纳米氧化锌的研究进展
纳米ZnO的合成及光催化的研究进展

纳米ZnO的合成及光催化的研究进展摘要:综合叙述了以纳米ZnO半导体光催化材料的研究现状。
主要包括纳米光催化材料的制备、结构性质以及应用,同时结合纳米ZnO的应用和光催化的优势阐述了后续研究工作的主要的研究方向。
关键词:纳米;光催化;应用1.1 ZnO光催化材料的研究进展纳米氧化锌的制备技术国内外有不少研究报道,国内的研究源于20世纪90年代初,起步比较晚。
目前,世界各国对纳米氧化锌的研究主要包括制备、微观结构、宏观物性和应用等四个方面,其中制备技术是关键,因为制备工艺过程的研究与控制对其微观结构和宏观性能具有重要的影响[1]。
综合起来,纳米氧化锌的化学制备技术大体分为三大类:固相法、液相法和气相法。
1.1.1固相法固相法又分为机械粉碎法和固相反应法两大类,前者较少采用,而后者固相反应法,是将金属盐或金属氧化锌按一定比例充分混合,研磨后进行燃烧,通过发生固相反应直接制得超细粉或再次粉碎的超细粉。
固相配位化学反应法是近几年刚发展起来的一个新的研究领域,它是在室温或低温下制备可在较低温度分解的固相金属配合物,然后将固相产物在一定温度下热分解,得到氧化物超细粉。
运用固相法制备纳米氧化锌具有操作和设备简单安全,工艺流程短等优点,所以工业化生产前景比较乐观,其不足之处是制备过程中容易引入杂质,纯度低,颗粒不均匀以及形状难以控制。
王疆瑛等人[2]以酒石酸和乙二胺四乙酸为原料,采用固相化学反应法在450℃热分解4h 得到具有纤锌矿结构的ZnO粉体,通过X射线衍射及透射电镜结果分析,合成的产物粒径均小于100nm,属于纳米颗粒范围,而且颗粒大小均匀,粒径分布较窄,并采用静态配气法对气敏特性的研究发现,对乙醇气体表现了良好的灵敏性和选择性。
1.1.2气相法气相法是直接利用气体或通过各种手段将物质变为气体并使之在气体状态下发生物理或化学变化,最后在冷却过程中凝聚长大形成超微粉的方法。
气相法包括溅射法、化学气相反应法、化学气相凝聚法、等离子体法、激光气相合成法、喷雾热分解法等。
纳米氧化锌的制备现状及研究进展

纳米氧化锌的制备现状及研究进展摘要:本文综述了近几十年来纳米氧化锌制备的发展现状及各自的优缺点,提出了目前研究中存在的问题并对其发展方向进行了展望。
关键词:纳米氧化锌制备研究进展一、引言纳米氧化锌是21世纪的一种多功能新型无机材料,其粒径介于1~100nm之间。
由于粒径比较微小,使得比表面积、表面原子数、表面能较大,产生了如表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等一系列奇异的物理效应。
它的特殊性质使其在陶瓷、化工、电子、光学、生物、医药等许多领域都有着重要的应用。
近年来,国内外对其制备和应用的研究较为广泛,且取得了不少成果。
二、纳米氧化锌的制备方法目前,制备纳米氧化锌主要有物理法、化学法及一些兴起的新方法。
1.物理法物理法是采用光、电技术使材料在惰性气体或真空中蒸发,然后使原子或分子形成纳米微粒,或使用喷雾、球磨等力学过程为主获得纳米微粒的制备方法[1]。
用来制备纳米zno的物理方法主要有脉冲激光沉积(pld)、分子束外延(mbe)、磁控溅射、球磨合成、等离子体合成、热蒸镀等。
此法虽然工艺简单,所得的氧化锌粉体纯度高、粒度可控,但对生产设备要求高,且得不到需要粒径的粉体,因此工业上不常用此法。
2.化学法2.1液相法2.1.1直接沉淀法直接沉淀法就是向可溶性锌盐溶液中加入沉淀剂,经过反应形成沉淀物,再通过过滤、洗涤、干燥、煅烧从而制得超细的纳米zno 粉体。
选用的沉淀剂有氨水(nh3·h2o)、碳酸铵((nh4)2 co3)、碳酸氢铵(nh4hco3)、草酸铵((nh4)2 c2o4)、碳酸钠(na2co3)等。
