matlab 单纯形法
MATLAB函数大全

MATLAB函数大全A aabs 绝对值、模、字符的ASCII码值acos 反余弦acosh 反双曲余弦acot 反余切acoth 反双曲余切acsc 反余割acsch 反双曲余割align 启动图形对象几何位置排列工具all 所有元素非零为真angle 相角ans 表达式计算结果的缺省变量名any 所有元素非全零为真area 面域图argnames 函数M文件宗量名asec 反正割asech 反双曲正割asin 反正弦asinh 反双曲正弦assignin 向变量赋值atan 反正切atan2 四象限反正切atanh 反双曲正切autumn 红黄调秋色图阵axes 创建轴对象的低层指令axis 控制轴刻度和风格的高层指令B bBar 二维直方图bar3 三维直方图bar3h 三维水平直方图barh 二维水平直方图base2dec X进制转换为十进制bin2dec 二进制转换为十进制blanks 创建空格串bone 蓝色调黑白色图阵box 框状坐标轴break while 或for 环中断指令brighten 亮度控制C ccapture (3版以前)捕获当前图形cart2pol 直角坐标变为极或柱坐标cart2sph 直角坐标变为球坐标cat 串接成高维数组caxis 色标尺刻度cd 指定当前目录cdedit 启动用户菜单、控件回调函数设计工具cdf2rdf 复数特征值对角阵转为实数块对角阵ceil 向正无穷取整cell 创建元胞数组cell2struct 元胞数组转换为构架数组celldisp 显示元胞数组内容cellplot 元胞数组内部结构图示char 把数值、符号、内联类转换为字符对象chi2cdf 分布累计概率函数chi2inv 分布逆累计概率函数chi2pdf 分布概率密度函数chi2rnd 分布随机数发生器chol Cholesky分解clabel 等位线标识cla 清除当前轴class 获知对象类别或创建对象clc 清除指令窗clear 清除内存变量和函数clf 清除图对象clock 时钟colorcube 三浓淡多彩交叉色图矩阵colordef 设置色彩缺省值colormap 色图colspace 列空间的基close 关闭指定窗口colperm 列排序置换向量comet 彗星状轨迹图comet3 三维彗星轨迹图compass 射线图compose 求复合函数cond (逆)条件数condeig 计算特征值、特征向量同时给出条件数condest 范 -1条件数估计conj 复数共轭contour 等位线contourf 填色等位线contour3 三维等位线contourslice 四维切片等位线图cool 青紫调冷色图copper 古铜调色图cos 余弦cosh 双曲余弦cot 余切coth 双曲余切cplxpair 复数共轭成对排列csc 余割csch 双曲余割cumsum 元素累计和cumtrapz 累计梯形积分cylinder 创建圆柱D ddblquad 二重数值积分deal 分配宗量deblank 删去串尾部的空格符dec2base 十进制转换为X进制dec2bin 十进制转换为二进制dec2hex 十进制转换为十六进制delaunay Delaunay 三角剖分del2 离散Laplacian差分demo Matlab演示det 行列式diag 矩阵对角元素提取、创建对角阵diary Matlab指令窗文本内容记录diff 数值差分、符号微分digits 符号计算中设置符号数值的精度dir 目录列表disp 显示数组display 显示对象内容的重载函数dlinmod 离散系统的线性化模型dmperm 矩阵Dulmage-Mendelsohn 分解dos 执行DOS 指令并返回结果double 把其他类型对象转换为双精度数值drawnow 更新事件队列强迫Matlab刷新屏幕dsolve 符号计算解微分方程E eecho M文件被执行指令的显示edit 启动M文件编辑器eig 求特征值和特征向量eigs 求指定的几个特征值end 控制流FOR等结构体的结尾元素下标eps 浮点相对精度error 显示出错信息并中断执行errortrap 错误发生后程序是否继续执行的控制erf 误差函数erfc 误差补函数erfcx 刻度误差补函数erfinv 逆误差函数errorbar 带误差限的曲线图etreeplot 画消去树eval 串演算指令evalin 跨空间串演算指令exist 检查变量或函数是否已定义exit 退出Matlab环境exp 指数函数expand 符号计算中的展开操作expint 指数积分函数expm 常用矩阵指数函数expm1 Pade法求矩阵指数expm2 Taylor法求矩阵指数expm3 