纳米氧化锌毒性研究进展

合集下载

氧化锌纳米颗粒抗菌活性在医学中的应用及研究进展

氧化锌纳米颗粒抗菌活性在医学中的应用及研究进展

氧化锌纳米颗粒抗菌活性在医学中的应用及研究进展王靖宇;杜乐乐;王婷;王岩;王秀梅【摘要】氧化锌纳米颗粒(Zinc oxide nanoparticles,ZnO-NPS)是一种多功能性的新型无机材料,其颗粒大小约在1~100 nm.由于晶粒的细微化,其表面电子结构和晶体结构发生变化,具有高透明度、高分散性等特点.近年来随着对ZnO-NPS抗菌作用的深入研究,其在医学领域的应用逐渐增加,该文针对ZnO-NPS的抗菌作用在医学中的应用作一综述与展望.%Zinc oxide nanoparticles is a versatile new inorganic material, the particle size of which is about 1 ~ 100nm. Because of the fineness of particles, the surface electronic structure and crystal structure have changed, and the surface effect, the macroscopic objects do not have the volume effect, quantum size effect and macroscopic tunnel effect, with high transparency, high dispersion and other characteristics. In recent years, with the in-depth study of nano-zinc oxide antibacterial effect, its application in the medical field has gradually increased. In this paper, the antimicrobial effect of nano-zinc oxide in medical application was reviewed and prospected.【期刊名称】《口腔医学》【年(卷),期】2017(037)011【总页数】4页(P1045-1048)【关键词】氧化锌纳米颗粒;抗菌活性;抗菌机制;应用【作者】王靖宇;杜乐乐;王婷;王岩;王秀梅【作者单位】哈尔滨医科大学附属第二医院牙体牙髓科,黑龙江哈尔滨 150086;哈尔滨医科大学附属第二医院牙体牙髓科,黑龙江哈尔滨 150086;哈尔滨医科大学附属第二医院牙体牙髓科,黑龙江哈尔滨 150086;哈尔滨医科大学附属第二医院牙体牙髓科,黑龙江哈尔滨 150086;哈尔滨医科大学附属第二医院牙体牙髓科,黑龙江哈尔滨 150086【正文语种】中文【中图分类】R780.2氧化锌被美国食品和药品管理局视为一种普遍的安全材料,对人类正常细胞的毒性几乎可以忽略不计[1],其纳米颗粒由于性能增强而广泛应用于光电、能源、传感器、药物输送和医学成像等多种领域。

纳米材料对浮游生物的毒性效应研究进展

纳米材料对浮游生物的毒性效应研究进展

文章编号押2096-4730穴2020雪05-0441-08·综述·纳米材料对浮游生物的毒性效应研究进展金扬湖,周超(国家海洋设施养殖工程技术研究中心,浙江舟山316022)摘要:在医学、材料学及能源学等领域高速发展过程中,广泛应用到纳米材料,其在生产合成及使用过程中不可避免地会通过各种途径排入水环境中,凭借其独特理化性质可沿着水生生物食物链传递,通过不断在高营养级生物体内富集,在个体或细胞上产生毒性效应。

本文通过对典型纳米材料水环境行为、食物链传递规律进行归总,并在此基础上对纳米材料单独作用或与其他污染物交互作用时对浮游生物的毒性效应及作用机理进行阐述分析,对纳米材料水环境毒理学研究进行汇总评估,以期为治理纳米材料污染提供科学依据。

