内 D .点)1,0(在区域01<+-y x 内 11 由点)3,1(P 引圆92 2 =+y x 的切线的长是 ( ) A .2 B .19 C .1 D .4 12 三直线102,1034,082=-=+=++y x y x y ax 相交于一点,则a 的值是( )

高中数学直线与圆的方程知识点总结

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程: ①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接 带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可

最新直线与方程和圆与方程-知识点总结

第三章 直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0°.因此,倾斜角的取值范围是0180α?≤

高中 圆与直线的典型大题

1. 已知方程x2+y2-2x-4y+m=0。 (Ⅰ)若此方程表示圆,求m的取值范围; (Ⅱ)若(Ⅰ)中的圆与直线x+2y-4=0相交于M,N两点,且OM⊥ON(O为坐标原点),求m的值; (Ⅲ)在(Ⅱ)的条件下,求以MN为直径的圆的方程。 解:(Ⅰ),D=-2,E=-4,F=m, =20-4m>0,解得:m<5。 (Ⅱ), 将x=4-2y代入得,∴,, ∵OM⊥ON,得出:, ∴, ∴。 (Ⅲ)设圆心为(a,b),, 半径, ∴圆的方程为。 法 2.

2. 已知圆C方程为x2+y2-2x-4y-20=0,直线l的方程为:(2m+1)x+(m+1)y-7m-4=0. 证明:无论m取何 圆C恒有两个公共点。 2、求直线l被圆C截得的线段的最短长度,并求出此时m的值 1、将直线方程化为:m(2x+y-7)+(x+y-4)=0,不论m取何值,直线总过定点,令2x+y-7=0,x+y-4=0 解得x=3,y=1,所以直线过定点(3,1),将点(3,1)代入圆方程左边可知<0,所以点(3,1)在圆内 所以直线与圆相交,直线与圆恒有两个公共点 2、当直线与过A(3,1)点的直径垂直时,直线l被圆C截得的线段的最短,圆心C(1,2), AC的斜率= -1/2,所以L的斜率=2,所以- (2m+1)/(m+1)=2,所以m= - 3/4 3、已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0. (Ⅰ)证明:不论m为何值时,直线l和圆C恒有两个交点; (Ⅱ)判断直线l被圆C截得的弦何时最长、何时最短?并求截得的弦长最短时m的值以及最短长度.

直线和圆的方程知识点总结讲课稿

直线和圆的方程知识 点总结

一、直线方程. 1. 直线的倾斜角 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 3. ⑴两条直线平行: 1l 推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=?l . ⑵两条直线垂直: 两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=?⊥k k l l 4. 直线的交角: 5. 过两直线? ??=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内) 6. 点到直线的距离: ⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200B A C By Ax d +++= . 注: 1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)()(||y y x x P P -+-=. 2. 定比分点坐标分式。若点P(x,y)分有向线段1212 PP PP PP λλ=u u u r u u u r 所成的比为即,其中P 1(x 1,y 1),P 2(x 2,y 2).则 λλλλ++=++=1,121 21y y y x x x 特例,中点坐标公式;重要结论,三角形重心坐标公式。 3. 直线的倾斜角(0°≤α<180°)、斜率:αtan =k 4. 过两点1212222111),(),,(x x y y k y x P y x P --=的直线的斜率公式:. 12()x x ≠

高中数学必修二直线与圆方面的知识点范文

高中数学必修二直线与 圆方面的知识点范文 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

高中数学必修2知识点——直线与圆 整理 徐福扬 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0

直线和圆的方程知识及典型例题

数学基础知识与典型例题 直线和圆的方程 直线和 圆的方 程知识 关系 直线的方程一、直线的倾斜角和斜率 1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0o,故直线倾斜角α的范围是0180 α< o o ≤. 2.直线的斜率:倾斜角不是90o的直线其倾斜角α的正切叫这条直线的斜率k,即 tan kα =. 注:①每一条直线都有倾斜角,但不一定有斜率. ②当ο 90 = α时,直线l垂直于x轴,它的斜率k不存在. ③过两点 111 (,) P x y、 222 (,) P x y 12 () x x ≠的直线斜率公式21 21 tan y y k x x α - == - 二、直线方程的五种形式及适用条件 名称方程说明适用条件 斜截式y=kx+b k—斜率 b—纵截距 倾斜角为90°的直线 不能用此式 点斜式y-y0=k(x-x0) (x0,y0)—直线上已 知点, k ──斜率 倾斜角为90°的直线 不能用此式 两点式1 21 y y y y - - =1 21 x x x x - - (x1,y1),(x2,y2)是 直线上两个已知点 与两坐标轴平行的直 线不能用此式 截距式 x a + y b =1 a—直线的横截距 b—直线的纵截距 过(0,0)及与两坐标 轴平行的直线不能用 此式 一般式 A x+ B y+C=0 (A、B不全为零) A、B不能同时为零