特征值分解法求矩阵指数eye 单位阵ezcontour 画等位线的简捷指令ezcontourf 画填色等位线的简捷指令ezgraph3 画表面图的通用简捷指令ezmesh 画网线图的简捷指令ezmeshc 画带等位线的网线图的简捷指令ezplot 画二维曲线的简捷指令ezplot3 画三维曲线的简捷指令ezpolar 画极坐标图的简捷指令ezsurf 画表面图的简捷指令ezsurfc 画带等位线的表面图的简捷指令F ffactor 符号计算的因式分解feather 羽毛图feedback 反馈连接feval 执行由串指定的函数fft 离散Fourier变换fft2 二维离散Fourier变换fftn 高维离散Fourier变换fftshift 直流分量对中的谱fieldnames 构架域名figure 创建图形窗fill3 三维多边形填色图find 寻找非零元素下标findobj 寻找具有指定属性的对象图柄findstr 寻找短串的起始字符下标findsym 机器确定内存中的符号变量finverse 符号计算中求反函数fix 向零取整flag 红白蓝黑交错色图阵fliplr 矩阵的左右翻转flipud 矩阵的上下翻转flipdim 矩阵沿指定维翻转floor 向负无穷取整flops 浮点运算次数flow Matlab提供的演示数据fmin 求单变量非线性函数极小值点(旧版)fminbnd 求单变量非线性函数极小值点fmins 单纯形法求多变量函数极小值点(旧版)fminunc 拟牛顿法求多变量函数极小值点fminsearch 单纯形法求多变量函数极小值点fnder 对样条函数求导fnint 利用样条函数求积分fnval 计算样条函数区间内任意一点的值fnplt 绘制样条函数图形fopen 打开外部文件for 构成for环用format 设置输出格式fourier Fourier 变换fplot 返函绘图指令fprintf 设置显示格式fread 从文件读二进制数据fsolve 求多元函数的零点full 把稀疏矩阵转换为非稀疏阵funm 计算一般矩阵函数funtool 函数计算器图形用户界面fzero 求单变量非线性函数的零点G ggamma 函数gammainc 不完全函数gammaln 函数的对数gca 获得当前轴句柄gcbo 获得正执行"回调"的对象句柄gcf 获得当前图对象句柄gco 获得当前对象句柄geomean 几何平均值get 获知对象属性getfield 获知构架数组的域getframe 获取影片的帧画面ginput 从图形窗获取数据global 定义全局变量gplot 依图论法则画图gradient 近似梯度gray 黑白灰度grid 画分格线griddata 规则化数据和曲面拟合gtext 由鼠标放置注释文字guide 启动图形用户界面交互设计工具H hharmmean 调和平均值help 在线帮助helpwin 交互式在线帮助helpdesk 打开超文本形式用户指南hex2dec 十六进制转换为十进制hex2num 十六进制转换为浮点数hidden 透视和消隐开关hilb Hilbert 矩阵hist 频数计算或频数直方图histc 端点定位频数直方图histfit 带正态拟合的频数直方图hold 当前图上重画的切换开关horner 分解成嵌套形式hot 黑红黄白色图hsv 饱和色图I iif-else-elseif 条件分支结构ifft 离散Fourier反变换ifft2 二维离散Fourier反变换ifftn 高维离散Fourier反变换ifftshift 直流分量对中的谱的反操作ifourier Fourier反变换i, j 缺省的"虚单元"变量ilaplace Laplace反变换imag 复数虚部image 显示图象imagesc 显示亮度图象imfinfo 获取图形文件信息imread 从文件读取图象imwrite 把imwrite 把图象写成文件ind2sub 单下标转变为多下标inf 无穷大info MathWorks公司网点地址inline 构造内联函数对象inmem 列出内存中的函数名input 提示用户输入inputname 输入宗量名int 符号积分int2str 把整数数组转换为串数组interp1 一维插值interp2 二维插值interp3 三维插值interpn N维插值interpft 利用FFT插值intro Matlab自带的入门引导inv 求矩阵逆invhilb Hilbert矩阵的准确逆ipermute 广义反转置isa 检测是否给定类的对象ischar 若是字符串则为真isequal 若两数组相同则为真isempty 若是空阵则为真isfinite 若全部元素都有限则为真isfield 若是构架域则为真isglobal 