初中数学--反比例函数讲义及习题

合集下载

(完整版)初中数学反比例函数知识点及经典例题

(完整版)初中数学反比例函数知识点及经典例题

反比例函数、基础知识k ..…............................................ k1. 正义:一般地,形如y -(k为常数,k o)的函数称为反比例函数。

y -x x 还可以写成y kx 12. 反比例函数解析式的特征:⑴等号左边是函数y,等号右边是一个分式。

分子是不为零的常数k (也叫做比例系数k),分母中含有自变量x ,且指数为1.⑵比例系数k 0⑶自变量x的取值为一切非零实数。

⑷函数y的取值是一切非零实数。

3. 反比例函数的图像⑴图像的画法:描点法①列表(应以。

为中心,沿O的两边分别取三对或以上互为相反的数)②描点(有小到大的顺序)③连线(从左到右光滑的曲线).._ .. .. ._ .. … k.⑵反比例函数的图像是双曲线,y - (k为常数,k 0)中自变量x 0,x函数值y 0,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。

⑶反比例函数的图像是是轴对称图形(对称轴是y x或y x)。

.. .. ................................. k .... 一… ... . .. ...................... k⑷反比例函数y - ( k 0)中比例系数k的几何怠义是:过双曲线y -x x (k 0)上任意引x轴y轴的垂线,所得矩形面积为|k。

4.5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出k6. “反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数一 .一 .. ...... ... k ..但是反比例函数y -中的两个变重必成反比例关系。

x7. 反比例函数的应用、例题2【例1】如果函数y kx 的图像是双曲线,且在第二,四象限内,那么的值是多少?k【解析】有函数图像为双曲线则此函数为反比例函数 y - k 0)即y kxx(k 0) 乂在第二,四象限内,贝U k 0可以求出的值 【答案】由反比例函数的定义,得:2k 2k 2 1解得 k 1 或k 2 k 0k 0 2k 1k 1时函数y kx 2k2k 2为y 1x1 . .................... 【例2】在反比例函数y一的图像上有二点x 1 ,y 1,x 2 ,y 2 , x 3 , y 3x若X x 2 0 x 3则下歹0各式正确的是()A. y 3 y 〔 y B . * 霍 y 〔 C . y 〔 y y D . y 〔* y【解析】可直接以数的角度比较大小,也可用图像法,还可取特殊值法。

反比例函数九年级数学下册同步考点知识清单+例题讲解+课后练习(人教版)

反比例函数九年级数学下册同步考点知识清单+例题讲解+课后练习(人教版)

第1课时——反比例函数知识点一:反比例函数的定义:1.反比例函数的定义:形如的函数叫做反比例函数。

有时又表示为。

【类型一:判断函数关系】1.下列式子中,成反比例关系的是()A.圆的面积与半径B.速度一定,行驶路程与时间C.平行四边形面积一定,它的底和高D.一个人跑步速度与它的体重2.下面两个问题中都有两个变量:①矩形的周长为20,矩形的面积y与一边长x;②矩形的面积为20,矩形的宽y与矩形的长x.其中变量y与变量x之间的函数关系表述正确的是()A.①是反比例函数,②是二次函数B.①是二次函数,②是反比例函数C.①②都是二次函数D.①②都是反比例函数3.下面几组量不成反比例的是()A.路程一定,时间和速度B.长方形面积一定,长和宽C.圆周长一定,圆的直径和圆周率D.比的前项一定,比的后项和比值【类型二:判断反比例函数解析式】4.下列关系式中,表示y 是x 的反比例函数的是( ) A .21x y =B .3x y =C .12+=x y D .xy 3=5.下列关系式中,y 是x 的反比例函数的是( ) A .xk y =B .21x y =C .121+=x y D .﹣2xy =16.下列函数关系式中,y 是x 的反比例函数的是( ) A .y =5x B .3=xy C .xy 1=D .y =x 2﹣3【类型三:根据反比例函数关系式求字母】7.若函数y =(m 2﹣3m +2)x |m |﹣3是反比例函数,则m 的值是( )A .1B .﹣2C .±2D .28.已知函数y =(m ﹣2)52-m x 是反比例函数,则m 的值为( )A .2B .﹣2C .2或﹣2D .任意实数9.若函数y =(2m ﹣1)22-m x 是反比例函数,则m 的值是( )A .﹣1或1B .小于21的任意实数 C .﹣1D .110.如果函数y =(m ﹣1)x |m |﹣2是反比例函数,那么m 的值是( )A .2B .﹣1C .1D .0知识点一:反比例函数的图像与性质:1. 反比例函数的图像:反比例函数的图像是 双曲线 ,分布在函数的 两 个象限内。

人教版九年级数学下册 26.2 反比例函数综合 讲义(PDF版 )

人教版九年级数学下册  26.2  反比例函数综合  讲义(PDF版 )

反比例函数的应用复习:反比例函数y =kx 比例系数k 的意义知识点一:反比例函数与正比例函数的交点问题 直线y =k 1x 与双曲线y =k2x 的交点情况:①当k 1与k 2满足:______________,直线y =k 1x 与双曲线y =k2x无交点②当k 1与k 2满足:_______________,直线y =k 1x 与双曲线y =k2x有两个交点。

