推荐-流体的物理性质
流体的物理性质

说 明:
Vdp dV
k越大,越易被压缩
1
流体的种类不同,其k值不同。气体压缩性大 于液体。 同一种流体的k值随温度、压强的变化而变化。
2018/11/20 8
第三节 流体的主要物理性质
二、流体的压缩性和膨胀性
3、可压缩流体和不可压缩流体 不可压缩流体: 流体密度随温度、压强变化很小的流体
反映流体粘滞性 大小的系数
ν ——运动黏度,m2/s
2018/11/20 21
第三节 流体的主要物理性质 三、流体的黏性和牛顿内摩擦定律
y
u
dy Y y a b d c
0
dudt d tg(d ) dy du 角变形率 d
dt
u+du u du
F
dy
o
x udt (u+du)dt d c d' d a b a' b'
1 dV dp V
—流体的体积压缩系数,m2/N;
dp —流体压强的增加量,Pa;
V —原有流体的体积,m3; dV —流体体积的增加量,m3。
2018/11/20
7
第三节 流体的主要物理性质
二、流体的压缩性和膨胀性
2、流体的压缩性(续) 体积模量K : 压缩系数的倒数 工程上常用体积模 量衡量流体压缩性
三、流体的黏性和牛顿内摩擦定律
1、流体的黏性 定义: 流体微团间发生相对滑移时产生切向阻力的性质
库仑实验(1784)
库仑用液体内悬吊圆盘摆动实验证实流体存在内摩擦
普通板、涂腊板和细沙板,三种圆板的衰减时间
2018/11/20 15
第三节 流体的主要物理性质
流体的名词解释

流体的名词解释流体是指物质在相互之间可以自由流动的状态。
它是物质状态的一种,与固体和气体一同构成了自然界中的三态。
流体的特性与固体和气体有着明显的差异,它的名词解释可以从多个角度进行阐述。
一、流体的物理特性1. 流动性:流体的最显著特征就是可以流动。
相比固体而言,流体的分子间相互作用较弱,不具有固体的几何形状和结构。
这种微观结构上的差异决定了流体可以快速适应外界的形状和位置变化,具有流动性。
2. 压缩性:流体的另一个重要特性是压缩性。
相比固体而言,流体的分子间距较大,可以在较小的外力作用下发生相对大的体积变化。
这使得流体在受力时可以更容易地发生变形。
3. 扩散性:流体的分子在体积上存在着较大的自由度,因此流体具有较高的扩散性。
当两种不同成分的流体接触时,它们的分子会相互扩散,从而实现混合。
4. 表面张力:流体表面上的分子间存在着相互吸引的力,这种现象被称为表面张力。
表面张力使得流体表面呈现出一定的弹性,形成像皮肤一样的薄膜。
这种性质在许多自然界和工业过程中都发挥着重要的作用,如水珠在叶片上的滑动。
二、流体的分类1. 物态分类:根据流体的外在形态,可以将其分为液体和气体两种状态。
液体在常温常压下具有一定的体积和形状,而气体则可自由膨胀至充满其容器。
2. 流变性分类:流体还可以根据其对应力的响应方式来进行分类。
牛顿流体是指流体内部的分子相互作用力满足牛顿定律,即流体的粘度在应力作用下保持恒定。
而非牛顿流体则指无法满足牛顿定律的流体,在外力作用下其粘度可能随着剪应力、速率等参数的变化而发生变化。
三、流体力学流体力学是研究流体运动的科学学科。
它对流体在受力作用下的运动、压力分布、速度分布等进行研究,可以应用到诸多领域。
例如,交通工程中的交通流理论,石油工程中的油流动力学,在水利工程中的水流动力学等等。
四、流体的应用1. 液压传动:流体的不可压缩性和压缩性使其在液压传动中起到重要作用。
液压系统广泛应用于工程机械、航空航天、冶金等领域,用于传递和控制力和能量。
物理流体压强知识点总结