关键词:纳米材料;浮游生物;生物毒性;毒理机制中图分类号:Q955文献标识码:AA Review on Toxicity of Nanomaterials on PlanktonJIN Yang-hu,ZHOU Chao(National Engineering Research Center for Marine Aquaculture,Zhoushan316022,China)Abstract:More and more nanoparticles are used in the rapid development of medicine,materials science and energy science.During its production,synthesis and use,it will be inevitably migrated into the sea through various ways.Because its unique physical and chemical properties,it can be continuously enriched along the aquatic biological food chain and then will produce toxic effects on individual organisms or cells.And nanoparticles act alone or interact with other pollutants will lead to more serious toxic problems.This article summarizes the water environment behaviors and food chain transfer laws of typical nanomaterials,and then analyzes and analyzes the toxic effects and mechanism of plankton on nanomaterials alone or interacting with other pollutants.The material water environment toxicology research will be summarized and evaluated in order to provide scientific basis for the treatment of nano-material pollution.Key words:nanoparticles;plankton;biotoxicity;mechanism of toxicity收稿日期:2020-01-14基金项目:浙江省自然科学基金(LQ18D060006);舟山市科技计划项目(2019C43269);省属高校科研业务费项目(2019J00020);浙江海洋大学省一流学科水产学科开放课题(20190014);“海洋科学”浙江省一流学科建设开放课题作者简介:金扬湖(1996-),男,浙江温州人,硕士研究生,研究方向:海洋生态毒理学.Email:188****************通信作者:周超(1986-).Email:***************442浙江海洋大学学报穴自然科学版雪第39卷纳米材料(nanoparticles,简称NPs)指天然或者人工制造的、三维尺寸上至少有一维大小为纳米尺寸的材料,NPs具备量子尺寸效应、小尺寸效应以及宏观量子隧道效应等特异效应[1]。

纳米氧化锌的制备现状及研究进展

纳米氧化锌的制备现状及研究进展

纳米氧化锌的制备现状及研究进展摘要:本文综述了近几十年来纳米氧化锌制备的发展现状及各自的优缺点,提出了目前研究中存在的问题并对其发展方向进行了展望。

关键词:纳米氧化锌制备研究进展一、引言纳米氧化锌是21世纪的一种多功能新型无机材料,其粒径介于1~100nm之间。

由于粒径比较微小,使得比表面积、表面原子数、表面能较大,产生了如表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等一系列奇异的物理效应。

它的特殊性质使其在陶瓷、化工、电子、光学、生物、医药等许多领域都有着重要的应用。

近年来,国内外对其制备和应用的研究较为广泛,且取得了不少成果。

二、纳米氧化锌的制备方法目前,制备纳米氧化锌主要有物理法、化学法及一些兴起的新方法。

1.物理法物理法是采用光、电技术使材料在惰性气体或真空中蒸发,然后使原子或分子形成纳米微粒,或使用喷雾、球磨等力学过程为主获得纳米微粒的制备方法[1]。

用来制备纳米zno的物理方法主要有脉冲激光沉积(pld)、分子束外延(mbe)、磁控溅射、球磨合成、等离子体合成、热蒸镀等。

此法虽然工艺简单,所得的氧化锌粉体纯度高、粒度可控,但对生产设备要求高,且得不到需要粒径的粉体,因此工业上不常用此法。

2.化学法2.1液相法2.1.1直接沉淀法直接沉淀法就是向可溶性锌盐溶液中加入沉淀剂,经过反应形成沉淀物,再通过过滤、洗涤、干燥、煅烧从而制得超细的纳米zno 粉体。

选用的沉淀剂有氨水(nh3·h2o)、碳酸铵((nh4)2 co3)、碳酸氢铵(nh4hco3)、草酸铵((nh4)2 c2o4)、碳酸钠(na2co3)等。

该法操作简便易行、所得产品纯度高、对设备要求低且易规模生产,但是存在在洗涤的过程中阴离子难以洗尽、产物粒度分布不均匀、分散性较差、粉体易团聚等缺点。

2.1.2 均匀沉淀法均匀沉淀法是缓慢分解的沉淀剂与溶液中的构晶阳离子(阴离子)结合而逐步、均匀地沉淀出来。

纳米氧化锌光催化降解性能影响因素研究进展

纳米氧化锌光催化降解性能影响因素研究进展

纳米氧化锌光催化降解性能影响因素研究进展摘要:纳米氧化锌因为纳米材料本身独特的效应,使其有着独特的物理和化学性能,在日益重视环境的现在来说,纳米氧化锌的光催化降解性能越来越使人重视,本文对纳米氧化锌光催化降解性能的研究进行综述。

关键词:纳米氧化锌光催化性能影响1引言近年来随着社会科技的不断发展,社会污染也越来越严重,一些污染物自然降解较慢,随着人们的深入研究发现作为半导体的氧化锌因其独特的物理和化学性能,可使污染物在光催化下分解,自半导体的光催化效应发现以来,一直引起人们的重视,原因在于这种效应在环保、水质处理、有机物降解、失效农药降解等方面有重要的应用。

