普通物理学公式、复习提纲

普通物理学公式、复习提纲
普通物理学公式、复习提纲

概念(定义和相关公式)

1. 电场强度:E =F /q 0 (对点电荷:r

r

q E

?42

0πε=

) 2. 电势:?

?=

a

a

r

d E U

(对点电荷r

q U 04πε=

);电势能:W a =qU a (A= –ΔW)

3. 电容:C=Q/U ;电容器储能:W=CU 2/2;电场能量密度ωe =ε0E 2/2 4. 磁感应强度:大小,B=F max /qv(T);方向,小磁针指向(S →N )。

定律和定理

1、库仑定律:

r r

Qq k F ?2

=

(k=1/4πε0) 2、高斯定理:

??

=?0

εq S d E (静电场是有源场)→无穷大平板:E=σ/2ε0

3、环路定理:

?=?0l d E (静电场无旋,因此是保守场)

4、毕奥—沙伐尔定律:2

4?r r l Id B d πμ?=

直长载流导线:)cos (cos 42

10θθπμ-=r I B

无限长载流导线:r

I B πμ20=

载流圆圈:R I B 20μ= ,圆弧:π

θμ220R I B =

1. 定义:

①E 和B

F =q(E +V ×B

)洛仑兹公式

②电势:?

?=

r

r d E U

电势差:?-+?=l d E U

电动势:?+-?=l d K ε(q

F K 非静电 =

③电通量:??

?=

S d E e

φ磁通量:??

?=S d B B

φ磁通链:ΦB =N φB 单位:韦伯(Wb )

E =F

/q 0 单位:N/C =V/m

B=F max /qv ;方向,小磁针指向(S →N );单位:特斯拉(T )=104高斯(G )

Θ ⊕

-q l +q

④电偶极矩:

p

=q l

磁矩:

m =I S

=IS n

? ⑤电容:C=q/U 单位:法拉(F )

*自感:L=Ψ/I 单位:亨利(H ) *互感:M=Ψ21/I 1=Ψ12/I 2 单位:亨利(H ) ⑥电流:I =dt dq

; *位移电流:I D =ε0

dt d e

φ 单位:安培(A )

⑦*能流密度: B E S ?=

μ

1

2. 实验定律

① 库仑定律:0

2

04r r Qq F πε=

②毕奥—沙伐尔定律:204?r r l Id B d πμ?=

③安培定律:d F =I l d ×B ④电磁感应定律:ε

= –

dt

d B

φ 动生电动势:?

+

-

??=l

d B V

)(ε

感生电动势:?

-

+

?=

l d E i

ε(E i 为感生电场)

*⑤欧姆定律:U=IR (E

j

)其中ρ

为电导率

3. *定理(麦克斯韦方程组)

电场的高斯定理:??

=?0

εq S d E ??=?0

εq S d E 静

(E

静是有源场)

??=?0S d E

感 (E 感是无源场)

磁场的高斯定理:??

=?0S d B

??=?0S d B

(B 稳是无源场)

??=?0

S d B

(B 感是无源场)

电场的环路定理:

?-=?dt d l d E B

φ

?=?0l d E

(静电场无旋) ?-=?dt

d l d E B

φ 感

(感生电场有旋;变化的磁场产生感生电场) 安培环路定理:

d I I l d B 00μμ+=??

?=?I l d B 0μ

(稳恒磁场有旋) dt

d l d B

e φεμ00?=? 感 (变化的电场产生感生磁场)

4. 常用公式

①无限长载流导线:r

I B πμ20= 螺线管:B=nμ0I

② 带电粒子在匀强磁场中:半径qB mV R =周期qB

m T π2=

磁矩在匀强磁场中:受力F=0;受力矩B m M

?=

③电容器储能:W c =21CU 2 *电场能量密度:ωe =

21ε0E 2 电磁场能量密度:ω=21ε0E 2+0

21μB 2

*电感储能:W L =2

1LI 2 *磁场能量密度:ωB =0

21

μB 2

电磁场能流密度:S=ωV

④ *电磁波:C=0

01

εμ=3.0×108m/s 在介质中V=C/n,频率f=ν=

021εμπ

1. 定义和概念

简谐波方程: x 处t 时刻相位 振幅

ξ=Acos(简谐振动方程:ξ=Acos(ωt+φ)

ξ=Acos(2πx/λ+φ′)

相位Φ——决定振动状态的量

振幅A ——振动量最大值 决定于初态 x0=Acos φ 初相φ——x=0处t=0时相位 (x 0,V 0) V 0= –A ωsin φ 频率ν——每秒振动的次数

圆频率ω=2πν 决定于波源如: 弹簧振子ω=m k /

周期T ——振动一次的时间 单摆ω=

l g /

波速V ——波的相位传播速度或能量传播速度。决定于介质如: 绳V=

μ/T 光速V=C/n 空气V=ρ/B

波的干涉:同振动方向、同频率、相位差恒定的波的叠加。 光程:L=nx(即光走过的几何路程与介质的折射率的乘积。

相位突变:波从波疏媒质进入波密媒质时有相位π的突变(折合光程为λ/2)。 拍:频率相近的两个振动的合成振动。 驻波:两列完全相同仅方向相反的波的合成波。

多普勒效应:因波源与观察者相对运动产生的频率改变的现象。 衍射:光偏离直线传播的现象。 自然光:一般光源发出的光

偏振光(亦称线偏振光或称平面偏振光):只有一个方向振动成份的光。

部分偏振光:各振动方向概率不等的光。可看成相互垂直两振幅不同的光的合成。 2. 方法、定律和定理 ① 旋转矢量法:

如图,任意一个简谐振动ξ=Acos(ωt+φ)可看成初始角位置为φ以ω逆时

针旋转的矢量A

在x方向的投影。

相干光合成振幅: A=φ?++cos 2212

221A A A A

其中:Δφ=φ1-φ2–λπ

2(r 2–r 1)当Δφ= 当φ1-φ2=0时,光程差δ=(r 2–r 1)=

② 惠更斯原理:波面子波的包络面为新波前。(用来判断波的传播方向) ③

动。

④ *马吕斯定律:I 2=I 1cos 2θ ⑤ *布儒斯特定律:

当入射光以I p I p 称布儒斯特角,其满足: tg i p = n 2/n 1 *驻波:

波节间距d=λ/2 基波波长λ0=2L

基频:ν0=V/λ0=V/2L; 谐频:ν=nν0

*多普勒效应:

机械波ννs R V V V V -+='(V R ——观察者速度;V s ——波源速度)

对光波ν

νr

r V C V C +-=

'其中V r 指光源与观察者相对速度。

1、杨氏双缝: dsin θ=kλ(明纹) θ≈sin θ≈y/D 条纹间距Δy=D/λd

2、单缝衍射(夫琅禾费衍射): asin θ=kλ(暗纹) θ≈sin θ≈y/f

3、瑞利判据: θ

min =1/R =1.22λ

/D (最小分辨角)

4、光栅:

dsin θ=kλ(明纹即主极大满足条件) tg θ=y/f

d=1/n=L/N (光栅常数) 5、薄膜干涉:(垂直入射)

δ反=2n2t+δ0 δ0= 0 中 λ/2 极 增反:δ反=(2k+1)λ/2 增透:δ反=k λ

6、 普朗克提出能量量子化:ε=hν(最小一份

能量值)

7、爱因斯坦提出光子假说:光束是光子流。

光电效应方程:hν=21mv2

+A 其中: 逸出功A=hν0(ν

0红限频率)

最大初动能21mv2

=eUa (Ua 遏止电压)

8、德布罗意提出物质波理论:实物粒子也具有波动性。

则实物粒子具有波粒二象性:ε=hν=mc 2 对比光的二象性: ε=hν=mc 2 p=h/λ=mv p=h/λ=m c 注:对实物粒子:2

2

10c V m m

-

=

>0且ν≠c/λ亦ν≠V/λ;而对光子:m 0=0且ν=C/λ

9、海森伯不确定关系: ΔxΔpx ≥h/4π ΔtΔE ≥h/4π

波函数意义:2

2

ψψ==粒子在t时刻r处几率密度。

归一化条件:12

=???dV ψ Ψ的标准条件:连续、有限、单值。

(二)狭义相对论:

1.两个基本假设:①光速不变原理:真空中在所有惯性系中光速相同,与光源运动无关。 ②狭义相对性原理:一切物理定律在所有惯性系中都成立。 2.洛仑兹变换:

Σ’系→Σ系 Σ系→Σ’系 x=

2

21x'+vt'c v -

x’=

2

21 vt - x c v -

y=y’ y’=y z=z’ z’=z

t=

2

221vx'

t'+

c c v -

t’=

2

221vx

t'c c v -

+

其中:2

2

11c v -

=

γ

因V 总小于C 则γ≥0所以称其为膨胀因子;称β=

2

21c v -

为收缩因子。

3.狭义相对论的时空观:

①同时的相对性:由Δt=γ(Δt’+v Δx’/c 2),Δt’=0时,一般Δt ≠0。称x’/c 2为同时性因子。 ②运动的长度缩短:Δx=Δx’/γ≤Δx ′ ③运动的钟变慢:Δt=γΔt’≥Δt ′ 4.几个重要的动力学关系:

质速关系m=γm 0

质能关系E=mc 2 粒子的静止能量为:E 0=m 0c 2 粒子的动能:E K =mc 2 – m 0c 2= ++=

--

2

4

02

02

12

082)111(

2

2c

V m V m c m c v 当V<

动量与能量关系:E 2–p 2c 2=E 02

大学普通物理复习题(10套)带答案

普通物理试题1-10 试题1 一、填空题 11. 7.在与匀强磁场B 垂直的平面,有一长为L 的铜杆OP ,以角速度 绕端点O 作逆时针 匀角速转动,如图13—11,则OP 间的电势差为 P O U U ( 22 1 L B )。 3. 3.光程差 与相位差 的关系是( 2 ) 25. 1.单色光在水中传播时,与在真空中传播比较:频率(不变 );波长( 变小 );传播速度( 变小 )。(选填:变大、变小、不变。) 68.17-5. 波长为 的平行单色光斜入射向一平行放置的双缝,如图所示,已知入射角为θ缝宽为a ,双缝距离为b ,产生夫琅和费衍射,第二级衍射条纹出现的角位置是( sin 2sin 1 b 。 33. 9. 单色平行光垂直照射在薄膜上.经上下两表面反射的两束光发生干涉、如图所示, 若薄膜的厚度为e .且321n n n ,1 为入射光在1n 中的波长,则两束反射光的光程差为 ( 2 21 12 n e n )。 二、选择题 6. 2. 如图示,在一无限长的长直载流导线旁,有一形单匝线圈,导线与线圈一侧平行并在同一平面,问:下列几种情况中,它们的互感产生变化的有( B ,C ,D )(该题可有多个选择)

(A) 直导线中电流不变,线圈平行直导线移动; (B) 直导线中电流不变,线圈垂直于直导线移动; (C) 直导线中电流不变,线圈绕AB 轴转动; (D) 直导线中电流变化,线圈不动 12.16-1.折射率为n 1的媒质中,有两个相干光源.发出的光分别经r 1和r 2到达P 点.在r 2路径上有一块厚度为d ,折射率为n 2的透明媒质,如图所示,则这两条光线到达P 点所经过的光程是( C )。 (A )12r r (B ) d n n r r 2112 (C ) d n n n r r 12112 (D ) d n n r r 12112 83. 7.用白光垂直照射一平面衍射光栅、发现除中心亮纹(0 k )之外,其它各级均展开成一光谱.在同一级衍射光谱中.偏离中心亮纹较远的是( A )。 (A )红光; (B )黄光; (C )绿光; (D )紫光; 三、问答题 1.1.在电磁感应定律dt d i 中,负号的意义是什么? 四、计算题 56. 17-3. 如图所示,由A 点发出的nm 600 的单色光,自空气射入折射率23.1 n 的透明物质,再射入空气,若透明物质的厚度cm d 0.1 ,入射角 30 ,且cm BC SA 5 ,求:

物理化学热力学第一定律总结

热一定律总结 一、 通用公式 ΔU = Q + W 绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V 恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) → ΔH = Q p 恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0 焓的定义式:H = U + pV → ΔH = ΔU + Δ(pV ) 典型例题:3.11思考题第3题,第4题。 二、 理想气体的单纯pVT 变化 恒温:ΔU = ΔH = 0 变温: 或 或 如恒容,ΔU = Q ,否则不一定相等。如恒压,ΔH = Q ,否则不一定相等。 C p , m – C V , m = R 双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2 典型例题:3.18思考题第2,3,4题 书2.18、2.19 三、 凝聚态物质的ΔU 和ΔH 只和温度有关 或 典型例题:书2.15 ΔU = n C V , m d T T 2 T 1 ∫ ΔH = n C p, m d T T 2 T 1 ∫ ΔU = nC V , m (T 2-T 1) ΔH = nC p, m (T 2-T 1) ΔU ≈ ΔH = n C p, m d T T 2 T 1 ∫ ΔU ≈ ΔH = nC p, m (T 2-T 1)

四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程) ΔU ≈ ΔH –ΔnRT (Δn :气体摩尔数的变化量。如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。 101.325 kPa 及其对应温度下的相变可以查表。 其它温度下的相变要设计状态函数 不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m 计算。 或 典型例题:3.18作业题第3题 五、化学反应焓的计算 其他温度:状态函数法 Δ H m (T ) = ΔH 1 +Δ H m (T 0) + ΔH 3 α β β α Δ H m (T ) α β ΔH 1 ΔH 3 Δ H m (T 0) α β 可逆相变 298.15 K: ΔH = Q p = n Δ H m α β Δr H m ? =Δf H ?(生) – Δf H ?(反) = y Δf H m ?(Y) + z Δf H m ?(Z) – a Δf H m ?(A) – b Δf H m ?(B) Δr H m ? =Δc H ?(反) – Δc H ?(生) = a Δc H m ?(A) + b Δc H m ?(B) –y Δc H m ?(Y) – z Δc H m ?(Z) ΔH = nC p, m (T 2-T 1) ΔH = n C p, m d T T 2 T 1 ∫

高中物理公式大全之完整版

高中物理公式 (1)t s v =_ ;m F t v v a t =-=0;;21;8.9;20 2 0at t v S s m g at v v t +==+= 2 0t v v v += ; 22)(S aT n m S S aT n m -=-?=?;20 2 t t v v v +=;22 22t o s v v v += 初速度为零的匀加速直线运动:①前1s ,前2s ,前3s …内位移之比为1∶4∶9… ②第1s ,第2s ,第3s …内位移之比为1∶3∶5… ③前1m ,前2m ,前3m …内时间之比为1∶2∶3… ④第1m ,第2m ,第3m …内时间之比为1∶ ( )12-∶() 23-… 胡克定律:F=kx 滑动摩擦力n F f μ= 1<μ无单位 (2)圆周运动: 角速度:t ? ω= 单位(rad /s ,rad /min ) 线速度:v = r t s ω= 匀速圆周运动:v m T r m r v m r F ωπω====2222 4m 向 向心加速度 :r T v r v r a 22 22 4πωω==== ()() 频率周期f T 1 2= = ω π ;()()t N n 圈数转速=;n πω2=;Ln nr v ==π2 万有引力:2 2 1121067.6;kg m N G r Mm G F ??==- 开普勒第三定律: ()常数K a T a T == 3 2 223 1 21 a (长半轴) k R T 32 = 第一宇宙速度﹙环绕速度﹚:7.9km /s ≤v <11.2km /s 飞船绕地球飞行 第二宇宙速度﹙脱离速度﹚:11.2km /s ≤v <16.7km /s 飞船摆脱地球引力