该法操作简便易行、所得产品纯度高、对设备要求低且易规模生产,但是存在在洗涤的过程中阴离子难以洗尽、产物粒度分布不均匀、分散性较差、粉体易团聚等缺点。
2.1.2 均匀沉淀法均匀沉淀法是缓慢分解的沉淀剂与溶液中的构晶阳离子(阴离子)结合而逐步、均匀地沉淀出来。
毕业论文(氧化锌纳米材料的研究进展)【范本模板】

学号:2007******哈尔滨师范大学学士学位论文题目氧化锌纳米材料的研究进展学生***(2007******)指导教师***助教年级2007级专业物理学系别物理系学院物理与电子工程学院学士学位论文题目氧化锌纳米材料的研究进展学生***指导教师*** 助教年级2007级专业物理学系别物理系学院物理与电子工程学院哈尔滨师范大学2011年5月氧化锌纳米材料的研究进展***摘要:纳米材料已成为当今许多科学工作者研究的热点,而氧化锌纳米材料的许多优异性能使其成为重要的研究对象并得到广泛的应用.本文概述了纳米ZnO的应用前景及国内外的研究现状,对纳米ZnO各种制备方法的基本原理等进行了详细的分析讨论,同时提出了每种工艺的优缺点,简单介绍了氧化锌纳米材料的性质及其可能的应用领域,提出了研究方向,并对氧化锌纳米材料的发展前景进行了展望。
关键词:纳米氧化锌氧化锌应用研究纳米ZnO材料显示出以往未曾有过的优异性能,即使在传统应用领域中,也显示出较普通ZnO材料更加优良的性能,其应用前景非常广阔,其技术开发和应用研究已受到高度重视,如何大规模,低成本制备纳米ZnO材料就显得尤为重要,目前研究的方向是进一步深入探讨纳米ZnO的形成机理和微观结构,探求高纯纳米ZnO的制备方法,并使之工业化,随着制备技术的进一步完善和应用研究的进一步深入,纳米氧化锌必将成为21世纪一个大放异彩的明星而展现在新材料、能源、信息等各个领域,发挥其更加举足轻重的作用[1]。
本文系统评述了近年来氧化锌纳米材料制备的一些新方法,介绍了氧化锌纳米材料的性质及其应用领域,并对氧化锌纳米材料的发展前景进行了展望.一、ZnO的研究现状纳米技术应用前景十分广阔,经济效益十分巨大,纳米材料研究是目前材料科学研究的一个热点,其相应发展起来的纳米技术被公认为是21世纪最具有前途的科研领域[2]。
目前,国内外关于纳米ZnO的研究报道很多,日本、美国、德国、韩国等都做了很多工作。
纳米氧化锌光催化降解性能影响因素研究进展

纳米氧化锌光催化降解性能影响因素研究进展摘要:纳米氧化锌因为纳米材料本身独特的效应,使其有着独特的物理和化学性能,在日益重视环境的现在来说,纳米氧化锌的光催化降解性能越来越使人重视,本文对纳米氧化锌光催化降解性能的研究进行综述。
关键词:纳米氧化锌光催化性能影响1引言近年来随着社会科技的不断发展,社会污染也越来越严重,一些污染物自然降解较慢,随着人们的深入研究发现作为半导体的氧化锌因其独特的物理和化学性能,可使污染物在光催化下分解,自半导体的光催化效应发现以来,一直引起人们的重视,原因在于这种效应在环保、水质处理、有机物降解、失效农药降解等方面有重要的应用。
作为一种重要的光催化剂,纳米氧化锌有着比块体氧化锌更强的光催化能力。
一方面,这是因为量子尺寸效应会使半导体能隙变宽,导带电位变得更负,而价带电位变得更正,从而使纳米氧化锌获得了更强的氧化还原能力;另一方面,纳米氧化锌有比块体氧化锌大得多的比表面积,高比表面积使得纳米材料具有强大的吸附污染物的能力,这对提高催化反应的速度是十分有利的。
[1]2纳米氧化锌的光催化性能影响因素2.1形貌对光催化性能的的影响纳米氧化锌的制备技术决定了纳米氧化锌的微观形貌,进一步决定了其不同的光催化性能,纳米氧化锌的主要形貌有花状、棒状、片状、颗粒状等其他特殊结构。
周小岩等[2制备出三种不同形貌的纳米ZnO粉体,分别为纺锤状,棒状和片状。