作为一种重要的光催化剂,纳米氧化锌有着比块体氧化锌更强的光催化能力。

一方面,这是因为量子尺寸效应会使半导体能隙变宽,导带电位变得更负,而价带电位变得更正,从而使纳米氧化锌获得了更强的氧化还原能力;另一方面,纳米氧化锌有比块体氧化锌大得多的比表面积,高比表面积使得纳米材料具有强大的吸附污染物的能力,这对提高催化反应的速度是十分有利的。

[1]2纳米氧化锌的光催化性能影响因素2.1形貌对光催化性能的的影响纳米氧化锌的制备技术决定了纳米氧化锌的微观形貌,进一步决定了其不同的光催化性能,纳米氧化锌的主要形貌有花状、棒状、片状、颗粒状等其他特殊结构。

周小岩等[2制备出三种不同形貌的纳米ZnO粉体,分别为纺锤状,棒状和片状。

纺锤状和棒状显露的(001)晶面相对非极性面其面积很小。

片状ZnO显露的(001)晶面相对非极性面其面积较大。

因此3种相貌的ZnO样品显露(001)晶面的大小顺序依次是:片状>棒状>纺锤状,其光催化活性大小也是片状>棒状>纺锤状。

经比较得出片状ZnO呈现出较高的光催化活性的结论。

其原因是ZnO晶体显露极性面的面积相对非极性面越大,其光催化活性越高。

特殊形貌的纳米氧化锌也同样受到重视,余花娃等[3],以乙酸锌和氢氧化钾为原料合成纳米ZnO,该产物呈现形貌均一的海胆状结构。

浅析纳米氧化锌的制备及应用现状

浅析纳米氧化锌的制备及应用现状

质中,与基料没有结合力,易造成界面 缺陷,导致材料的性能下降。
故表面改性在纳米氧化锌的应用过 程中起着至关重要的作用。表面改性是
指采用物理、化学、机械等方法,来处 理纳米颗粒表面有目的地改变纳米颗粒 表面的物理化学性质,以满足其不同应 用领域的需求。[1]
2. 纳米氧化锌的制备方法概述
制备纳米氧化锌主要有三种方法: 纳米微粒。
有效的方法。
直接沉淀法所得到的产品粒径分
优点:对环境和人的毒害很小;反
布比较窄、分散性也很好,所以工业 应先驱体易得,成本低,制品晶粒结
化被大为看好。
晶完好、无团聚、分散性好。[1]
优点:设备要求低、工艺主要是通过制备两种微
缺点:后处理时,除去沉淀剂阴离 乳液:含盐离子乳液和含沉淀剂乳液,
在不同的条件下,氧化锌晶体呈现 出三种类型:纤锌矿结构、岩盐型结构 和闪锌矿结构。在常温常压条件下,六 方纤锌矿结构形式的氧化锌晶体的热力 学最为稳定,故研究该结构对于调控该 晶体生长具有重要意义。
纤锌矿结构的氧化锌晶体模型示意图
中国粉体工业 2018 No.5 11
纳米氧化锌的高表面能,使其处于 热力学非稳定状态,极易聚集成团,从 而会影响颗粒的应用效果;表面亲水疏 油,呈强极性,难于均匀分散在有机介
1. 纳米氧化锌概述
纳米氧化锌作为一种新型多功能无 机材料,粒子尺寸介于 1 ~ 100nm,由 于其比表面积大,表面活性较大,故呈 现出表面效应、体积效应、量子隧道效 应等特性。纳米氧化锌热稳定性和化学 稳定性较好,具有无毒、非迁移性、低
介质常数、高透光率、光催化性能、荧 光性、压电性、吸收和散射紫外线的能 力等特点,使其作为半导体、压电材料、 催化材料、紫外屏蔽等材料,在陶瓷、 纺织、化妆品、电子、建材、环境等行 业中得到广泛的应用与研究。[1]