若其中一个交点坐标为(m ,n ),另一个交点坐标为___________. 【例1】已知函数y =ax 和y =4−a x的图象有两个交点,其中一个交点的横坐标为1,则两个函数图象的交点坐标是 .【变式一】已知函数y =k1x 与y =k 2x x 的图象交点是(-2,5)是,则它们的另一个交点是( )A .(2,5)B .(5,-2)C .(-2,-5)D .(2,-5)【变式二】在同一直角坐标平面内,如果直线y =k 1x 与双曲线y =k2x 有交点,那么k 1和k 2的关系一定是( )A. k 1<0,k 2>0B. k 1>0,k 2<0 C . k 1、k 2同号 D. k 1、k 2异号【变式三】已知:如图,在平面直角坐标系xOy 中,Rt △OCD 的一边OC 在x 轴上,∠C =90°,点D 在第一象限,OC =3,DC =4,反比例函数的图象经过OD 的中点A . (1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边交于点B ,求过A 、B 两点的直线的解析式.yxN M AOPQ知识点二:反比例函数与一次函数直线y =k 1x +b 与双曲线y =k2x 的交点情况:【例2】当k <0时,反比例函数y =kx 和一次函数y =k 1x +2的图象大致是图中的 ( )A B C D【变式1】如图,已知一次函数y 1=x +m (m 为常数)的图象与反比例函数y 2=kx (k 为常数,k ≠0)的图象相交于点A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值y 1≥y 2的自变量x 的取值范围.【变式二】如图,已知一次函数y =kx +b(k ≠0)的图象与反比例函数y =−8x (m ≠0)的图象交于A ,B 两点,且A 点的横坐标与B 点的纵坐标都是2 ; (1)求一次函数的解析式; (2)求△AOB 的面积.yxBAO【变式三】已知正比例函数和反比例函数的图象都经过点A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)在(2)中的一次函数图象与x轴、y轴分别交于C、D,求四边形OABC的面积.【综合例题1】已知正比例函数y=2x的图象与反比例函数y=kx(k≠0)在第一象限内的图象交于点A,过点A作x轴的垂线,垂足为点P,已知△OAP的面积为1.(1)求反比例函数的解析式;(2)有一点B的横坐标为2,且在反比例函数图象上,则在x轴上是否存在一点M,使得MA+MB最小?若存在,请求出点M的坐标;若不存在,请说明理由.【综合练习一】已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=nx(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D.若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式:kx+b≤nx的解集.【综合练习二】如图,一次函数y=kx+1(k≠0)与反比例函数y=mx(m≠0)的图象有公共点A(1,2),直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别相交于点B,C,连接AC. (1)求k和m的值;(2)求点B的坐标;(3)求△ABC的面积.【综合练习三】如图,反比例函数y=2x的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1、-2,一次函数图象与y轴交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数y=2x,当y<-1时,写出x的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA?若存在,请求出点P的坐标;若不存在,请说明理由.【综合练习四】如图,点A(-2,n),B(1,-2)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围;(3)若C是x轴上一动点,设t=CB-CA,求t的最大值,并求出此时点C的坐标.。

讲义反比例函数

讲义反比例函数

讲义反比例函数(总12页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除教师: 学生: 时间:一般地,形如ky x=(k 为常数,k 不等于零)的函数称为反比例函数,其中x 是自变量,y 是函数或叫因变量,ky x=也可以写成:,.要点诠释: 1、y=k x 中分母x 的指数为1,如,2ky x =就不是反比例函数;2、y= k x()可以写成()的形式,自变量x 的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件;3、y=k x()也可以写成的形式,用它可以迅速地求出反比例函数解析式中的k ,从而得到反比例函数的解析式。

两个变量的积均是一个常数(或定值),这也是识别两个量是否成反比例函数关系的关键。

典例分析1.下列哪个等式中的y 是x 的反比例函数?思楷教育学生辅导讲义期末复习专题:反比例函数23y x =( )12y x -=( )1y x =( )31y x =-( )6xy =( )k y x=( ) 32y x =( )4x y =( ) 12y x -=( )11y x =-( ) 11y x=- ( ) 2.下列函数中,y 是x 的反比例函数的是 ( ) A.()12x y -= B.12y x =- C.21y x = D.17y x=- 3.若函数()221ny n x -=-是反比例函数,则n 的值是 ( )A. ±1B. -1C. 1D. 2 4.已知函数2211k k y k x --=-()是反比例函数,你知道k 的值是多少吗?5.已知函数()211m y m x -=-.请你探求当m 取何值时:(1)该函数是正比例函数 (2)该函数是反比例函数图象性质①x的取值范围是x≠0,y的取值范围是y≠0.②当k>0时,函数图象的两个分支分别在第一、第三象限。