若是全局变量则为真ishandle 若是图形句柄则为真ishold 若当前图形处于保留状态则为真isieee 若计算机执行IEEE规则则为真isinf 若是无穷数据则为真isletter 若是英文字母则为真islogical 若是逻辑数组则为真ismember 检查是否属于指定集isnan 若是非数则为真isnumeric 若是数值数组则为真isobject 若是对象则为真isprime 若是质数则为真isreal 若是实数则为真isspace 若是空格则为真issparse 若是稀疏矩阵则为真isstruct 若是构架则为真isstudent 若是Matlab学生版则为真iztrans 符号计算Z反变换J j , K kjacobian 符号计算中求Jacobian 矩阵jet 蓝头红尾饱和色jordan 符号计算中获得 Jordan标准型keyboard 键盘获得控制权kron Kronecker乘法规则产生的数组L llaplace Laplace变换lasterr 显示最新出错信息lastwarn 显示最新警告信息leastsq 解非线性最小二乘问题(旧版)legend 图形图例lighting 照明模式line 创建线对象lines 采用plot 画线色linmod 获连续系统的线性化模型linmod2 获连续系统的线性化精良模型linspace 线性等分向量ln 矩阵自然对数load 从MAT文件读取变量log 自然对数log10 常用对数log2 底为2的对数loglog 双对数刻度图形logm 矩阵对数logspace 对数分度向量lookfor 按关键字搜索M文件lower 转换为小写字母lsqnonlin 解非线性最小二乘问题lu LU分解M mmad 平均绝对值偏差magic 魔方阵maple &nb, sp; 运作 Maple格式指令mat2str 把数值数组转换成输入形态串数组material 材料反射模式max 找向量中最大元素mbuild 产生EXE文件编译环境的预设置指令mcc 创建MEX或EXE文件的编译指令mean 求向量元素的平均值median 求中位数menuedit 启动设计用户菜单的交互式编辑工具mesh 网线图meshz 垂帘网线图meshgrid 产生"格点"矩阵methods 获知对指定类定义的所有方法函数mex 产生MEX文件编译环境的预设置指令mfunlis 能被mfun计算的MAPLE经典函数列表mhelp 引出 Maple的在线帮助min 找向量中最小元素mkdir 创建目录mkpp 逐段多项式数据的明晰化mod 模运算more 指令窗中内容的分页显示movie 放映影片动画moviein 影片帧画面的内存预置mtaylor 符号计算多变量Taylor级数展开N nNdims 求数组维数NaN 非数(预定义)变量nargchk 输入宗量数验证nargin 函数输入宗量数nargout 函数输出宗量数ndgrid 产生高维格点矩阵newplot 准备新的缺省图、轴nextpow2 取最接近的较大2次幂nnz 矩阵的非零元素总数nonzeros 矩阵的非零元素norm 矩阵或向量范数normcdf 正态分布累计概率密度函数normest 估计矩阵2范数norminv 正态分布逆累计概率密度函数normpdf 正态分布概率密度函数normrnd 正态随机数发生器notebook 启动Matlab和Word的集成环境null 零空间num2str 把非整数数组转换为串numden 获取最小公分母和相应的分子表达式nzmax 指定存放非零元素所需内存O oode1 非Stiff 微分方程变步长解算器ode15s Stiff 微分方程变步长解算器ode23t 适度Stiff 微分方程解算器ode23tb Stiff 微分方程解算器ode45 非Stiff 微分方程变步长解算器odefile ODE 文件模板odeget 获知ODE 选项设置参数odephas2 ODE 输出函数的二维相平面图odephas3 ODE 输出函数的三维相空间图odeplot ODE 输出函数的时间轨迹图odeprint 在Matlab指令窗显示结果odeset 创建或改写 ODE选项构架参数值ones 全1数组optimset 创建或改写优化泛函指令的选项参数值orient 设定图形的排放方式orth 值空间正交化P ppack 收集Matlab内存碎块扩大内存pagedlg 调出图形排版对话框patch 创建块对象path 设置Matlab搜索路径的指令pathtool 搜索路径管理器pause 暂停pcode 创建预解译P码文件pcolor 伪彩图peaks Matlab提供的典型三维曲面permute 广义转置pi (预定义变量)圆周率pie 