物理流体压强知识点总结一、流体的基本性质首先我们来了解一下流体的基本性质。
在物理学中,流体是指可以流动的物质,包括液体和气体。
流体具有以下基本性质:1. 可压缩性:流体可以通过外力而发生体积的变化。
液体的压缩性非常小,可以忽略不计,而气体的压缩性相对较大。
2. 流动性:流体具有流动性,即可以自由地流动,遵从流体力学定律。
3. 不规则性:流体没有固定的形状和体积,容易受到外力和重力的影响而发生变形。
二、流体压强的定义和计算方法流体的压强是指流体对单位面积上的作用力。
压强的大小取决于流体的密度和压力,可以通过下面的公式进行计算:P = F/A其中,P为流体的压强,单位为帕斯卡(Pa);F为作用在单位面积上的力,单位为牛顿(N);A为单位面积的大小,单位为平方米(m²)。
从以上公式可以看出,流体的压强与作用力成正比,与面积成反比。
这也意味着,当作用力不变时,压强与面积成反比;当面积不变时,压强与作用力成正比。
三、扩张液体的流动在流动的过程中,流体的压强会发生变化,特别是在扩张液体的流动中。
当一个流体通过管道或喷嘴口时,流速会增加,压强会减小,这就是所谓的伯努利定律。
伯努利定律表明了流体动力学中的一个重要原理,即在无粘流体的情况下,流体的动能、压力和位势能之间的关系。
根据伯努利定律,流体在扩张管道中的压强可以通过下面的公式来计算:P1 + (1/2)ρv1² + ρgh1 = P2 + (1/2)ρv2² + ρgh2其中,P1和P2分别为扩张前后的压强,ρ为流体的密度,v1和v2为扩张前后的流速,g为重力加速度,h1和h2为扩张前后的高度。
通过伯努利定律我们可以知道,在流体流动的过程中,流速增加时压强会减小,而流速减小时压强会增大。
这个原理在许多实际应用中都有着重要的作用,比如喷气发动机、喷泉、火箭发射等。
四、流量压强流量压强是指在流体流动过程中由于流速变化所产生的压强。
流体的主要物理性质 ppt课件

10-7cm。 宏观:考虑宏观特性,在流动空间和时间上所采用的一切特征尺度和特征时
间都比分子距离和分子碰撞时间大的多。 1、定义 流体质点:又称流体微团,流体中宏观尺寸非常小而微观尺寸有足够大的任 意一个物理实体。 连续介质(Continuum Continuous Medium):质点连续地充满所占空间的流 体或固体。
梯度成正比。即
d du dy dt
(N/m2 ,Pa)
—粘性切应力,是单位面积上的内摩擦力。 流体粘性系数μ的单位是:N.s/m2 说明:1)流体的剪应力与压强 p 无关(注意到固体摩擦力与正压力有关)。 2)流体的切应力与动力粘性系数成正比。
3)对于平衡流体du/dy=0或理想流体=0,所以不产生切应力, =0。
a.液体:内聚力是产生粘度的主要因素,当温度升高,分子间距离增大, 吸引力减小,因而使剪切变形速度所产生的切应力减小,所以
值减小。
b.气体:气体分子间距离大,内聚力很小,所以粘度主要是由气体分子 运动动量交换的结果所引起的。温度升高,分子运动加快,动 量交换频繁,所以 值增加。
第四节 粘度
PPT课件
0 、 0 =0 、 0 0 Const
流体。(const)
b.不可压缩流体(Incompressible Flow):流体密度随压强变化很小, 流体的密度可视为常数的流体。 (=const)
注: a.严格地说,不存在完全不可压缩的流体。
b.一般情况下的液体都可视为不可压缩流体(发生水击时除外)。 c.对于气体,当所受压强变化相对较小时,可视为不可压缩流体。 d.管路中压降较大时,应作为可压缩流体。
第二节 流体的连续介质模型