在每个象限内,y随x的增大而减小。

反比例函数讲义

反比例函数讲义

反比例函数一、反比例函数的概念1、如果两个变量的每一组对应值的乘积是一个不等于零的常数,你们就说这两个变量成反比例.用数学式子表示两个变量x 、y 成反比例,就是xy k =,或表示为ky x=,其中k 是不等于0的常数. 2、解析式形如ky x=(k 是常数,0k ≠)的函数叫做反比例函数,其中k 称也叫做比例系数.3、反比例函数ky x=的定义域是不等于零的一切实数.例1、下列变化过程中的两个变量是否成反比例?为什么? (1)被除数为100,变量分别是除数r 和商q ;(2)三角形面积S 一定时,三角形一边上的长a 和这条边上的高h ;(3)一位男同学练习1000米长跑,变量分别是男生跑步的平均速度v (米/秒)和跑完全程所用时间t (秒);(4)完成工作量Q 一定时,完成工作量所需的时间t 与工人人数n (假设每个工人的 工作效率相同)例2、一个长方体的体积是20cm 3,它的长是ycm ,宽是5cm ,高是xcm .写出长y 与高x 之间的函数关系式.例3、下列函数(其中x 是自变量)中,哪些是反比例函数?哪些不是,为什么?(1)23y x = (2)1y x -= (3)3xy =(4)3y x=(5)27y x =+(6)y =8x+7例4、已知y 是x 的反比例函数,且3x =-时,2y =,那么y 关于x 的函数解析式是________.例5、已知y 4x =时,2y =-,求y 与x 的函数解析式.例6、若函数231(2)m m y m x -+=-是反比例函数,则m 的值为________.例7、如果2212n n n n y x+++=是反比例函数,那么n 的值是________.例8、已知y 是x 的反比例函数,且当2x =时,2y ,那么当1y =时,x 的值是________.例9、如果变量1x 和变量y 成正比例,变量1y 和变量z 成反比例,那么变量x 和z 成________比例关系.例10、已知反比例函数22++=k xk y ,求k 的值,并求当x =2时的函数值例11、已知12y y y =+,若1y 与x 正比例,2y 与x 成反比例函数,且当2x =时,14y =,当3x =时,1293y =,求y 与x 间的函数关系式.例12、已知12y y y =+,若1y 与1x -正比例,2y 与1x +成反比例,且当0x =时5y =-,当2x =时1y =;(1)求y 与x 间的函数关系式; (2)求当3y =-时,x 的值.例13、已知:正比例函数与反比例函数的比例系数互为相反数,且正比例函数的图像过点-,求反比例函数的解析式.一、 反比例函数的图像1、反比例函数ky x=(k 是常数,0k ≠)的图像叫做双曲线,它有两支. 二、 反比例函数的性质 1、当0k >时,函数图像的两支分别在第一、三象限;在每个象限内,当自变量x 的值逐渐增大时,y 的值随着逐渐减小.2、当0k <时,函数图像的两支分别在第二、四象限;在每个象限内,当自变量x 的值逐渐增大时,y 的值随着逐渐增大.3、图像的两支都无限接近于x 轴和y 轴,但不会与x 轴和y 轴相交.例1、已知反比例函数3y x=-,那么当x <0时,y 的值随着x 的增大而________. 例2、反比例函数25(2)my m x -=+在它的图像所在的每个象限内,y 随x 的增大而________.例3、若反比例函数的图像经过点(25)-,,那么函数图像在________象限. 例4、已知反比例函数2k y x-=,其图象在第一、第三象限内,则k 的取值范围是________. 例5、函数135k y x --=的图像在一、三象限,那么k 的取值范围是________ 例6、已知函数ky x=的图象不经过第一、三象限,则y kx =-的图象经过第________象限.例7、如果反比例函数ky x=(k 是常数,0k ≠)的图像在第二、四象限,那么正比例函数y kx =(k 是常数,0k ≠)的图像经过哪几个象限?例8、若正比例函数(0)y kx k =≠,与反比例函数(0)my m x=≠的图像没有交点,那么k 与m 满足关系式可以是________.例9、已知反比例函数1y x=-的图像上有两点11()A x y ,、22()B x y ,,且12x x <,那么下列结论正确的是( )A .12y y <B .12y y >C .12y y =D .1y 与2y 的大小关系无法确定例10、反比例函数4y x=-的图像上一点的横坐标是3,那么这点到x 轴的距离是________. 例11、已知反比例函数21k y x+=(1)若该函数图像经过点(21)-,,求k 的值;(2)若该函数图像在每一象限内y 随x 的增大而减小,求k 的取值范围.例12、直线y kx =(k >0)与双曲线xy 4=交于11()A x y ,、22()B x y ,两点,求122127x y x y -的值.例13、反比例函数2y x=的图像上一点A ,过A 点分别作x 轴、y 轴垂线,垂足为B 、C ; (1) 求矩形ABOC 的面积;(2) 当点A 沿双曲线移动时(1)中矩形面积有变化吗?为什么?例14、若P (a ,b )是反比例函数图像上的一点,且a 是b 是的小数部分,求反比例函数的解析式.例15、已知:点A 、B 是函数3y x=-图像上关于原点对称的任意两点,AC ∥y 轴,BC ∥x 轴,求△ABC 的面积.