汕头大学 2010~2011 学年春季学期《普通物理学》期末考试试卷

汕头大学 2010~2011 学年春季学期《普通物理学》期末考试试卷 开课单位 物理系 任课老师 评 卷 人 物理系五位老师 学生姓名 学号 所在开课班 所在系/院 工学院 2011-6-16 一 填空题 (每题一分) 1. 某质量1Kg 的质点的速度为,82j t i v (SI 制)。已知t =0s 时,它过点(3,-7),则 该质点所受的合力为 ;它的运动方程 )(t r 。 2.一物体质量为1Kg ,受到方向不变的力F=30+40t (SI 制)的作用,在开始的2s 内,此力的冲量大小等于 ;若物体的初速率是零,则在2s 末物体的速率等于 ,此段时间(即零到2s 末)力所做的功等于 。 3. 一无限长载流直导线,通有电流I ,则与导线垂直距离为R 处的磁感应强度大小 B = ______________。 4. 一无限长直导线绝缘地紧贴在矩形线圈的中心轴OO ′上,则直导线与矩形线圈间的互感系数等于_________________。 5. 右图所示,两平行的“无限大”均匀带电平面,其电荷面密度分别为+ ?和+2 , 则两平面之间区域的电场强度大小为E =____________。 6. 右图所示所示,在均匀磁场中有一个边长为l 的正方形线圈ABCD ,通有电流I ,线圈平面平行于磁感应强度 B ,则(1) AB 边所受安培力等于_____________,(2) 线 圈所受磁力矩大小等于 ____________ ;(3) 若线圈中没有电流,线圈绕穿过AB 、CD 中点的中心轴OO ’以角速度 旋转,则线圈中的感应电动势 ()t =_________________ (设t=0时,线圈平面与磁感应强度平行)。

高中物理公式大全.doc

高中物理公式大全 一、力学 1、胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长、粗细和材料 有关) 2、重力: G = mg (g随离地面高度、纬度、地质结构而变化;重力约等于地面上物体受 到的地球引力) 3 、求F 1、F 2 两个共点力的合力:利用平行四边形定则。 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围:? F1-F2 ?≤ F≤ F1 + F2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1)共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零。 F合=0 或: F x合=0 F y合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向 (2* )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解) 力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1) 滑动摩擦力: f= μ F N 说明:① F N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G ②μ为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N无关. (2) 静摩擦力:其大小与其他力有关,由物体的平衡条件或牛顿第二定律求解,不与正压力成正比. 大小范围: O≤ f静≤ f m (f m 为最大静摩擦力,与正压力有关)

说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反。 b、摩擦力可以做正功,也可以做负功,还可以不做功。 c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、浮力: F= ρgV (注意单位) 7、万有引力: F=G m m r 12 2 (1)适用条件:两质点间的引力(或可以看作质点,如两个均匀球体)。 (2) G为万有引力恒量,由卡文迪许用扭秤装置首先测量出。 (3)在天体上的应用:(M--天体质量,m—卫星质量, R--天体半径,g--天体表面重力加速度,h— 卫星到天体表面的高度) a 、万有引力=向心力 G Mm R h m () + = 2 V R h m R h m T R h 2 2 2 2 2 4 () ()() + =+=+ ω π b、在地球表面附近,重力=万有引力 mg = G Mm R2 g = G M R2 c、第一宇宙速度 mg = m V R 2 V=gR GM R =/ 8、库仑力:F=K22 1 r q q (适用条件:真空中,两点电荷之间的作用力) 9、电场力:F=Eq (F 与电场强度的方向可以相同,也可以相反) 10、磁场力: (1)洛仑兹力:磁场对运动电荷的作用力。 公式:f=qVB (B⊥V) 方向--左手定则 (2)安培力:磁场对电流的作用力。

大学普通物理((下册))期末考试题

大学物理学下册考试题 1 两根长度相同的细导线分别密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,2R r =,螺线管通过的电流相同为I ,螺线管中的磁感应强度大小R B 、 r B ,满足 ( ) (A )2R r B B = (B )R r B B = (C )2R r B B = (D )4R r B B = 选择(c ) N N r N R N 222='?'=ππ 2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为 ( ) (A )2 2r B π (B )2 r B π (C )2 2cos r B πα (D )—2 cos r B πα 选择(D ) 3在图(a )和(b )中各有一半经相同的圆形回路1L 、2L ,圆周有电流1I 、2I ,其分布相同,且均在真空中,但在(b )图中2L 回路外有电流3I ,1P 、2P 为两圆形回路上的对应点,则 ( ) (A )1 21 2,P P L L B dl B dl B B ?=?=?? (B )1 21 2 ,P P L L B dl B dl B B ?≠ ?=?? (C ) 1 21 2 ,P P L L B dl B dl B B ?=?≠?? (D )1 21 2 ,P P L L B dl B dl B B ?≠ ?≠?? 选择(c ) 习题11图 习题13图 1L 1P L 2P 3 (a) (b)