PPT课件
2、根据流体是否具有粘性,可分为:
高一物理流体知识点

高一物理流体知识点流体是物理学中的重要概念之一,研究流体的性质和规律对于我们理解自然界中的现象具有重要意义。
在高一物理学习中,我们需要了解和掌握一些关键的流体知识点。
本文将就高一物理流体知识点进行介绍和讲解。
一、什么是流体?流体是一种没有固定形状的物质,包括气体和液体。
相比之下,固体具有固定的形状和体积,而流体具有流动性和变形性。
二、流体的性质1. 流体的流动性:流体的特点之一是能够流动,即流体分子在受力下能够自由滑动和流动。
液体的流动是分子之间相互滑动的结果,气体的流动则是气体分子碰撞和扩散的结果。
2. 流体的压强:流体受到的单位面积上的力称为压强。
压强大小与流体的密度和深度有关,即压强 = 密度 ×重力加速度 ×深度。
3. 流体的密度:流体的密度是指单位体积的流体质量。
液体的密度通常比气体的密度大,但在同一温度下,不同液体的密度也会有所不同。
三、流体的静力学1. 静压力:当流体处于静止状态时,流体对容器壁面的作用力称为静压力。
静压力的大小与流体所在高度和密度有关。
2. 压强定律:在静止的流体中,静压力在各点上是相等的,即压强在各点上是相等的,这就是压强定律。
3. 原理密度:原理密度是指物体浸没在流体中所受到的浮力与物体体积之比。
如果物体的密度小于流体的密度,则物体会浮在流体表面上,反之则会沉在流体中。
四、流体的动力学1. 流体的流速:流体的流速是指单位时间内流体通过某一横截面的体积。
流速与流经的横截面面积、流量和时间有关,即流速= 流量 / 面积。
2. 流量定律:在一个封闭管道中,流体的流量保持不变,即流量定律。
根据流量定律,当管道的横截面变小时,流速变大;反之,当管道的横截面变大时,流速变小。
3. 质量守恒定律:质量守恒定律也适用于流体,即质量的流入等于质量的流出。
根据质量守恒定律,当流体通过管道的时候,流速的变化会导致流体密度的变化。
五、流体的应用1. 浮力和浮力定律:浮力是指物体在液体或气体中受到的向上的浮力。
流体的主要物理力学性质

流体在运动过程中所受的力与加速度之间的 关系,是流体动力学的基本方程。
连续性方程
描述流体的质量守恒原理,即流体的质量流 量在流场中保持不变。
动量方程
描述流体的动量守恒原理,即流体的动量流 量在流场中保持不变。
能量方程
描述流体的能量守恒原理,即流体的能量在 流场中保持不变。
流体动力学的应用
06
流体动力学简介
基本概念
流体
流体是具有流动性的连续介质, 由大量分子组成,能够在外力作
用下发生流动。
流体动力学
流体动力学是研究流体运动规律 和行为的一门科学,主要研究流 体的速度、压力、密度等物理量
之间的关系。
流场
流场是指流体运动所占据的空间 区域,流场中的每一点都有一定
的速度和压力。
流体动力学方程
THANKS
感谢观看
流动状态的判定
雷诺数
用于判定流体流动状态的无量纲数, 由流体的流速、管径和流体动力粘度 决定。当雷诺数小于临界值时,流体 呈层流流动;当雷诺数大于临界值时, 流体呈湍流流动。
流动状态判定准则
根据实验和理论分析,得出判定流动 状态的准则,如普朗特数、尼古拉斯 数等。这些准则可以帮助我们判断不 同条件下流体的流动状态。
毛细管法
利用毛细管中的流体流动, 通过测量流体在毛细管中 的流动时间和压力差来计 算流体的粘度。
影响粘度的因素
分子间相互作用
流体的分子间相互作用会影响流体的粘度,分子 间相互作用越强,粘度越大。
温度
温度对流体的粘度有显著影响,一般来说,温度 升高会使流体的粘度降低。
压力