纺锤状和棒状显露的(001)晶面相对非极性面其面积很小。
片状ZnO显露的(001)晶面相对非极性面其面积较大。
因此3种相貌的ZnO样品显露(001)晶面的大小顺序依次是:片状>棒状>纺锤状,其光催化活性大小也是片状>棒状>纺锤状。
经比较得出片状ZnO呈现出较高的光催化活性的结论。
其原因是ZnO晶体显露极性面的面积相对非极性面越大,其光催化活性越高。
特殊形貌的纳米氧化锌也同样受到重视,余花娃等[3],以乙酸锌和氢氧化钾为原料合成纳米ZnO,该产物呈现形貌均一的海胆状结构。
纳米ZnO抑菌性应用的研究进展

纳米ZnO抑菌性应用的研究进展抗生素的广泛使用解决了诸多感染问题,但也导致越来越多耐药菌的产生。
传统抗生素对耐药菌的杀伤作用不断减弱,使其威胁持续增加。
因此,为了对抗细菌日益增长的耐药性,迫切需要开发新的抗菌物质,寻找新的抗菌机制。
纳米金属材料以其独特的性质,慢慢展现出作为广谱抗菌剂的潜力,其中又以纳米氧化锌颗粒效果较好,可以通过产生活性氧、溶出锌离子以及直接接触等机制杀伤细菌。
基于此抗菌特性,纳米氧化锌在医疗、食品包装、纺织等领域具有巨大潜力。
本文将围绕纳米氧化锌的抑菌应用展开论述。
1医用创面敷料基于ZnO的抗菌活性,并且锌元素是伤口愈合的必需元素,可以促进角质细胞迁移[1],因此许多研究者将ZnO掺入创面敷料。
例如,在常见敷料细菌纤维素、聚酯尼龙中加入ZnO,其抑菌作用与纳米颗粒含量呈正相关,对细菌的生物膜具有显著抑制作用,可降低细菌嵌入生物膜导致的抗生素耐药性[2];Khorasani等[3]则在敷料材料水凝胶中同时加入壳聚糖与 ZnO,促进伤口愈合的同时,发挥后两者的协同抗菌作用。
2.口腔医学领域ZnO在预防牙龈感染、龋齿等口腔医学方面亦有应用。
符国富等[4]将ZnO改性后加入牙膏,以预防牙龈下细菌感染;相比于普通ZnO,该材料对金葡菌、绿脓杆菌、牙龈卟啉单胞菌的杀菌作用明显提升,且对正常细胞毒性低。
Barma等[5]利用印度三果提取物合成ZnO,产物对链球菌抑菌效果明显,可应用于牙科产品预防龋齿。
Garcia等[6]制备含ZnO的牙科黏合剂,既确保了材料强度,又对唾液中的链球菌有较好的抑制效果,有望成为下一代牙科黏合材料。
3.养殖业及农业养殖业领域,在饲料中加入ZnO已被用于预防仔猪断奶应激,但剂量过高易加重胰腺氧化应激。
使用ZnO可将剂量减少至十分之一,并有效调节肠道菌群[1]。
Radi等[2]在肉鸡饲料中用90mg/kg-1的ZnO可用于改善生长、肠道菌群等,且对肝肾功能无明显影响。
微波合成纳米氧化锌及其应用研究进展

特点 。
米氧化锌最佳的反应温度都要 比普通方法低 , 而且
反 应 时问也 减少 凹 ( 见表 1 ) 。与 常规 方 法 相 比 , 微 波反应 制 备 的纳 米 氧化 锌 无 需 模板 、 表 面 活性 剂
域 的应用 进展 情况 。
1 微 波技 术在 合成 纳米 氧化 锌过 程 中的应 用
合 物空 间位 阻作用 , 粒 子在 快速 聚集 时分 散堆 积 , 从 而产生 交叠 和错 位 , 进 而形 成 了孔 隙结构 。 晶体 生 长 时 的液 相结 构 和 界 面结 构 非 常 相 近 , 晶体生 长 主要 是 液 相 中 的不 饱 和 配 位 原 子 ( 离子 ) 转 换 到 固液 生长 界 面的位错 位 置 , 熔化 、 溶 解 主要是 晶体表 面 的不 饱 和 配 位 原 子 ( 离子) 转 换 到 液 相 结
构, 使配 位结 构 达 到更 饱 和 的过 程 。随 着 液 相 过饱
1 . 1 微 波法制 备 纳米氧 化锌 的 晶体生 长机理
和度 的增 大 , 液相 结构 单元 的原 子数 越来越 多 , 吸 附