纳米氧化锌的制备与光催化性能的研究

纳米氧化锌的制备与光催化性能的研究

摘 要: 氧化锌是一种高效、无毒性、价格低廉的重要光催
化剂。以乙酸锌和草酸为原料,采用溶胶-凝胶法制备纳米
ZnO。采用 XRD、SEM 对纳米 ZnO 的结构和形貌进行了分
析,结果表明,不 同 焙 烧 温 度 下 得 到 的 纳 米 氧 化 锌 均 为 六
方晶系的纤锌矿结构,平均粒径大小在 10 ~ 55nm。样品颗
图 2 350℃样品 SEM 扫描图
图 3 450℃样品 SEM 扫描图
从图 2 和图 3 可以看出,样品颗粒形状基本
78
北京印刷学院学报
2012 年
上为球形,颗粒大小比较均匀,在空间上颗粒之间 有序分布。 2. 3 焙烧温度对纳米 ZnO 光催化性能的影响
以浓度为 20mg / L 的甲基橙溶液为模拟污染 物,改 变 焙 烧 温 度 ( 温 度 分 别 为 350℃ 、450℃ 、 550℃ 、650℃ 、750℃ ) 制备的纳米 ZnO,考察在光照 40min 时,焙烧温度对纳米氧化锌光催化降解甲基 橙效果的影响。如图 4 所示。
第 20 卷 第 2 期 Vol. 20 No. 2
北京印刷学院学报 Journal of Beijing Institute of Graphic Communication
2012 年 4 月 Apr. 2012
纳米氧化锌的制备与光催化性能的研究
姚 超,李福芸,龙辰宇,杨丽珍
( 北京印刷学院,北京 102600)
D = ( A1 - At) / A1 式中,D 为降解率; A1 为甲基橙溶液初始浓度 对应的吸光值; At 代表 t 时刻甲基橙溶液浓度对应 的吸光值。
图 1 纳米氧化锌进行焙烧处理的 X 射线衍射
表 1 焙烧温度与样品颗粒粒径

微波合成纳米氧化锌及其应用研究进展

微波合成纳米氧化锌及其应用研究进展
w h e n i t i s a p p l i e d i n c a t a l y t i c s y n t h e s i s o f o r g a n i c s a n d p h o t o c a t a l y s i s d e c o mp o s i t i o n o f o r g a n i c p o l l u t a n t s .T h e mi c r o w a v e t e c h n o l o g y
特点 。
米氧化锌最佳的反应温度都要 比普通方法低 , 而且
反 应 时问也 减少 凹 ( 见表 1 ) 。与 常规 方 法 相 比 , 微 波反应 制 备 的纳 米 氧化 锌 无 需 模板 、 表 面 活性 剂
域 的应用 进展 情况 。
1 微 波技 术在 合成 纳米 氧化 锌过 程 中的应 用
合 物空 间位 阻作用 , 粒 子在 快速 聚集 时分 散堆 积 , 从 而产生 交叠 和错 位 , 进 而形 成 了孔 隙结构 。 晶体 生 长 时 的液 相结 构 和 界 面结 构 非 常 相 近 , 晶体生 长 主要 是 液 相 中 的不 饱 和 配 位 原 子 ( 离子 ) 转 换 到 固液 生长 界 面的位错 位 置 , 熔化 、 溶 解 主要是 晶体表 面 的不 饱 和 配 位 原 子 ( 离子) 转 换 到 液 相 结
构, 使配 位结 构 达 到更 饱 和 的过 程 。随 着 液 相 过饱
1 . 1 微 波法制 备 纳米氧 化锌 的 晶体生 长机理
和度 的增 大 , 液相 结构 单元 的原 子数 越来越 多 , 吸 附
水热法 晶体的生长过程一般要经过 3个阶段 , 即介质过饱和 、 晶体成核和晶体成长。提 出的理论