压力对流体的粘度影响较小,但在高压下,压力 对粘度的影响会更加明显。
流体的主要物理性质
规定,液压油产品的牌号用粘度的等级表示,即用该液压油在40℃时的
运动粘度中心值表示。
油液的牌号:40℃时的平均运动粘度,见下表:
温度:40℃,单位:×10-6m2/s
粘度等级 VG10 VG15 VG22 VG32 粘度平均值 10 15 22 32 粘度范围 9.00 ~11.0 13.5 ~16.5 19.8 ~24.2 28.8 ~35.2 机械与材料学院©2013 粘度等级 VG46 VG68 VG100 粘度平均值 46 68 100 粘度范围 41.4~50.6 64.2 ~78.4 90.0 ~110
机械与材料学院©2013
第二章 流体的主要物理性质
三、液体的粘度将随压力和温度的变化发生相应的变化。
1、流体产生粘性的主要原因 ①液体:分子内聚力; ②气体分子作热运动,流层之间分子的热交换频繁。
2、压力的影响
在高压下,液体的粘度随压力升高而增大;常压下,压力对流体的 粘性影响较小,可忽略。 3、温度的影响 ①液体:温度升高,粘度降低; ②气体:温度升高,粘度增大。
第二章 流体的主要物理性质
(3)相对粘度(恩氏粘度) 采用特定的粘度计在规定条件下测出来的液体粘度。
Et t1 / t2
式中:t1 – 油流出的时间 t2-20OC蒸馏水流出时间 φ=2. 8mm 恩氏粘度与运动粘度的换算关系 恩氏粘度计 200ml
6.31 t (7.31 Et )cst Et
机械与材料学院©2013
第二章 流体的主要物理性质
四、 液压油的选用
1、优先考虑粘性 ν=11.5 ~ 41.3 cSt 即 20、30、40号机械油 粘温特性好是指工作介质的粘度随温度变化小,粘温特性通常用粘度 指数表示。 2、按工作压力 p 高,选 µ 大; p 低,选 µ 小 3、按环境温度 T 高,选 µ 大; T 低,选 µ 小 4、按运动速度 v 高,选 µ 小; v 低,选 µ 大 5、其他 环境 (污染、抗燃) 经济(价格、使用寿命) 特殊要求(精密机床、野外工作的工程机械)
化工原理流体流动知识点总结
化工原理流体流动知识点总结化工原理中的流体流动是指在化工过程中物质(气体、液体或固体颗粒)在管道、设备或反应器中的运动过程。
了解流体流动的知识对于化工工程师来说至关重要。
下面是关于流体流动的一些重要知识点的总结。
1.流体的物理性质:-流体可以是气体、液体或固体颗粒。
气体和液体的主要区别在于分子之间的相互作用力和分子间距。
-流体的物理性质包括密度、黏度、表面张力、压力和流速等。
2.流体的运动方式:- 流体的运动可以是层流(Laminar flow)或紊流(Turbulent flow)。
-在层流中,流体以平行且有序的方式流动,分子之间的相互作用力主导着流动。
-在紊流中,流体以非线性和混乱的方式运动,分子之间的相互作用力相对较小,惯性和湍流运动主导着流动。
3.流体的流动方程:-流体流动可以通过连续性方程、动量方程和能量方程来描述。
-连续性方程(质量守恒方程)描述了流体在空间和时间上的质量守恒关系。
-动量方程描述了流体中的力平衡关系,包括压力梯度、黏度和惯性力等因素。
-能量方程描述了流体中的能量守恒关系,包括热传导、辐射和机械能转化等因素。
4.管道流动:-管道中的流体流动可以是单相(单一组分)或多相(多个组分)。
-管道流动的主要参数包括流速、压力损失和摩阻系数等。
- 常用的管道流动方程包括Bernoulli方程、Navier-Stokes方程和Darcy-Weisbach方程等。