水热法 晶体的生长过程一般要经过 3个阶段 , 即介质过饱和 、 晶体成核和晶体成长。提 出的理论
氧化锌纳米棒研究进展汇总

氧化锌纳米棒研究进展**孔祥荣*, 邱晨, 刘强, 刘琳, 郑文君(南开大学化学学院材料系,天津,300071)Kxr0918@摘要:氧化锌纳米棒由于具有新奇的物理化学性质而成为研究的热点,本文就近年来氧化锌纳米棒在制备方法和反应机理及应用研究等方面予以综述。
关键词:氧化锌; 纳米棒; 制备; 反应机理1 引言近年来,低维纳米结构的半导体材料引起了广泛的关注,尤其是一维(1-D纳米材料在维数和大小物理性质的基础研究中有潜在的优势,同时在光电纳米器件和功能材料中的应用研究成为热点。
氧化锌由于在室温下较大的导带宽度和较高的电子激发结合能(60meV 及光增益系数(300 cm 而使之具有独特的催化、电学、光电学、光化学性质,在太阳能电池、表面声波和压电材料、场发射、纳米激光、波导、紫外光探测器、光学开关、逻辑电路[5,6][1]-1[2][3][4] 等领域潜在的应用等方面均具有广泛的应用前景。
本文就氧化锌纳米棒及其阵列的制备、反应机理、应用研究等进行简要的综述。
2 氧化锌纳米棒的制备2.1 超声波法和微波法刘秀兰等在低温反应条件下(冰水浴),通过超声的方法,采用醋酸锌和水合肼为原料,[7]以DBS 作为表面活性剂,制备了ZnO 纳米棒,截面为六方型,直径100nm ,长度1μm。
研究表明:与其它制备方法相比,低温与超声技术可以更为方便获得分布均一、长径比较小的ZnO 纳米棒。
Hu等分别用超声和微波辐射两种方法得到了交联(二聚体,三聚体(T形,四聚体(X[8]形))的ZnO纳米棒。
超声辐射法和微波辐射法具有一个共同的特点,反应速度快,设备要求简单。
2.2 水热法Liu 等用六水合硝酸锌和氢氧化钠为原料配成溶液,180 ℃水热处理20h 得到晶化程度[9]很高的直径的为50 nm的高长径比的氧化锌纳米棒。
Vayssieres [10]用硝酸锌盐和等摩尔的六次甲基四胺在水热条件下95 ℃几小时就可以在底物上得到了直径100~200 nm ,长度为10 μm 氧化锌纳米棒及其阵列。
氧化锌纳米材料简介

目录摘要 (1)1.ZnO材料简介 (1)2.ZnO材料的制备 (1)2.1 ZnO晶体材料的制备 (1)2.2 ZnO纳米材料的制备 (2)3. ZnO材料的应用 (3)3.1 ZnO晶体材料的应用 (3)3.2 ZnO纳米材料的应用 (5)4.结论 (7)参考文献 (9)氧化锌材料的研究进展摘要介绍了氧化锌(ZnO)材料的性质,简单综述一下近几年ZnO周期性晶体材料和ZnO纳米材料的新进展。
关键词:ZnO;晶体材料;纳米材料1.ZnO材料简介氧化锌材料是一种优秀的半导体材料。
难溶于水,可溶于酸和强碱。
作为一种常用的化学添加剂,ZnO广泛地应用于塑料、硅酸盐制品、合成橡胶、润滑油、油漆涂料、药膏、粘合剂、食品、电池、阻燃剂等产品的制作中。
ZnO的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能,在半导体领域的液晶显示器、薄膜晶体管、发光二极管等产品中均有应用。
此外,微颗粒的氧化锌作为一种纳米材料也开始在相关领域发挥作用。
纳米ZnO粒径介于1-100nm之间,是一种面向21世纪的新型高功能精细无机产品,表现出许多特殊的性质,如非迁移性、荧光性、压电性、吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能,可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等[1–5]。
下面我们简单综述一下,近几年ZnO周期性晶体材料和ZnO纳米材料的新进展。