4 在磁感应强度为B的均匀磁场中,有一圆形载流导线, a、b、c、是其上三个长度相等的电流元,则它们所受安培 力大小的关系为: 选择(c) 二,填空题 1、如图5所示,几种载流导线在平面分布,电流均为I,他们在o点的磁感应强度分别为(a)(b)(c) 图5 (a)0() 8 I R μ 向外(b)0() 2 I R μ π 1 (1-)向里(c)0() 42 I R μ π 1 (1+)向外 2 已知一均匀磁场的磁感应强度B=2特斯拉,方向沿X轴正方向,如图所示,c点为原点,则通过bcfe面的磁通量0 ;通过adfe面的磁通量2x0.10x0.40=0.08Wb ,通过abcd面的磁通量0.08Wb 。 ? I R O (a) O R I (b) O O (C) R I

_高中物理公式大全

_高中物理公式大全 一、直线运动 (1)匀变速直线运动 1.平均速度V平=x/t(定义式) 2.有用推论Vt2-V02=2as 3.中间时刻速度Vt/2=V平=(Vt+V0)/2 4.末速度Vt=V0+at 5.中间位置速度Vs/2=[(V02+Vt2)/2]1/2 6.位移s=V平t=V0t+at2/2=Vt/2t 7.加速度a=(Vt-V0)/t (以V0为正方向,a与V0同向(加速)a>0;a与V0反向(减速)则a<0) 8.实验用推论Δs=aT2(Δs为连续相邻相等时间(T)内位移之差) 9.主要物理量及单位:初速度(V0):m/s;加速度 (a):m/s2;末速度(Vt):m/s;时间(t):秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 (1)平均速度是矢量; (2)物体速度大,加速度不一定大;

(3)a=(Vt-Vo)/t只是测量式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与 时刻、s--t图、v--t图/速度与速率、瞬时速度。 二、质点的运动 (2)----曲线运动、万有引力 1) 平抛运动 1水平方向速度:Vx=V0 2.竖直方向速度:Vy=gt 3.水平方向位移:x=V0t 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[V02+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2 位移方向与水平夹角α:tgα=y/x=gt/2V0 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作 是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα;

(完整版)普通物理期末试题

汕头大学2009学年春季学期《普通物理学》期末考试卷A 及 参考答案 一 填空题(共36分,除特殊说明外,每空1分) 1.质点作匀速圆周运动的过程中,___________(切向,法向)加速度始终为零;质点作加速圆周运动的过程中,___________(切向,法向)加速度的方向始终与速度的方向相同。 2.一物体质量为10 kg ,受到方向不变的力)(4030SI t F +=的作用,在开始的2s 内,此力的冲量大小等于___________(2分);若物体的初速度大小为10 1 -?s m ,方向与F 同向,则在2s 末物体速度的大小等于___________(2分)。 3.理想气体的热力学能(内能)是_____________的单值函数, 1 mol 理想气体的热力学能(内能)是_____________________. 4.对于满足麦克斯韦速率分布的理想气体,其平均速率 v ,最概然速率 p v , 和方均根速率 2v 满足___________关系。 (a )p v v v >>2 , (b )v v v p >>2, (c) p v v v >>2, (d )v v v p >>2 5.热力学第一定律的数学表达式是 ;通常规定系统从外界吸收热量时Q 为正值,系统向外界放出热量时Q 为负值; 时W 为 正值, 时W 为负值;系统热力学能 时ΔE 为正值, 系统热力学能 时ΔE 为负值。 6.热力学第二定律的开尔文表述为: (2分) 。 7. 导体达到静电平衡时,其内部各点的场强为 ,导体上各点的电势 。 8. 如图所示半圆形载流线圈平面与B 线平行,半径为R ,载有电流I , 磁感应强度为B (如图所示) ,则ab 边所受的安培力大小 为 ,方向 ;此线圈的磁矩 大小为 ,方向 ;以ab 为轴,线圈 所受的磁力矩大小为 ;方向 。 9. 尺寸相同的铁环和铜环所包围的面积中,通以相同变化率的磁通量,环中感应电动势 ,感应电流 。 10. 竖直弹簧振子,s 5.0=T , 现将它从平衡位置向下拉4 cm 后释放, 让其振动. 若以平衡 位置为坐标原点, 以竖直向下作为x 轴正方向,