例16、反比例函数xky =(0)k <的图像经过点()A m ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为3,求k 和m 的值.例17、已知:反比例函数的图像与正比例函数的图像相交于A ,B 两点,若点A 在第二象限,且点A 的横坐标为-3,且AD ⊥x 轴,垂足为D ,△AOD 的面积是4. (1)写出反比例函数的解析式; (2)求出点B 的坐标;(3)若点C 的坐标为(6,0),求△ABC 的面积. 练习11、下列问题中的两个变量是否成反比例?如果是,可以用怎样的数学式来表示? (1)平行四边形的面积为20平方厘米,变量分别是平行四边形的一条边长a (厘米)和这条边上的高h (厘米);(2)一位男同学练习一千米长跑,变量分别是男生跑步的的平均速度v (米)和跑完全程所用时间t (秒).2、下列函数是不是反比例函数?为什么? (1)13y x =-; (2)4xy =;(3)15y x =-; (4)2(0)ay a a x =≠为常数,; (5)1y x π= ; (6)21y x= .3、若函数223()kk y k k x --=+是反比例函数,则k 的值是________.4、在同一平面直角坐标系内,分别画出下列函数的图像.(1)4y x=; (2)4y x=-. 求:(1)这两个函数的图像分别位于哪几个象限内?(2)在每一象限内,随着图像上的点的横坐标x 逐渐增大,纵坐标y 是怎样变化的? (3)图像的每支都向两方无限延伸,它们可能与x 轴、y 轴相交吗?为什么?5、已知正比例函数y kx =与反比例函数xky -=6图像的一个交点坐标是(1,3),则反比例函数的解析式是________.6、已知反比例函数xk y 1+=,11()x y ,、22()x y ,为其图像上的两点,若当120x x <<时,12y y >,则k 的取值范围是________.7、若点(34),是反比例函数221m m y x ++=图像上一点,则此函数图像必经过点 ( )A.(34)-,B.(26)-,C.(43)-,D. (26),8、已知M 是反比例函数ky x=(0)k ≠ (k ≠0)图像上一点,MA x ⊥轴于点A ,若4AOMS =,则这个反比例函数的解析式是( ) A .8y x =; B .8y x =-; C .8y x =或8y x =-; D .4y x =或4y x=-. 9、已知122y y y =+,若1y 与(1)x +正比例,2y 与x 成反比例函数,且当1x =时,1y =-;当3x =-时,3y =,求y 与x 间的函数关系式.10、已知第三象限内的点B (3m ,m )在反比例函数的图像上,且10OB =A (1,y )也在双曲线上,求反比例函数的解析式,并求出△AOB 的面积.11、11POA ∆、212P A A ∆都是等腰直角三角形,点P 1、P 2在4y x=(x >0)的图像上,斜边OA 1、A 1A 2都在x 轴上,求点A 2的坐标.12、两个反比例函数k y x =和1y x =在第一象限内的图像如图所示,点P 在ky x =的图像上,PC ⊥x 轴于点C ,交1y x =的图像于点A ,PD ⊥y 轴于点D ,交1y x=的图像于点B ,当点P 在ky x=的图像上运动时,以下结论:①△ODB 与△OCA 的面积相等; ②四边形PAOB 的面积不会发生变化; ③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分).练习21、反比例函数ay x=的图像在第二、四象限,则a ________. 2、当n =________时,函数224(3)n n y n x --=-是反比例函数.3、函数21(1)my m x -=-是反比例函数,且图像经过第二、四象限,则m =________.4、已知反比例函数13ky x-=,当k ________时,它的图像在第二、四象限,此时,在每个象限内,y 随x 的增大而________.5、已知长方形的面积为20平方厘米,它的一边长为x 厘米,求这个边的邻边长y (厘米)关于x (厘米)的函数解析式,并写出这个函数的定义域.6、反比例函数ky x=的图像上有两点111()p x y ,,222(,)p x y ,若120x x <<,12y y >,则k ________0,图像经过第________象限.7、在平面直角坐标系内,从反比例函数ky x=(0)k ≠上一点作x 轴、y 轴的垂线段,与x 轴、y 轴围成面积为3的矩形,求函数解析式.8、(1)已知y 与2x -成反比例,当4x =时,3y =,求5x =时,y 的值; (2)已知y 与2x 成反比例,并当3x =时,2y =,求 1.5x =时,y 的值.9、已知12y y y =+,1y 与x 成正比例,2y 与2x 成反比例,当2x =与3x =时,19y =,求y 关于x 的函数解析式.10、点A 是反比例函数6y x=的图像上的一点,AB ⊥y 轴于点B ,求△AOB 的面积.11、已知n 是正整数,111()P x y ,,222()P x y ,,…()n n n P x y ,,…是反比例函数图像上的一列点,其中11x =, 22x =,…,n x n =,….记112A x y =,223A x y =,…,1n n n A x y +=,…,若1A a =(a 是非零常数),求12n A A A ⋅⋅⋅的值(用含a 和n 的代数式表示).。