两直线的位置关系⑵两条相交直线 1 l与 2 l的夹角: 两条相交直线 1 l与 2 l的夹角,是指由 1 l与 2 l相交所成的四 个角中最小的正角θ,又称为1l和2l所成的角,它的取值范围 是0, 2 π ?? ? ? ? ,当两直线的斜率k1,k2都存在且k1·k2≠-1时, 则有21 12 tan 1 k k k k θ - = + . 4.距离公式。 ⑴已知一点P(x0,y0)及一条直线l:A x+B y+C=0,则点P到直线l 的距离d=00 22 || Ax By C A B ++ + ; ⑵两平行直线l1:A x+B y+C1=0,l2:A x+B y+C2=0之间的距离 d=12 22 || C C A B - + 。 5.当直线位置不确定时,直线对应的方程中含有参数. 含参数方程中有两种特殊情形,它们的对应的直线是有规律的, 即旋转直线系和平行直线系. ⑴在点斜式方程y-y0=k(x-x0)中, ①当(x0,y0)确定,k变化时,该方程表示过定点(x0,y0)的 旋转直线系, ②当k确定,(x0,y0)变化时,该方程表示平行直线系. ⑵已知直线l:A x+B y+C=0, 则①方程A x+B y+m=0(m为参数)表示与l平行的直线系; ②方程-B x+A y+n=0(n为参数)表示与l垂直的直线系。 ⑶已知直线l1:A1x+B1y+C1=0, 直线l2:A2x+B2y+C2=0, 则方程A1x+B1y+C1+λ(A2x+B2y+C2)=0 表示过l1与l2交点的直线系(不含l2) 掌握含参数方程的几何意义是某种直线系,有时可以优化解题思 路. 例10. 经过两直线 11x-3y-9=0与 12x+y-19=0的交点,且过 点(3,-2)的直线方程为 _______. 例11. 已知△ABC中,A(2, -1),B(4,3), C(3,-2),求: ⑴BC边上的高所在直线方 程;⑵AB边中垂线方程;⑶ ∠A平分线所在直线方程. 例12. 已知定点 P(6,4)与定直线l1:y=4x, 过P点的直线l与l1交于第一 象限Q点,与x轴正半轴交 于点M,求使△OQM面积最 小的直线l方程. 简单的线性规划线性规划 ⑴当点P(x0,y0)在直线A x+B y+C=0上时,其坐标满足方程A x0+B y0+C=0; ⑵当P不在直线A x+B y+C=0上时,A x0+B y0+C≠0,即A x0+B y0+C>0或A x0+B y0+C<0。这就是二元一次不等式的几何意义:二元一次不等式A x+B y+C>0(或<0)表示直线A x+B y+C=0上方或下方区域,其具体位置的确定常用原点(0,0)代入检验。 利用此几何意义,可以解决一类二元函数的最值问题。这就是线性规划的内容。

高中数学_直线、圆和方程压轴题[培优、提高]

高二数学第 3 讲直线与圆综合 22 1. 已知圆C:x +y +2x-3=0 . (1)求圆的圆心 C 的坐标和半径长; (2)直线l 经过坐标原点且不与y 轴重合,l 与圆 C 相交于A(x1,y1)、B(x2,y2)两点,求证: 1 1 x1 x2为定值; (3)斜率为 1 的直线m 与圆C相交于D、E两点,求直线m 的方程,使△CDE的面积最大. 2. 已知点G(5,4),圆C1:(x-1)2+(x-4)2=25,过点G 的动直线l 与圆C1相交于E、F 两点,线段EF 的中点为C. (1)求点C的轨迹C2 的方程; (2)若过点A(1,0)的直线l1与C2相交于P、Q两点,线段PQ的中点为M;又l1与l2:x+2y+2=0 的交点为N,求证|AM|?|AN| 为定值.

3. 已知点C(1,0),点A,B 是⊙ O:x2+y2=9 上任意两个不同的点,且满足AC BC 0,设M为弦AB的 中点.求点M的轨迹T 的方程; 4.已知平面直角坐标系上一动点P(x, y)到点A( 2,0) 的距离是点P 到点B(1,0) 的距离的2倍。 (1)求点P 的轨迹方程; (2)若点P与点Q关于点(2,1) 对称,点C(3,0) ,求|QA|2 |QC |2的最大值和最小值; (3)过点A的直线l 与点P的轨迹C 相交于E,F 两点,点M (2,0) ,则是否存在直线l ,使S△EFM取得最大值,若存在,求出此时l 的方程,若不存在,请说明理由。