B普通物理学试卷与答案

普通物理(2)试卷第1页(共6页) 试题编号: 重庆邮电大学2012-2013学年第一学期 普通物理(2)试卷(期末)(B 卷试题与答案)(闭卷) 一、(本题6分) 一根不导电的细塑料杆,被变成近乎完整的圆,圆的半径为0.5m ,杆的两端有2cm 的缝隙,9 31210.C -?的正电荷均匀地分布在杆上,求圆心处电场强度的大小和方向。 解:用双重填补的思想,一个完整圆环在环心处的电场强度E=0,再在缝隙填以等量的负电荷即可得,考虑到缝隙宽度远小于环半径可将其视作点电荷,因而: 220 011072N C 442q Q l E ./R R R l πεπεπ?= ? =?=- 方向沿径向指向缺口。 二、(本题8分) 如图所示,两个无限大均匀带电平面垂直放置,已知它们的面密度分别为σ+与σ-,求空间各处的电场强度。 解:由场强的叠加原理, 右图中第一、二、三、四象限的电场强度均为:0 2E σ ε=, 方向如图所示。

普通物理(2)试卷第2页(共6页) 三、(本题8分) 一个球形雨滴半径为0.4mm ,带有电量1.6pC ,它表面的电势为多少?两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又为多大? 解:根据已知条件球形雨滴半径104R .mm =,带有电量116q .pC =,所以带电球形雨滴表面电势为1 1011 364q V V R πε= =。 当两个球形雨滴合并为一个较大雨滴后,雨滴半径21R mm =,带有电量 212q q pC =,于是雨滴表面电势为2 2021 574q V V R πε= =。 四、(本题8分) 如图所示,两根长直导线沿半径方向引向铁环上a 、b 两点,并且与很远的电源相连,试求铁环中心的磁感应强度。 解:211014R l I B πμ= ,向里;2 22024R l I B πμ=,向外。由于 11221122 1I R /I R I l /I l ==, 所以12120B B ==+=B B B 。 五、(本题10分) 如图所示,长直空心柱形导体半径分别为1R 和2R ,导体内载有电流I ,设电流均匀分布在导体的横截面上。求空间各点的磁感应强度。 解:导体横截面的电流密度为2221() I R R δπ= -,由安培环路定理可知

高中物理公式大全(整理版)

高中物理公式大全 一、力学 1、胡克定律:f = k x (x 为伸长量或压缩量,k 为劲度系数,只与弹簧的长度、粗细和材料有关) 2、重力: G = mg (g 随高度、纬度、地质结构而变化,赤极g g >,高伟低纬g >g ) 3、求F 1、F 2的合力的公式: θcos 2212221F F F F F ++= 合,两个分力垂直时: 2 221F F F +=合 注意:(1) 力的合成和分解都均遵从平行四边行定则。分解时喜欢正交分解。 (2) 两个力的合力范围: F 1-F 2 F F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、物体平衡条件: F 合=0 或 F x 合=0 F y 合=0 推论:三个共点力作用于物体而平衡,任意一个力与剩余二个力的合力一定等值反向。 解三个共点力平衡的方法: 合成法,分解法,正交分解法,三角形法,相似三角形法 5、摩擦力的公式: (1 ) 滑动摩擦力: f = N (动的时候用,或时最大的静摩擦力) 说明:①N 为接触面间的弹力(压力),可以大于G ;也可以等于G ;也可以小于G 。 ② 为动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快 慢以及正压力N 无关。 (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关。 大小范围: 0 f 静 f m (f m 为最大静摩擦力) 说明:①摩擦力可以与运动方向相同,也可以与运动方向相反。 ②摩擦力可以作正功,也可以作负功,还可以不作功。 ③摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 ④静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、万有引力: (1)公式:F=G 2 2 1r m m (适用条件:只适用于质点间的相互作用) G 为万有引力恒量:G = 6.67×10-11 N ·m 2 / kg 2 (2)在天文上的应用:(M :天体质量;R :天体半径;g :天体表面重力加速度;r 表示卫星或行星的轨道半径,h 表示离地面或天体表面的高度)) a 、万有引力=向心力 F 万=F 向 即 '4222 22mg ma r T m r m r v m r Mm G =====πω 由此可得: ①天体的质量: ,注意是被围绕天体(处于圆心处)的质量。 ②行星或卫星做匀速圆周运动的线速度: ,轨道半径越大,线速度越小。 2 3 24GT r M π=r GM v =

大一普通物理学电磁学随堂测试卷试题包括答案经典啊.doc

d I I 2 1 A l r 1 r2 r 3 解:由于圆环上的电荷对y 轴呈对称性分布,电场分布也是轴对称,则有 dE x 0 ,点O处的合电场强度为 EdE y j y L L E O 1 sin Q dl L 4 0 R2 R R 由几何关系:dl Rd,统一积分变量,有 O x E O Q Q 22 sin d 2 2 4 0 R 2 0 R 方向沿 y 负方向 解:由于电荷分布具有球对称性,因此采用高斯定理 v v 1 E dS dV ,可得ò S 在球体内: E1 4 r 21 r 2 dr ' 4 k r5 kr '2 4 r ' 0 5 0