《反比例函数》 讲义

《反比例函数》 讲义

《反比例函数》讲义一、什么是反比例函数在数学的世界里,函数就像是一座桥梁,连接着不同的变量和它们之间的关系。

而反比例函数,就是其中独特而重要的一种。

反比例函数的一般形式为:y = k/x(k 为常数,k ≠ 0,x ≠ 0)。

通俗地说,当两个变量 x 和 y 的乘积始终等于一个非零常数 k 时,我们就说 y 是 x 的反比例函数。

例如,如果有一个矩形的面积始终为 12 平方米,设长为 x 米,宽为 y 米,那么就有 xy = 12,即 y = 12/x,这里的 y 就是 x 的反比例函数。

二、反比例函数的图像反比例函数的图像是一种特殊的曲线,它有自己独特的性质。

以 y = 2/x 为例,我们来绘制它的图像。

首先,我们可以通过给 x 取值,计算出对应的 y 值,得到一些点的坐标。

比如,当 x = 1 时,y = 2;当 x = 2 时,y = 1;当 x =-1 时,y =-2 等等。

然后,把这些点在坐标系中描出来,并用平滑的曲线连接起来,就得到了反比例函数的图像。

反比例函数的图像有两个分支,分别位于第一、三象限或者第二、四象限,这取决于常数 k 的正负。

当 k > 0 时,图像的两个分支分别位于第一、三象限,在每个象限内,y 随 x 的增大而减小。

当 k < 0 时,图像的两个分支分别位于第二、四象限,在每个象限内,y 随 x 的增大而增大。

三、反比例函数的性质1、对称性反比例函数的图像关于原点对称。

这意味着如果点(a, b) 在反比例函数的图像上,那么点(a, b) 也一定在图像上。

2、渐近线当 x 趋近于 0 或者无穷大时,反比例函数的图像会无限接近坐标轴,但永远不会与坐标轴相交。

对于 y = k/x,x 轴和 y 轴就是它的渐近线。

3、定义域和值域定义域为x ≠ 0,值域为y ≠ 0。

四、反比例函数的应用反比例函数在实际生活中有很多应用。

比如,在物理学中,当压力一定时,压强与受力面积成反比例关系。

反比例函数与几何综合讲义及答案

反比例函数与几何综合讲义及答案一、反比例函数的定义及性质1.反比例函数的定义:如果两个变量的乘积为常数,那么它们之间存在反比例关系,可以表示为y=k/x。

2.反比例函数的性质:函数图像关于坐标轴对称;随着x的增大,y 的值逐渐减小;随着x的减小,y的值逐渐增大。

二、反比例函数的图像与性质1.绘制反比例函数y=k/x的图像。

2.如果k为正数,当x趋近于无穷大时,y趋近于0;当x趋近于0时,y趋近于正无穷大。

3.如果k为负数,当x趋近于无穷大时,y趋近于负无穷大;当x趋近于0时,y趋近于0。

三、反比例函数的解析表达式和图像的关系1.根据解析表达式y=k/x,结合k的正负性质,分析函数图像的大致形状。

2.当k为正数时,函数图像在第一象限逐渐接近于x轴,且没有定义域为x=0的点。

3.当k为负数时,函数图像在第三象限逐渐接近于x轴,且没有定义域为x=0的点。

四、反比例函数的应用1. 反比例函数的例题:如果旅行的时间与旅行的速度成反比例关系,当速度增大时,时间会减少。

求出速度为60 km/h时需要的时间。

答案:假设旅行的时间为t小时,则速度为60 km/h,根据反比例函数的定义可得60 = k/t,解得k = 60t。

根据题意可得t = k/60 = 1小时。

2.反比例函数出题:已知两个变量x和y成反比例关系,在一组数据中,当x=2时,y=5;当x=4时,y=10。

求出该反比例函数的解析表达式。

答案:根据反比例函数的定义可得k = xy,由已知数据可得2k = 5;4k = 10。

解方程可得k = 5/2、将k带入反比例函数中得到y = (5/2)x。

请注意,以上是一些常见的反比例函数综合讲义及试题及答案,实际上反比例函数的应用非常广泛,可以结合实际问题进行更多的应用练习。

2024-2025学年初中数学九年级下册同步练习26.1.1 反比例函数

第二十六章 反比例函数26.1 反比例函数 26.1.1 反比例函数基础过关全练知识点1 反比例函数的定义1.【新独家原创】下列函数中,y 不是x 的反比例函数的是( ) A.y=x 2 024 B.xy-2 024=0 C.y=-2 024xD.y=2 024x -12.【新独家原创】在反比例函数y=k -√3x中,对x,y,k 的取值范围判断错误的是( )A.x ≠0B.y ≠0C.k ≠0D.k ≠√33.在函数y=-2(m+1)x -m 中,y 是x 的反比例函数,则比例系数为( ) A.-2 B.2 C.-4 D.04.【易错题】关于正比例函数y=-13x 和反比例函数y=-13x的说法,正确的是( )A.自变量x 的指数相同B.比例系数相同C.自变量x 的取值范围相同D.函数值y 的取值范围相同5.【教材变式·P9T4】若y 是x 的反比例函数,比例系数为2,则x 是y 的 函数,比例系数是 .6.【教材变式·P3T2】在下列函数关系式中,x均表示自变量,那么哪些关系式中y是关于x的反比例函数?若是反比例函数,相应的比例系数k是多少?(1)y=52x ;(2)y=x2;(3)y=7x−1;(4)xy=3;(5)y=0.4x-1.知识点2用反比例函数刻画实际问题中的数量关系7.(2022江苏南京秦淮期末)小明要把一篇27 000字的调查报告录入电脑,则其录入的时间t(分)与录入文字的平均速度v(字/分)之间的函数表达式应为t=(v>0).(M9226001)8.【新独家原创】下列实际问题中的变量x,y之间的关系符合y=1 500x 的是.(M9226001)①面积为1 500 m2的矩形劳动实践基地,长y(单位:m)随宽x(单位:m)的变化而变化;②小王每月存款1 500元,存款总额y(不包括利息,单位:元)随存款时间x(单位:月)的变化而变化;③体积为1 500 cm3的圆柱体,底面积y(单位:cm2)随高x(单位:cm)的变化而变化.知识点3用待定系数法求反比例函数解析式9.