2.ZnO材料的制备2.1 ZnO晶体材料的制备生长大面积、高质量的ZnO晶体材料对于材料科学和器件应用都具有重要意义。
尽管蓝宝石一向被用作ZnO薄膜生长的衬底,但它们之间存在较大的晶格失配,从而导致ZnO外延层的位错密度较高,这会导致器件性能退化。
由于同质外延潜在的优势,高质量大尺寸的ZnO晶体材料会有利于紫外及蓝光发射器件的制作。
由于具有完整的晶格匹配,ZnO同质外延在许多方面具有很大的潜力:能够实现无应变、没有高缺陷的衬底-层界面、低的缺陷密度、容易控制材料的极性等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学号:201140600113 纳米氧化锌的制备方法综述姓名:范丽娜学号: 201140600113年级: 2011级院系:应用化学系专业:化学类纳米氧化锌的制备方法综述姓名:范丽娜学号: 201140600113 内容摘要:介绍了纳米氧化锌的应用前景及国内外的研究现状,对制备纳米氧化锌的化学沉淀法、溶胶凝胶法、微乳液法、水热合成法、化学气相法的基本原理、影响因素、产物粒径大小,操作过程等进行了详细的分析讨论;提出了每种创造工艺的优缺点,指出其未来的研究方向是生产具有新性能、粒径更小、大小均一、形貌均可调控、生产成本低廉的纳米氧化锌。
同时也有纳米氧化锌应用前景的研究。
Describes the application of zinc oxide prospects and research status, on the preparation of ZnO chemical precipitation, sol-gel method, microemulsion, hydrothermal synthesis method, chemical vapor of the basic principles, factors, product particle size, operating procedure, carried out a detailed analysis and discussion; presents the advantages and disadvantages of each creation process, pointing out its future research direction is the production of new properties, particle size is smaller, uniform size, morphology can be regulated, production cost of zinc oxide. There is also promising research ZnO.关键字:纳米氧化锌制备方法影响研究展望正文:纳米氧化锌是一种多功能性的新型无机材料,其颗粒大小约在1~100纳米。
由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。
近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使其在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。
纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。
由于纳米氧化锌一系列的优异性和十分诱人的应用前景,因此研发纳米氧化锌已成为许多科技人员关注的焦点。
一、性能表征纳米级氧化锌的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统氧化锌的双重特性。