22 5.已知圆O: x2 y2 4和点M (1,a). (1)若过点M 有且只有一条直线与圆O 相切,求正数a的值,并求出切线方程; (2)若a 2,过点M 的圆的两条弦AC ,BD 互相垂直. ①求四边形ABCD 面积的最大值;②求| AC | | BD |的最大值. 22 6. 已知过原点的动直线l 与圆C1:x +y -6x+5=0 相交于不同的两点A,B. (1)求圆C1 的圆心坐标; (2)求线段AB 的中点M的轨迹 C 的方程; (3)是否存在实数k,使得直线L:y=k(x-4)与曲线 C 只有一个交点?若存在,求出不 k 的取值范围;若存在,说明理由.

高中数学必修二直线与圆方面的知识点

高中数学必修2知识点——直线与圆 整理 徐福扬 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0

圆的方程-直线与圆的位置关系--知识点

圆的方程,直线、圆的位置关系 一·圆的方程 1. 圆的标准方程: 求标准方程的方法——关键是求出圆心(),a b 和半径r ①待定系数:往往已知圆上三点坐标,例如教材119P 例2 ②利用平面几何性质 往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 2.圆的一般方程:02 2=++++F Ey Dx y x 22 40D E F +->表示圆,圆心C (,22D E -- 2240D E F +-=表示点(,22 D E --) 2240D E F +-<不表示任何图形 二·直线、圆的位置关系 1. 点与圆的位置关系: 点00(,)M x y 与圆的关系的判断方法: (1)圆方程为标准式222 ()()x a y b r -+-= 222()()x a y b r -+->?点在圆外 222()()x a y b r -+-=?点在圆上 222()()x a y b r -+-?点在圆外 022=++++F Ey Dx y x ?点在圆上

220x y Dx Ey F ++++?直线l 与圆C 相离?直线l 与圆C 无交点 r d =?直线l 与圆C 相切?直线l 与圆C 有一交点 r d V ?直线l 与圆C 相交?直线l 与圆C 有两交点 3. 圆与圆的位置关系: 圆与圆的位置关系判断方法 求出圆心距12C C ,两圆的半径12,r r 1212C C r r >+?圆1C 与圆2C 相离?有4条公切线 1212C C r r =+?圆1C 与圆2C 外切?有3条公切线 121212||r r C C r r -<<+?圆1C 与圆2C 相交?有2条公切线 1212||C C r r =-?圆1C 与圆2C 内切?有1条公切线 1212||C C r r <-?圆1C 与圆2C 内含?有0条公切线 补充:直径圆方程: (x-x 1)(x -x 2)-(y -y 1)(y -y 2)=0 圆系方程: 设圆C 1 : x 2+y 2+D 1x+E 1 y+F 1=0, C 2 : x 2+y 2+D 2x+E 2 y+F 2=0,则方 程C : x 2+y 2+D 1x+E 1 y+F 1 + m(x 2+y 2+D 2x+E 2 y+F 2)=0表示过两圆C 1、C 2的交点的圆系方程(m 不为-1,且不含圆C 2). 其中一圆可以退化成直线。 圆的参数方程: ()222cos 0sin x r x y r r y r θθ =?+=>??=?,θ为参数 ()()()222cos 0sin x a r x a y b r r y b r θθ=+?-+-=>??=+?,θ为参数

高中数学必修二直线与圆方面的知识点

高中数学必修2知识点——直线与圆 整理 徐福扬 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0

高中数学必修二直线和圆与方程综合测试卷

高中数学必修二直线和圆与方程综合测试卷 姓名 分数 一.选择题(每题3分,共30分) 1. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( ) A.3 B.-2 C. 2 D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( ) A .072=+-y x B .012=-+y x C .250x y --= D .052=-+y x 3. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( ) A B C D 4.若直线x +a y+2=0和2x +3y+1=0互相垂直,则a =( ) A .32- B .32 C .23- D .2 3 5.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( ) A .23 B .32 C .32- D . 23 - 6.与直线2x+3y-6=0关于点(1,-1)对称的直线是( ) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=0 7.平行直线x -y +1 = 0,x -y -1 = 0间的距离是 ( ) A .22 B .2 C .2 D .22 8. 圆 关于原点对称的圆的方程为 ( ) A. B. C. D. 9. 若为圆 的弦的中点,则直线的方程是( ) A. B. C. D. x y O x y O x y O x y O 22(2)5x y ++=(0,0)P 22(2)5x y -+=22(2)5x y +-=22(2)(2)5x y +++=22(2)5x y ++=)1,2(-P 25)1(22=+-y x AB AB 03=--y x 032=-+y x 01=-+y x 052=--y x

相关文档
最新文档