二维饼图pie3 三维饼图pink 粉红色图矩阵pinv 伪逆plot 平面线图plot3 三维线图plotmatrix 矩阵的散点图plotyy 双纵坐标图poissinv 泊松分布逆累计概率分布函数poissrnd 泊松分布随机数发生器pol2cart 极或柱坐标变为直角坐标polar 极坐标图poly 矩阵的特征多项式、根集对应的多项式poly2str 以习惯方式显示多项式poly2sym 双精度多项式系数转变为向量符号多项式polyder 多项式导数polyfit 数据的多项式拟合polyval 计算多项式的值polyvalm 计算矩阵多项式pow2 2的幂ppval 计算分段多项式pretty 以习惯方式显示符号表达式print 打印图形或SIMULINK模型printsys 以习惯方式显示有理分式prism 光谱色图矩阵procread 向MAPLE输送计算程序profile 函数文件性能评估器propedit 图形对象属性编辑器pwd 显示当前工作目录Q qquad 低阶法计算数值积分quad8 高阶法计算数值积分(QUADL) quit 推出Matlab 环境quiver 二维方向箭头图quiver3 三维方向箭头图R rrand 产生均匀分布随机数randn 产生正态分布随机数randperm 随机置换向量range 样本极差rank 矩阵的秩rats 有理输出rcond 矩阵倒条件数估计real 复数的实部reallog 在实数域内计算自然对数realpow 在实数域内计算乘方realsqrt 在实数域内计算平方根realmax 最大正浮点数realmin 最小正浮点数rectangle 画"长方框"rem 求余数repmat 铺放模块数组reshape 改变数组维数、大小residue 部分分式展开return 返回ribbon 把二维曲线画成三维彩带图rmfield 删去构架的域roots 求多项式的根rose 数扇形图rot90 矩阵旋转90度rotate 指定的原点和方向旋转rotate3d 启动三维图形视角的交互设置功能round 向最近整数圆整rref 简化矩阵为梯形形式rsf2csf 实数块对角阵转为复数特征值对角阵rsums Riemann和S sSave 把内存变量保存为文件Scatter 散点图scatter3 三维散点图sec 正割sech 双曲正割semilogx X轴对数刻度坐标图semilogy Y轴对数刻度坐标图series 串联连接set 设置图形对象属性setfield 设置构架数组的域setstr 将ASCII码转换为字符的旧版指令sign 根据符号取值函数signum 符号计算中的符号取值函数sim 运行SIMULINK模型simget 获取SIMULINK模型设置的仿真参数simple 寻找最短形式的符号解simplify 符号计算中进行简化操作simset 对SIMULINK模型的仿真参数进行设置simulink 启动SIMULINK模块库浏览器sin 正弦sinh 双曲正弦size 矩阵的大小slice 立体切片图solve 求代数方程的符号解spalloc 为非零元素配置内存sparse 创建稀疏矩阵spconvert 把外部数据转换为稀疏矩阵spdiags 稀疏对角阵spfun 求非零元素的函数值sph2cart 球坐标变为直角坐标sphere 产生球面spinmap 色图彩色的周期变化spline 样条插值spones 用1置换非零元素sprandsym 稀疏随机对称阵sprank 结构秩spring 紫黄调春色图sprintf 把格式数据写成串spy 画稀疏结构图sqrt 平方根sqrtm 方根矩阵squeeze 删去大小为1的"孤维" sscanf 按指定格式读串stairs 阶梯图std 标准差stem 二维杆图step 阶跃响应指令str2double 串转换为双精度值str2mat 创建多行串数组str2num 串转换为数strcat 接成长串strcmp 串比较strjust 串对齐strmatch 搜索指定串strncmp 串中前若干字符比较strrep 串替换strtok 寻找第一间隔符前的内容struct 创建构架数组struct2cell 把构架转换为元胞数组strvcat 创建多行串数组sub2ind 多下标转换为单下标subexpr 通过子表达式重写符号对象subplot 创建子图subs 符号计算中的符号变量置换subspace 两子空间夹角sum 元素和summer 绿黄调夏色图superiorto 设定优先级surf 三维着色表面图surface 创建面对象surfc 带等位线的表面图surfl 带光照的三维表面图surfnorm 空间表面的法线svd 奇异值分解svds 