与传统氧化锌产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%;同时,它还具有抗菌抑菌、祛味防酶等一系列独特性能。
清华大学分析测试中心用透射电镜对产品进行了分析,纳米氧化锌粒子为球形,粒径分布均匀,平均粒径20~30纳米,所有粒子的粒径均在50纳米以下。
经比表面及孔径测定仪测试,纳米氧化锌粉体的BET比表面积在35m2/g以上。
此外,通过调整制备工艺参数,还可以生产出棒状纳米氧化锌。
本产品经中国科学院微生物研究所检测鉴定,结果表明,在丰富细菌培养基中,加入0.5%~1%的纳米氧化锌,可有效抑制大肠杆菌的生长,抑菌率达99.9%以上。
二、氧化锌纳米材料制备的新方法对纳米材料的研究首先是侧重于制备方法的研究,随着研究的不断深入,近年来,人们己开发了一系列制备氧化锌纳米材料的新方法,如微波法、静电纺丝法、离子液体法、脉冲激光烧蚀沉积法、频磁控溅射法等。
1.微波法微波是频率300MHz-300GHz、波长lmm-lm的电磁波。
1986年,Cedye R等在微波炉内进行了醋化、水解等化学反应。
此后,微波技术便逐渐渗透应用于化学的各个领域。
近年来,微波技术大量应用于材料化学和催化化学领域,日益显示其独特优势。
利用微波制备纳米材料,起步虽晚但进展迅速,国内外己有不少这方面的文献报道[1]。
2.静电纺丝法静电纺丝是一种制备纳米纤维的技术,该法可十分经济地制得直径为纳米级的连续不断的纤维[2]。
近年来,由于对纳米科技研究的迅速升温,静电纺丝这种可大规模制备纳米尺寸纤维的纺丝技术激起了人们的广泛兴趣。
3.离子液体法离子液体法是采用离子液体作为反应溶剂来制备纳米材料。
其己表现出许多其他方法不具备的优点。
Wand W W等应用离子液体法(MAIL) 在离子液体 [BMIM]BF4中通过控制适当的条件,成功合成形状可控的针状和花状的ZnO材料[3]。
合成快速(5~20)min,也不需要品种、表面活性剂和模板剂等。
但这种方法还是一个比较新的方法,尚待进一步完善,如:离子液体制备纳米材料时,离子液体的制备时间较长目易受到杂质的污染;此外,离子液体的获得不如水或常用的有机溶剂方便,这也限制了它的广泛使用。
4.脉冲激光烧蚀沉积法日本的Okada等脉冲激光烧蚀沉积法成功合成了ZnO的纳米棒。
他们将纯度为99.99%ZnO日标物在KrF激光下消融,然后在载气(O2/He)气氛下保持一定的温度进行反应,最终在A12O3底物上成功获得了尺寸为120nm的ZnO纳米棒[4]。
该法制备纳米粒子无需经过十燥的过程、工艺简单、团聚少,不需其他处理即可获得十燥粉体。
但由于反应温度较高,需要装置具有承受高温或高压的能力,所以设备比较昂贵。
5.频磁控溅射法Kim等使用Si作为衬底,Zn作为靶材料在一定条件下溅射,首先得到了Zn的纳米线,经过氧化进一步得到了形貌规整、分布均匀的ZnO纳米线。
使用该制备方法获得的ZnO无论是结品质量还是光学性能都很突出。
与日前广泛采用的气液固催化机制制备ZnO低维纳米材料相比,射频磁控溅射法的设备更为简单,还可克服气液固催化生长所固有的杂质污染产物的缺点[5]。
但射频磁控溅射法需在高温下进行,对于设备的要求较高,过程难以控制。
此外,合成氧化锌纳米材料的方法还包括真空蒸汽冷凝法、球磨法、热爆法、微/乳液法、脉冲激光沉积法(PLD)、喷雾热解法等,这儿种方法均可以得到纯度高,粒径和形貌可控的氧化锌纳米材料,但是制备工艺复杂,抑或是设备比较昂贵。
因此,无论是哪一种合成方法都还需要进一步的摸索和完善。
6 激光诱导化学法激光诱导化学法是利用反应分子气体对特定波长激光束的吸收而热解或化学反应,经成核生长形成纳米粉体;或运用高能激光束直接照射金属片表面加热气化、蒸发、氧化获得氧化物纳米粉体。