纳米颗粒诱导肝脏毒性的研究进展

纳米颗粒诱导肝脏毒性的研究进展

纳米颗粒诱导肝脏毒性的研究进展王晗;倪娟;周滔;杨国防;汪旭【摘要】纳米颗粒(NPs)广泛应用于食品产业、个护用品、建筑材料等领域,可通过口服摄入、皮肤渗透、吸入等途径进入人类生活环境,其对人类健康可能的负面影响令人堪忧.常见NPs如二氧化钛进入机体后,易积累在肝脏,并通过诱发肝细胞DNA损伤、改变肝脏代谢关键酶的活性、破坏肝脏结构及功能等损伤肝脏,发挥其毒性效应.因此,NPs对肝脏的毒性研究成为评价纳米颗粒安全性的重点.本文对近年来NPs诱导肝脏毒性的研究及毒性防范进行了回顾与展望.【期刊名称】《癌变·畸变·突变》【年(卷),期】2018(030)004【总页数】4页(P315-317,325)【关键词】纳米颗粒;肝细胞;肝脏;毒性效应;毒性防范【作者】王晗;倪娟;周滔;杨国防;汪旭【作者单位】云南师范大学生命科学学院,云南昆明650500;云南师范大学生命科学学院,云南昆明650500;云南师范大学生物能源持续开发与利用教育部工程研究中心,云南昆明650500;云南师范大学生命科学学院,云南昆明650500;云南师范大学生物能源持续开发与利用教育部工程研究中心,云南昆明650500;上海三誉华夏基因科技有限公司,上海201100;云南师范大学生命科学学院,云南昆明650500;云南师范大学生物能源持续开发与利用教育部工程研究中心,云南昆明650500【正文语种】中文【中图分类】Q355纳米颗粒(nanoparticles,NPs),是指直径小于100 nm的微粒。

纳米级的颗粒较正常颗粒(fine particle)而言,具有不同的理化特征,如表面积与体积比增大,活性位点、电荷和形状改变,表面衍生性增加,光催化活性增强,热性能更为优越等。