球内的电场强度: E 1 kr 3 0< r

高中物理公式大全

高中物理公式、规律汇编表 一、力学公式 1、胡克定律: F = Kx(x 为伸长量或压缩量,K 为倔强系数,只与弹簧的原长、粗细和材料有关) 2、重力:G = mg(g 随高度、纬度、地质结构而变化) 3 、求 F 1、F2两个共点力的合力的公式: F=F2+ F2+ 2F F COS F2F 1212 合力的方向与F1成α角: αθ F2sin tgα= F1 F1+ F2cos 注意:(1)力的合成和分解都均遵从平行四边行法则。 (2)两个力的合力范围:?F1-F2? ≤F≤F1+F2 (3)合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1)共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力 为零。 ∑F=0或∑F x=0∑F y=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力 (一个力)的合力一定等值反向 ( 2 )有固定转动轴物体的平衡条件:力矩代数和为零. 力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1 )滑动摩擦力:f= μN 说明:a、N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G b、μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力N无关. (2 ) 静摩擦力:由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围:O≤f静≤f m(f m为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。 b、摩擦力可以作正功,也可以作负功,还可以不作功。 c、摩擦力的方向与物体间相对运动的 方向或相对运动趋势的方向相反。d、静止的物体可以受滑动摩擦力的作用,运动的物体可以 受静摩擦力的作用。 6、浮力:F= ρVg(注意单位) 7、万有引力:F=G m1m2 r 2 (1).适用条件(2) .G 为万有引力恒量 (3) .在天体上的应用:(M 一天体质量R 一天体半径 g 一天体表面重力 加速度) a 、万有引力=向心力 Mm = m V 22 4 2 G= m(R+h) =m(R+h) (R+h)2(R+h)2T 2 b、在地球表面附近,重力=万有引力 - 1 -

大学物理期末考试试卷(含答案) 2

2008年下学期2007级《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) (2717) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分)(2391) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分)(2594) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分)(2314) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分)(2125) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分)(2421) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

热力学第二定律 概念及公式总结

热力学第二定律 一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程) 一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。 二、 热力学第二定律 1. 热力学的两种说法: Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化 Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化 2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功) 功 热 【功完全转化为热,热不完全转化为功】 (无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原 3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程) 特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功 三、 卡诺定理(在相同高温热源和低温热源之间工作的热机) ηη≤ηη (不可逆热机的效率小于可逆热机) 所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关 四、 熵的概念 1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+η ηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关 热温商具有状态函数的性质 :周而复始 数值还原 从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数 2. 热温商:热量与温度的商 3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量 ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η (数值上相等) 4. 熵的性质: (1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质 (2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和 (3)只有可逆过程的热温商之和等于熵变 (4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量 (5)可用克劳修斯不等式来判别过程的可逆性 (6)在绝热过程中,若过程是可逆的,则系统的熵不变 (7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。若系统已处于平衡状态,则其中的任何过程一定是可逆的。 五、克劳修斯不等式与熵增加原理 不可逆过程中,熵的变化量大于热温商 ηηη→η?(∑ηηηηηηη)η>0 1. 某一过程发生后,体系的热温商小于过程的熵变,过程有可能进行不可逆过程 2. 某一过程发生后,热温商等于熵变,则该过程是可逆过程

高中物理公式规律大全

高中物理基本规律及公式 一、力学 1、匀变速直线运动规律: (1)速度公式:at v v +=0 (2)位移公式:202 1at t v x + = (3)速度-位移公式:ax v v 22 02=- (4)平均速度公式: 2 02t v v v v =+= (5)在连续相等的时间T 内的位移之差为一恒定值,即2 aT x =? 2、胡克定律: kx F = (x 为伸长量或压缩量) 3、两个力的合力范围: ? F 1-F 2 ? ≤F ≤ F 1 +F 2 4、摩擦力公式: (1) 滑动摩擦力: f =μF N (F N 为正压力) (2) 静摩擦力: O <f 静≤f max (f max 为最大静摩擦力,与正压力有关) 5、物体平衡条件:静止或做匀速直线运动的物体,所受合外力为零。 或 6、牛顿第二定律: ma F =合 或 x x ma F = y y ma F = 7、平抛运动:初速度水平,只受重力。 性质:匀变速曲线运动 平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动。 平抛速度求解:???==gt v v v y x 0 t 秒末的合速度2 2y x v v v += 速度的方向0 tan v gt v v x y = = β 平抛运动的位移:?? ? ??==2021gt y t v x t 秒末位移: 位移方向:0 2tan v gt x y == α 8、圆周运动:①线速度大小 T r t l v π2=??= ,方向在圆周上该点的切线方向. ②角速度:T t πθω2=??= ,(单位:rad/s ) ③ ωωr v v =的关系:与 ④周期T :匀速圆周运动的物体运动一周所用的时间. T =1/f ⑤向心加速度:r T r v r a n 2 22 2?? ? ??===πω,方向总与运动方向(即v 方向)垂直. 0=合F 0=x F 0 =y F 4 22 20224 1t g t v y x S + =+=

大学物理期末考试试卷(含答案)