【一题多变·确定反比例函数解析式】(2023河北保定高阳模拟)y 与x成反比例,当x=2时,y=1,则y与x的函数关系式为(M9226002)()A.y=2xB.y=2-xC.y=x2D.y=2x[变式1·变为求函数值]y和x成反比例,当x=6时,y=12,那么当x=8时,y=.[变式2·变为求自变量的值]y和2x成反比例,当x=2时,y=6,那么当y=-3时,x=.10.已知y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=-1时,y=-4;当x=3时,y=4.(M9226002)(1)求y关于x的函数解析式;(2)当x=-2时,求y的值.能力提升全练11.【新课标例72变式】(2023山东临沂中考,10,★☆☆)正在建设中的临滕高速是山东省“十四五”重点建设项目.一段工程施工需要运送土石方总量为105 m3,设土石方平均运送量为V(单位:m3/天),完成运送任务所需要的时间为t(单位:天),则V与t满足(M9226001)()A.反比例函数关系B.正比例函数关系C.一次函数关系D.二次函数关系12.【跨学科·物理】(2019浙江温州中考,6,★★☆)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表.根据表中数据,可得y关于x的函数表达式为(M9226002)()y(度)200250400500 1 000 x(米)0.500.400.250.200.10A.y=100x B.y=x100C.y=400xD.y=x40013.(2023安徽合肥蜀山月考,12,★★☆)若函数y=(m-1)x m2-2是关于x 的反比例函数,则m的值是.14.【教材变式·P3T3】(2022山东潍坊高密期末,13,★★☆)已知y与x-2成反比例,且比例系数k≠0,当x=3时,y=4,则k=.素养探究全练15.【推理能力】已知(a-b+3)2+√a+2b=0,则关于x的函数y=(a-b)x a+b是函数,比例系数为.16.【抽象能力】已知y=(m2+2m)x m2+m-1.(1)当m为何值时,y是x的正比例函数?(2)当m为何值时,y是x的二次函数?(3)当m为何值时,y是x的反比例函数?答案全解全析基础过关全练 1. A y=x2 024中,y 是x 的正比例函数;∵xy-2 024=0可化为y=2 024x,y= 2 024x -1即是y=2 024x,∴xy-2 024=0和y=2 024x -1中,y 都是x 的反比例函数;y=-2 024x满足反比例函数的定义,y 是x 的反比例函数.故选A.2.C 在反比例函数y=k -√3x中,x ≠0,y ≠0,k-√3≠0,即k ≠√3.故选C.3.C 由题意得m=1,则比例系数为-2×(1+1)=-4.故选C. 4.B 两个函数的比例系数都是-13.故选B. 易错点 易错误理解为自变量x 的指数相同. 5.反比例;2解析 ∵y 是x 的反比例函数,比例系数为2,∴y=2x,即xy=2,∴x=2y,故x 是y 的反比例函数,比例系数是2. 6.解析 (1)y=52x是反比例函数,k=52. (2)y=x 2不是反比例函数. (3)y=7x -1是反比例函数,k=7. (4)xy=3即y=3x,是反比例函数,k=3.(5)y=0.4x -1不是反比例函数.7.27 000v解析 由录入的时间=录入总量÷录入速度,可得t=27 000v. 8.①③解析 ①中,y 是x 的反比例函数,解析式为y=1 500x;②中,y 是x 的正比例函数,解析式为y=1 500x;③中,y 是x 的反比例函数,解析式为y=1 500x. 9.D 设y=k x(k ≠0),由题意,得1=k 2,解得k=2,故y 与x 的函数关系式是y=2x.故选D. [变式1] 9解析 设y=k x (k ≠0),∵x=6时,y=12,∴k6=12,解得k=72,∴y 关于x 的函数解析式为y=72x ,将x=8代入,得y=9.[变式2] -4解析 设y=k 2x(k ≠0),∵x=2时,y=6,∴k2×2=6,解得k=24,∴函数解析式为y=242x,即y=12x.将y=-3代入,得-3=12x,∴x=-4. 10.解析 (1)∵y 1与x 成正比例,∴设y 1=mx(m ≠0), ∵y 2与x 成反比例, ∴设y 2=n x(n ≠0),∴y=mx+n x, 把x=-1,y=-4及x=3,y=4代入y=mx+n x 得{-m -n =−4,3m +n 3=4,解得{m =1,n =3.∴y 与x 的函数解析式为y=x+3x. (2)把x=-2代入y=x+3x ,得y=-2+3-2=−72. 能力提升全练 11.A 由题意,得Vt=105,∴V=105t,V 与t 满足反比例函数关系.故选A.12.A 因为200×0.50=250×0.40=400×0.25=500×0.20=1 000×0.10=100,所以y 是x 的反比例函数,且xy=100,所以y 关于x 的函数表达式为y=100x.故选A.13.-1解析 因为函数y=(m-1)x m 2-2是关于x 的反比例函数,所以m 2-2=-1,m-1≠0,所以m=-1. 14.4解析 由题意知y=kx -2,∵当x=3时,y=4,∴4=k3−2,∴k=4×1=4. 素养探究全练 15.反比例;-3解析 ∵(a-b+3)2+√a +2b =0,(a-b+3)2≥0,√a +2b ≥0,∴{a -b +3=0,a +2b =0,解得{a =−2,b =1.∴函数y=(a-b)x a+b 即是y=-3x ,是反比例函数,比例系数为-3.16.解析 (1)根据题意,得{m 2+2m ≠0,m 2+m -1=1,解得m=1,故当m=1时,y 是x 的正比例函数. (2)根据题意,得{m 2+2m ≠0,m 2+m -1=2,解得m=-1±√132, 故当m=-1±√132时,y 是x 的二次函数.(3)根据题意,得{m 2+2m ≠0,m 2+m -1=-1,解得m=-1,故当m=-1时,y 是x 的反比例函数.。