目前,NPs已广泛运用到电子工业、食品产业、建筑材料、纺织品、医疗器械和药物、个人护理用品如防晒霜等领域 [1]。

随着人类越来越多的暴露在含NPs 的用品中,NPs对人的健康风险评估已成为研究热点 [2]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 l 进展
潘 少兵 邱凤仙 余世金 ( 1 、 江苏大学环境 学院 , 江苏 镇 江 2 1 2 0 1 3 2 、 安庆师范大学资源环境学院 , 安徽 安庆 2 4 6 1 3 3
3 、 江苏大学 化学化工学院, 江苏 镇 江 2 1 2 0 1 3 1 摘 要: 由于纳米氧化锌广泛使 用, 纳米氧化锌 的暴露及其对生物诱发的毒性 效应 , 是 目前研 究的一 个热点。本文论述 了纳米氧化锌 对植物 、 动物 、 微生物毒性研 究进展 , 并对 纳米氧化锌的生态毒性研 究进行 了展望 。 关键词 : 纳米氧化锌 ; 生态毒性 ; 效应 纳米科技 、信息科学与生物科学构成 2 l 世纪科技发展 的三大 的超微结构和功能损伤 , 从 而对细胞的增殖 、 生长 、 代谢甚至 D N A、 支柱 , 纳 米科技是 世界科 技发展 的前沿领 域 , 其中, 人 工纳米材 料 m R N A、 蛋 白表达等产生影响。 3 纳 米 氧 化 锌 对 微 生 物 的毒 性 ( M N Ms ) , 因具有特殊的尺寸效 应 ,以及 良好 的力学 、 磁学和光 电学 等性质 , 目前 已被广泛应用到众 多领域 , 随着 MN Ms 的大规模应 用 , 评价纳 米材料 的安 全性 , 可以用细 菌作为模式 生物 , 它们 进化 如: 新型材料 、 电子 、 生物 医药学 、 化妆 品 、 能源 、 催化剂 以及 环境监 地位低 , 是单细胞生 物 , 结 构相对简单 , 染毒环境相对 稳定 , 更易控 以便细致的了解毒性机制 , 从环境影 响而言 , 微生物作 测等 ,越来越多的科 学家关注 和担忧 因 MN Ms 暴 露带来环境风险。 制作用条件 , MN Ms的安全性 问题 已成为 国内外研究 的热点 。 为生态链 的底层生物 , 是生态 系统稳定 的关键之一 , 纳米颗 粒更 易 据 预测 , 2 0 1 0年 有超 过 2 6 0 , 0 0 0 — 3 0 9 , 0 0 0公 吨 的人 工纳 米材 通过与微生物作用来 打破生态平衡 。 料 被 填 埋 ,其 中 纳 米 氧 化 锌 ( n a n o — Z n O) 和 纳 米 二 氧 化 钛 在过去 , 人们对 于纳米 Z n O的生物效应 的研究 主要集 中在其抗 ( n a n o — T i O : ) 占9 4 %, 且纳米 氧化锌被 广泛应 用到 与人体直 接接触 菌作用上 。有研究显示 , 纳米 Z n O对革 兰氏阳性细菌和阴性细菌都 的化妆品 、 纺织品等 中, 其对生物可能存 在的毒性便更 显其研究 的 有抑制作用 。 目前相关研究显示 , 纳米 Z n O对不 同微生物的毒性 大 重要性和 紧迫性 。 纳米氧化锌的扩大生产 和使用 已经不可避免提高 小不 同, 例如 , 纳米 Z n O对 大肠杆菌 的毒性小于葡萄球菌 , 并且相关 了人类 和环境对纳米氧化锌的暴露及其对生物诱发的毒性 效应 。 研究显示 , 其毒性 大小 主要取决于纳米 Z n O的浓度大小 , 浓度越大 , 1纳米氧化锌对植物的毒性 毒性 就越强 。但也有研究显示 ,当纳米 Z n O的浓度低于一定值时 , X i n g等对 Z n O N P s 对植物 的毒性作用进行 了研究 , 结果显示 , 它不但不会抑制微生物的生长 , 反而会促进微生物的生长 。 当2 0 n m的 Z n O浓度为 2 0 0 0 mg / L时 , 会抑制 玉米 种子 的发芽 , 而且 此外 , 纳米氧化锌对微生物 的影 响还 涉及到对微生物生 长曲线 会抑制 黄瓜 、 萝 卜、 玉米 、 油菜 、 莴苣 和黑麦 草等植 物的根部 生长 , 的影响 , 微生物细胞内过氧化氢酶 、 超 氧化 物歧 化酶 、 丙二醛等 R O S Z n O N P s 对油菜 和萝 卜的 5天的 I c 分别约为 2 0 m g / L和 5 0 m g / L, 并 指标 的测定 。 且Z n O N P s 的植 物毒性大小 和锌离子 的溶 出含 量高低 有 明显 的相 4纳米氧化锌生态毒性的展望 关性 。 纳米氧化锌的大量生产和广泛使用 , 使其毒性 的相 关研究更加 L i n等 的进一 步研究发现 , Z n O N P s 主要 聚集 在黑麦 草根的周 重要和迫切。目前的纳米氧化锌毒性相关研究基本集 中在对典 型的 围, 然后进入根部 细胞并抑制其生 长 , 因为实验所用培养 液 中的锌 动物 、 植物和微 生物模式生物 的影 响 , 如: 形态 、 生长 、 行为、 体 内运 离子浓度低 于锌离 子对 黑麦 草毒性 阈值 , 可 以证 明 Z n O N P s的溶解 输 、 L C 5 0等 , 且没有 形成操作性 强和适 用性 广 的方 法 , 需 要在这方 作 用并 不是 导致 Z n O N P s 植物 毒性 的原 因 。F r a n k l i n等 ,在 研究 面加大研究力度。 Z n O N P s 对 微藻类 毒性 时发 现 , 3 0 n mZ n O N P s 、 Z n C 1 2和块 状 Z n O对 参 考 文献 微藻的毒性差异不大 , 证 明三者 的毒性作用都是 因为溶解 的锌离 子 [ 1 】 宋玉果, 宁保 安. 加 强我 国的纳米毒理 学研 究f J 1 . 中华预 防 医学杂 的作 用 。 志, 2 0 1 4 , 4 8 ( 0 7 ) : 5 5 2 . 2纳米氧化锌对动物 的毒性 【 2 ] J i a n h o n g Wu ,We i L i u , F a n — D i a n Z e n g .T o x i c i t y a n d p e n e t r a t i o n f T i O2 n a n o p a r t i c l e s i n h a i r l e s s mi c e a n d p o r c i n e s k i n a f t e r s u b - 近几年 , 纳米 Z n O的毒性研究开始集中在动物 的体 内动物和体 o
相关文档
最新文档