5.流体输送:-流体输送是指将流体从一个地点输送到另一个地点的过程。
-在流体输送中,常用的设备和装置包括泵、压缩机、阀门、流量计和管道系统等。
-输送过程中要考虑流体的性质、流速、压力损失以及设备的选型和操作条件等因素。
6.流体混合与分离:-流体混合和分离是化工过程中常见的操作。
-混合可以通过搅拌、喷淋、气体分散等方法实现。
-分离可以通过过滤、沉淀、蒸馏、萃取和膜分离等方法实现。
7.流体力学实验:-流体力学实验是研究流体流动和相应现象的方法之一-常用的流体力学实验包括流速测量、压力测量、流动可视化和摩擦系数测定等。
流体力学知识点总结
流体力学知识点总结一、流体的物理性质流体区别于固体的主要特征是其具有流动性,即流体在静止时不能承受切向应力。
流体的物理性质包括密度、重度、比容、压缩性和膨胀性等。
密度是指单位体积流体所具有的质量,用符号ρ表示,单位为kg/m³。
重度则是单位体积流体所受的重力,用γ表示,单位为 N/m³,且γ =ρg(g 为重力加速度)。
比容是密度的倒数,它表示单位质量流体所占有的体积。
流体的压缩性是指在温度不变的情况下,流体的体积随压强的变化而变化的性质。
通常用体积压缩系数β来表示,其定义为单位压强变化所引起的体积相对变化率。
对于液体来说,其压缩性很小,在大多数情况下可以忽略不计;而气体的压缩性则较为明显。
膨胀性是指在压强不变的情况下,流体的体积随温度的变化而变化的性质。
用体积膨胀系数α来表示,它是单位温度变化所引起的体积相对变化率。
二、流体静力学流体静力学主要研究静止流体的力学规律。
静止流体中任一点的压强具有以下特性:1、静止流体中任一点的压强大小与作用面的方向无关,只与该点在流体中的位置有关。
2、静止流体中压强的大小沿垂直方向连续变化,即从液面到液体内部,压强逐渐增大。
流体静力学基本方程为 p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,h 为该点在液面下的深度。
作用在平面上的静水总压力可以通过压力图法或解析法来计算。
对于矩形平面,采用压力图法较为简便;对于不规则平面,则通常使用解析法。
三、流体动力学流体动力学研究流体的运动规律。
连续性方程是流体动力学的基本方程之一,它基于质量守恒定律。
对于不可压缩流体,在定常流动中,通过流管各截面的质量流量相等。
伯努利方程则是基于能量守恒定律得出的,它表明在理想流体的定常流动中,单位体积流体的动能、势能和压力能之和保持不变。
其表达式为:p/ρ + 1/2 v²+ gh =常数其中 p 为压强,ρ 为流体密度,v 为流速,g 为重力加速度,h 为高度。
流体的物理性质与特征
流体的物理性质与特征流体是一种特殊的物质状态,具有独特的物理性质和特征。
在物理学中,流体被分为液体和气体两种类型。
液体是一种具有体积和形状的物质,而气体是具有可压缩性和无固定形状的物质。
下面将介绍流体的物理性质和特征,并探讨其对日常生活和工程实践的重要性。
一、流体的流动性流体的流动性是指流体在外力作用下能够发生流动的性质。
液体和气体都具有流动性,但其流动方式存在差异。
液体主要通过分子间的滑动实现流动,而气体则通过分子间的扩散和碰撞实现流动。
流体的流动性使它们具有传输物质、能量和动量等作用的功能,例如水流可以输送能量,并驱动水力发电机。
二、流体的不可压缩性在正常情况下,液体具有极高的不可压缩性,而气体则具有可压缩性。
液体因其分子间距离较小,分子排列较为紧密,所以即使受到外力压缩,其体积变化很小。
而气体的分子间距离较大,分子排列较松散,受到外力压缩时能够显著改变体积。