初中数学反比例函数知识点及经典例题

初中数学反比例函数知识点及经典例题一、反比例函数的定义反比例函数是指形如y=k/x的函数,其中k是一个非零常数,x和y 是实数。

二、反比例函数的图像特征1.当x=0时,反比例函数无定义;2.当x≠0时,随着x的增大,函数值y逐渐减小;3.反比例函数的图像通常是一条平面上的双曲线。

三、反比例函数的性质1. 对于反比例函数 y = k/x,k 是一个非零常数,任意给定的 x 和y,都有 xy = k 成立;2.如果反比例函数过点(x1,y1),则对于任意其它点(x2,y2),都有x1y1=x2y2成立;3.反比例函数的图像关于原点对称;4.反比例函数的导数为负。

四、反比例函数的应用反比例函数在实际生活中有很多应用,例如:1.工程中的消耗问题:项工程需要的材料数量与施工时间成反比;2.速度和时间的关系:当物体行驶的速度越快时,到达目的地所需时间越短;3.汽车的油耗问题:汽车行驶的路程与每升汽油的价格呈反比;4.人口增长与资源消耗:人口越多,资源消耗越快。

五、经典例题1.小明开车从A地到B地,全程360公里。

如果他保持每小时60公里的速度,需要多长时间到达目的地?解答:根据题意可知,小明的速度和到达目的地所需的时间成反比。

设到达目的地所需的时间为t,则有60t=360,解得t=6、所以小明需要6小时到达目的地。

2.水龙头4分钟可以装满一个水箱,水箱在3分钟内漏掉了60%的水,那么继续放水多少分钟可以装满这个水箱?解答:设继续放水的时间为t。

根据题意可知,放水的时间t和装满水箱的时间成反比。

所以有4×(1-60%)=(3+t)×100%,化简得到t=1.2、所以继续放水1.2分钟可以装满水箱。

3.假设一个圆的周长和面积的比值为k,如果圆的半径扩大3倍,求此时新圆的周长和面积的比值。

解答:设新圆的半径为r,则原圆的半径为(1/3)r。

原圆的周长和面积的比值为k,即2π(1/3)r/π((1/3)r)²=k。

人教版九年级数学下册反比例函数知识点归纳及练习含答案

人教版九年级数学下册反比例函数知识点归纳及练习含答案在九年级数学下册教材中,反比例函数是一个重要的知识点。

它是函数的一种特殊形式,具有一些独特的性质和应用。

下面将对反比例函数的知识点进行归纳总结,并提供一些相关的练习题及答案。

一、反比例函数的定义反比例函数是指一个函数,它的函数关系是如下形式:y = k/x其中,k是常数,x和y分别是自变量和因变量。

二、反比例函数的性质1. 定义域和值域:对于反比例函数 y = k/x,其定义域是除数x不能为零的实数集,值域为除数k不能为零的实数集。

2. 反比例函数的图像:反比例函数的图像是一条经过原点(0,0)的曲线,其形状根据k的正负不同而有所变化。

当k>0时,反比例函数为一条开口向右上方的双曲线;当k<0时,反比例函数为一条开口向右下方的双曲线。

3. 反比例函数的性质:a) 反比例函数的图像关于y轴和x轴对称。

b) 当x>0时,y随着x的增大而减小;当x<0时,y随着x的减小而增大。

c) 当x等于1时,y等于k,这是反比例函数的特殊点。

d) 反比例函数可以通过求导得到,导数的值为-ky^2。

三、反比例函数的应用反比例函数在实际问题中具有广泛的应用,以下是几个常见的应用场景:1. 速度与时间的关系:当一个物体以恒定的速度运动时,它所用的时间与距离成反比。

2. 人均所得与人口数量的关系:当一个国家人口增加时,人均所得会相应减少。

3. 工人数量与完成一项任务所需时间的关系:当工人的数量增加时,完成一项任务所需的时间会相应减少。

四、练习题及答案1. 以下哪个函数是反比例函数?A. y = 2xB. y = x^2C. y = 3/xD. y = x + 1答案:C. y = 3/x2. 反比例函数 y = k/x 中,若k > 0,则函数的图像是一条__________的双曲线。

答案:开口向右上方3. 若反比例函数的定义域为(-∞, -4) ∪ (4, +∞),则函数的值域为__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数