该法制备的纳米具有颗粒小、粒度分布窄、分散性、纯度高、不团聚等特点,但耗能大、粉体回收率低、花费成本高,难以工业化。
中科院固体物理研究所朱勇等[ 6 ]利用激光束,在不同能量密度下,直接加热锌靶制备出纳米氧化锌粉体,且产物形状结构不同,可为链状、弥散状,也可为晶须结构,粒径在10~40 nm。
7 固相反应法固相法又可以分为两种:一种是利用各种超微粉碎技术将普通氧化锌直接研磨成超细氧化锌。
目前开发的主要有高能球磨和气流粉碎技术。
马宏文等[ 7 ] ,以Zn (NO3 ) 2·6H2O和Na2CO3为原料、十二烷基苯磺酸钠为分散剂,采用低温固相法在350 ℃下制得纳米ZnO。
通过XRD物相分析,发现ZnO纳米粒子样品的物相为六方晶第纤锌矿结构。
张永康等[ 8 ]以ZnSO4·2H2O和无水Na2 CO3为原料,在室温下通过研磨方式,运用固相反应法制备碳酸锌,然后在200 ℃热分解,得到粒径为6~12 nm的棒球形的氧化锌。
8 超重力法超重力旋转填充床(RPB)是一种新型的化学反应设备,其中产生的离心加速度相当于重力加速度的上百倍,使相间传质和微观混合得到了极大地强化,为均匀快速成核创造了理想的环境[ 9 ]。
超重力已成为纳米粉体材料制备的平台性技术,其制备的纳米粉体材料具有粒径小且颁布均匀等特点。
蔡意文等[ 10 ],以六水合硝酸锌为原料,将一定浓度的六水合硝酸锌水溶液加入超重力反应釜中,升温,达到一定温度的硝酸锌溶液自搅拌釜中经管道泵输送,经过液体流量计和液体分布器进入旋转床内,并经填料层形成强烈的微滴化或微细化丝膜;氨气经气体流量计从气体入口斡旋旋转床内,气液二相逆流接触,反应生成氢氧化锌,在洗涤过程中加入SEW8001进行表面修饰,过滤,在一定温度下干燥与煅烧,制得纳米氧化锌。
9 超声辐射沉淀法按物料配比(C2O42-与Zn2 +物质的量的比为1. 1∶1) ,将一定体积的0. 5 mol/L Zn2 +溶液置于薄壁烧杯中,在频率为26~30 kHz的超声辐射下,以1. 0 mol/L的Za2C2O4溶液为沉淀剂,采用正加法加料,等反应完全后继续超声3~5 min,再依次经水洗、醇洗、过滤及真空干燥得ZnO前驱物粉体,选择适当温度,锻烧可得26 nm左右的ZnO粉体[ 11 ]。
10 超临界流体干燥法张敬畅等人[ 12 ],报道的一种方法是:配制Zn盐水溶液,室温搅拌加入适量分散剂,逐渐滴加氨水,直到预定的pH值,陈化得ZnO水凝胶。
离心分离、用无水乙醇洗涤、交换,得Zn (OH) 2醇凝胶。
将醇凝胶转移至高压反应釜内,加入一定量筛选好的表面活性剂,再加一定量乙醇,维持超临界状态温度0. 5 h,缓慢释放流体后,用N2 吹扫0. 5 h,冷却至室温得到纳米ZnO粉体。
在最佳条件Zn2 +、氨水浓度为0. 5 mol/L、pH = 9、4 ℃下陈化20 h,超临界干燥温度为260 ℃,压力为7. 5 MPa,所得ZnO粉体粒径分布在10~15 nm,产率90%。
11 电化学法电化学合成法是近年来被广泛应用的一种合成方法,它具有环保,反应条件温和,过程可控并易于自动化管理等优点。
孟阿兰等人[ 13 ],采用一步电化学氧化法制备出不同直径的ZnO 纳米线。
该方法以HF - C2H5OH - H2O混合溶液为电解液,铅析为阴极, Zn片为阳极,在较低温度下直接制备出ZnO纳米线,并且可调整工艺参数,获得不同直径的ZnO纳米线。
方法操作简单,合成时间短,能量消耗低,工作环境好,产量较高,可望成为合成金属氧化物纳米线的一种有效方法。
得到的纳米线是具有六方纤锌矿结构的ZnO晶体。
通过调整工艺参数可获得不同直径和形态的ZnO纳米线。
主要特点是:合成温度低,操作简单,合成时间短,能量消耗低,在不同工艺条件下,可获得不同尺寸和形貌的纳米线,且产量较高。