《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

08化学师范本《普通物理学》期中试题

08化学师范本《普通物理学》期中试题

2 海南师范大学化学系 08化学师范本、制药《普通物理学》 2008—2009学年度第二学期期中试卷 注意事项:1. 考前请将密封线内填写清楚 2.考试形式:闭卷 3. 本试卷共三大题,满分100分,考试时间100分钟 题号 一 二 三 总 分 统分人 复核人 得分 一、选择题:(共30分,每小题3分) 1.一质点在平面上运动,已知质点位置矢量的表示式为r =at 2i+bt 2j (其中a 、b 为常量)则该质点作( B ) (A )匀速直线运动;(B )变速直线运动;(C )抛物线运动;(D )一般曲线运动。 2.一个质点在做匀速率圆周运动时( B ) (A )切向加速度改变,法向加速度也改变;(B )切向加速度不变,法向加速度改变;(C )切向加速度不变,法向加速度也不变;(D )切向加速度改变,法向加速度不变。 3.下列哪一种说法是正确的( C ) 得 分 评卷人 复查人

3 (A )运动物体加速度越大,速度越快 (B )作直线运动的物体,加速度越来越小,速度也越来越小 (C )切向加速度为正值时,质点运动加快 (D )法向加速度越大,质点运动的法向速度变化越快 4.对质点系有以下几种说法:①、质点系总动量的改变与内力无关;②、质点系总动能的改变与内力的功无关;③、质点系机械能的改变与非保守内力的功有关。在上述说法中( C )。 A 、只有①是正确的 B 、①、②是正确的 C 、①、③是正确的 D 、②、③是正确的 5.站在磅秤上的人忽然下蹲时,磅秤的读数将( B )。 A 、上升 B 、下降 C 、为零 D 、无法确定 6.以岸边为参考系,A 船以4m.s -1的速率沿X 轴正向航行,B 船以 6m.s -1的速率沿Y 轴正向航行。一观察者在A 船,他看到B 船 的速度为( C )。 A 、4i+6j B 、4i-6j C 、-4i+6j D 、-4i-6j 7. 一原来静止的小球受到下图1F 和2F 的作用,设力的作用时间为5s ,问下列哪种情况下,小球最终获得的速度最大( C ) (A )N 61=F ,02=F (B )01=F ,N 62=F (C )N 821==F F (D )N 61=F ,N 82=F 8.水平放置的轻质弹簧,劲度系数为k ,其一端固定,另一端系一质量为m 的滑块A ,A 旁又有一质量相同的滑块B ,如下图所示,设两滑块与桌面间无摩擦,若加外力将A 、B 推进,弹簧压缩距离为d ,然后撤消外力,则B 离开A 时速度为( C )

热力学第一定律主要公式

热力学第一定律主要公式 1.?U 与?H 的计算 对封闭系统的任何过程 ?U=Q+W 2111()H U p V pV ?=?-- (1) 简单状态变化过程 1) 理想气体 等温过程 0T U ?= 0T H ?= 任意变温过程 ,21()V m U nC T T ?=- ,21()p m H nC T T ?=- 等容变温过程 H U V p ?=?+? (V U Q ?=) 等压变温过程 p U Q p V ?=-? ()p H Q ?= 绝热过程 ,21()V m U W nC T T ?==- ,21()p m H nC T T ?=- 2)实际气体van derWaals 气体等温过程 2 1 211U n a V V ?? ? ??? ?=- 2 22111 211()H U pV n a p V pV V V ?? ? ??? ?=?+?=-+- (2) 相变过程 等温等压相变过程 p tra H Q ?= (p Q 为相变潜热) p tra tra U Q p V ?=-? (3)无其她功的化学变化过程

绝热等容反应 0r U ?= 绝热等压反应 0r H ?= 等温等压反应 r p H Q ?= r r U H p V ?=?-? 等温等压凝聚相反应 r r U H ?≈? 等温等压理想气体相反应 ()r r U H n RT ?=?-? 或 r r B B H U RT ν?=?-∑ 由生成焓计算反应热效应 f ()(,)r m m B B H T H T B θθν?=?∑ 由燃烧焓计算反应热效应 c ()(,)r m m B B H T H T B θν?=-?∑ 由键焓估算反应热效应 ,,()(,(i m i i m i i i H T n H T n H ?=??∑∑反应物)-生成物) 式中:i n 为i 种键的个数;n i 为i 种键的键焓。 不同温度下反应热效应计算 2 1 21()()d T r m r m r p T H T H T C T ?=?+?? 2、体积功W 的计算 任意变化过程 W= d e p V -∑ 任意可逆过程 2 1 W= d V V p V -? 自由膨胀与恒容过程 W=0 恒外压过程 21()e W p V V =-- 等温等压→l g 相变过程(设蒸气为理想气体) 1()g g g W p V V pV n RT =--≈-=- 等温等压化学变化 ()W p V n RT =-?=? (理想气体反应) 0W ≈ (凝聚相反应) 理想气体等温可逆过程

高中物理公式以及化学方程式

1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh (3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2,

位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 2)匀速圆周运动 1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr 7.角速度与转速的关系ω=2πn(此处频率与转速意义相同) 3)万有引力 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=1 6.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径} 注: (1)天体运动所需的向心力由万有引力提供,F向=F万; (2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反); (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

相关文档
最新文档