复习前面学过的一次函数和正比例函数,知道一次函数的表达式为y =kx+b 其中k ,b 为常数且k ≠0,正比例函数的表达式为y =kx ,其中k 为不为零的常数,但是在现实生活中,并不是只有这两种类型的表达式,如从A 地到B 地的路程为1200 km ,某人开车要从A 地到月地,汽车的速度v(km /h)和时间t(h)之间的关系式为vt =1200,则t =v
1200中,t 和v
之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘. 二、新课讲解
1.复习函数的定义
在某变化过程中有两个变量x ,y.若给定其中一个变量x 的值,y 都有唯一确定的值与它对应,则称y 是x 的函数.
2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式. 电流I ,电阻R ,电压U 之间满足关系式U =IR ,当U =220 V 时. (1)你能用含有R 的代数式表示I 吗?
(3)变量I 是R 的函数吗?为什么?
<1>能用含有R 的代数式表示I. 由IR=220,得I=R
220.
<2>利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2. 从表格中的数据可知,当电阻R 越来越大时,电流I 越来越小;当R 越来越小时,I 越来越大.
<3>变量I 是R 的函数.
由IR =220得I =R
220.当给定一个R 的值时,相应地就确定了一个I 值,因此I 是R
的函数.
京沪高速公路全长约为1262 km ,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km /h)之间有怎样的关系?变量t 是v 的函数吗?为什么?
由路程等于速度乘以时间可知1262=vt ,则有t =v
1262.当给定一个v 的值时,相应
地就确定了一个t 值,根据函数的定义可知t 是v 的函数. 从上面的两个例题得出关系式 I=R
220和t=v
1262.
3.总结反比例函数的定义及一般形式
一般地,如果两个变量x 、y 之间的关系可以表示成y =x
k (k 为常数,k ≠0)的形式,
那么称y 是x 的反比例函数.
从y =x
k 中可知x 作为分母,所以x 不能为零.
4.示例
1.一个矩形的面积为20 cm 2
,相邻的两条边长分别为x cm 和y cm ,那么变量y 是变量x 的函数吗?是反比例函数吗?为什么?
2.某村有耕地346.2公顷,人口数量n 逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n 的函数吗?是反比例函数吗?为什么?
(1)写出这个反比例函数的表达式; (2)根据函数表达式完成上表.
由面积等于长乘以宽可得xy =20.则有y =
x
20
.变量y 是变量x 的函数.因为给定一个x 的值,相应地就确定了一个y 的值,根据函数的定义可知变量y 是变量x 的函数.再根据反比例函数的表达式可知y 是x 的反比例函数.
根据人均占有耕地面积等于总耕地面积除以总人数得m=n 2.346.给定一个n 的值,就相
应地确定了一个m 的值,因此m 是n 的函数,又m =n 2.346符合反比例函数的形式,所以是
反比例函数.
在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式,在y=kx 中.要确定关系式的关键是求得非零常数k 的值,因此需要一个条件即可;在一次函数y =kx+b 中,要确定关系式实际上是要求得b 和k 的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k 的值.因此只需要—个条件即可,也就是要有一组x 与y 的值确定k 的值.所以要从表格中进行观察.由x =-1,y =2确定k 的值,然后再根据求出的表达式分别计算.x 或y 的值. Ⅳ.课时小结
本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y =x
k (k
为常数.k ≠0),自变量x 不能为零.还能根据定义和表达式判断某两个变最之间的关系是否是函数,是什么函数.。

相关文档
最新文档