不可压缩性是液体在液压系统中起到传递压力的关键特性。
三、流体的黏性黏性是流体的一种性质,指流体在流动时表现出的内摩擦阻力。
液体具有较高的黏性,当外力作用于液体时,其分子之间会产生黏滞阻力,使得液体的流动速度受到一定的限制。
相比之下,气体的黏性较低,在流动过程中流体分子的摩擦相对较小,流动速度较高。
黏性对流体的流动条件和流体的运动状态具有重要影响,例如阻力的大小和血液在血管中的流动。
四、流体的密度和压强流体的密度和压强是流体物理性质的重要描述参数。
密度是指单位体积流体的质量,一般用ρ表示。
压强是指单位面积上受到的力的大小,一般用P表示。
密度和压强的概念在流体力学和流体静力学等领域具有广泛应用,例如在航空航天、水利工程和油田开发中对流体行为的研究和分析。
五、流体的表面张力表面张力是液体表面上的分子之间由于作用力不同而引起的张力。
液体分子内部相互吸引,而在表面上只有周围的分子参与相互作用,所以液体表面的分子会受到较大的内聚力,形成一个类似薄膜的结构,使液体呈现出表面张力的特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体的物理性质
流体流动与输送过程中,流体的状态与规律都与流体的物理性质有关。
因此,首先要了解流体的常见物理和化学性质,包括密度、压力、黏度、挥发性、燃烧爆炸极限、闪点、最小引燃能量、燃烧热等。
一、
密度与相对密度
密度是用夹比较相同体积不同物质的质量的一个非常重要的物理量,对化工生产的操作、控制、计算等,特别是对质量与体积的换算,具有十分重要的意义。
流体的密度是指单位体积的流体所具有的质量,用符号ρ表示,在国际单位制中,其单位是ke/m3。
式中
m——流体的质量,kg;
y——流体的体积,m3。
任何流体的密度都与温度和压力有关,但压力的变化对液体密度的影响很小(压力极高时除外),故称液体是不可压缩的流体。
工程上,常忽略压力对液体的影响,认为液体的密度只是温度的函数。
例如,纯水在277K时的密度为1000kg /m3,在293K时的密度为998.2kg/m3,在373时的密度为958.4kg/ms。
因此,在检索和使用密度时,需要知道液体的温度。
对大多数液体而言,温度升高,其密度下降。
液体纯净物的密度通常可以从《物理化学手册》或《化学工程手册》等查取。
液体?昆合物的密度通常由实验测定,例如比重瓶法、韦氏天平法及波美度比重计法等。
其中,前两者用于精确测量,多用于实验室中,后者用于快速测量,在工业上广泛使用。
在工程计算中,当混合前后的体积变化不大时,液体混合物的密度也可由下式计算,即:
式中ρ—液体混合物的密度,kg/ms;
ρ1、ρ2、ρi、ρn——构成混合物的各纯组分的密度,ks/m3;
w1、w2、wi、wn——混合物中各组分的质量分数。
气体具有明显的可压缩性及热膨胀性,当温度、压力发生变化时,其密度将发生较大的变化。
常见气体的密度也可从《物理化学手册》或《化学工程手册》中查取。
在工程计算中,如查压力不太高、温度不太低,均可把气体(或气体混合物)视作理想气体,并由理想气体状态方程计算其密度。
由理想气体状态方程式
式中ρ—气体在温度丁、压力ρ的条件下的密度,kg/m3;
V——气体的体积,ITl3;
户——气体的压力,kPa;
T一—气体的温度,K;
m--气体的质量,kg;
M——气体的摩尔质量,kg/kmol;
R——通用气体常数,在SI制中,R=8.314kJ/(km01.K)。
如果是气体混合物,式中的M用气体混合物的平均摩尔质量Mm代替。
平均摩尔质量由下式计算:。