求指定的若干奇异值switch-case-otherwise 多分支结构sym2poly 符号多项式转变为双精度多项式系数向量symmmd 对称最小度排序symrcm 反向Cuthill-McKee排序syms 创建多个符号对象T ttan 正切tanh 双曲正切taylortool 进行Taylor逼近分析的交互界面text 文字注释tf 创建传递函数对象tic 启动计时器title 图名toc 关闭计时器trapz 梯形法数值积分treelayout 展开树、林treeplot 画树图tril 下三角阵trim 求系统平衡点trimesh 不规则格点网线图trisurf 不规则格点表面图triu 上三角阵try-catch 控制流中的Try-catch结构type 显示M文件U uuicontextmenu 创建现场菜单uicontrol 创建用户控件uimenu 创建用户菜单unmkpp 逐段多项式数据的反明晰化unwrap 自然态相角upper 转换为大写字母V vvar 方差varargin 变长度输入宗量varargout 变长度输出宗量vectorize 使串表达式或内联函数适于数组运算ver 版本信息的获取view 三维图形的视角控制voronoi Voronoi多边形vpa 任意精度(符号类)数值W wwarning 显示警告信息what 列出当前目录上的文件whatsnew 显示Matlab中 Readme文件的内容which 确定函数、文件的位置while 控制流中的While环结构white 全白色图矩阵whitebg 指定轴的背景色who 列出内存中的变量名whos 列出内存中变量的详细信息winter 蓝绿调冬色图workspace 启动内存浏览器X x , Y y , Z zxlabel X轴名xor 或非逻辑yesinput 智能输入指令ylabel Y轴名zeros 全零数组zlabel Z轴名zoom 图形的变焦放大和缩小ztrans 符号计算Z变换。
单纯形法matlab

数学软件与实验数学与信息科学学院信息与计算科学单纯形法的Matlab程序如下:function [xx,fm]=myprgmh(m,n,A,b,c)B0=A(:,1:m);cb=c(:,1:m);xx=1:n;sgm=c-cb*B0^-1*A;h=-1;sta=ones(m,1);for i=m+1:nif sgm(i)>0h=1;endendwhile h>0[msg,mk]=max(sgm);for i=1:msta(i)=b(i)/A(i,mk);end[mst,mr]=min(sta);zy=A(mr,mk);for i=1:mif i==mrfor j=1:nA(i,j)=A(i,j)/zy;endb(i)=b(i)/zy;endendfor i=1:mif i~=mrfor j=1:nA(i,j)=A(i,j)-A(i,mk)*A(mr,j);endb(i)=b(i)-A(i,mk)*b(mr);endendB1=A(:,1:m);cb(mr)=c(mk);xx(mr)=mk;sgm=c-cb*B1*A;for i=m+1:nif sgm(i)>0h=1;endendendfm=c*xx;例题:编写下列求解如下线性规划问题的单纯形法函数min f'xs.t ax<=b(其中b>=0)函数形式function [x,fval,it,op]=singl(f,a,b) 输出中x为最优解fval为最优值it为迭代次数无最优解op=0有最优解op=1编写程序如下:function [x,fval,it,op]=singl(f,a,b)[m,n]=size(a);c=[a eye(m) b;f' zeros(1,m+1)];fval=0;x=zeros(m+n,1);op=1;it=0;e=zeros(1,m);lie=find(f<0);l=length(lie);while(l>0)for j=1:ld=find(c(:,lie(j)));d_l=length(d);if d_l>0for i=1:mif c(i,lie(j))>0e(i)=c(i,end)/c(i,lie(j));elsee(i)=inf;endend[g,h]=min(e);for w=1:m+1if w==hc(w,:)=c(w,:)/c(h,lie(j));elsec(w,:)=c(w,:)-c(h,:)*c(w,lie(j))/c(h,lie(j));endendit=it+1;elseop=0;endendlie=find(c(end,:)<0);l=length(lie);endfor i=1:(m+n)ix=find(c(:,i));if(length(ix)==1)&(ix<=m)&(c(ix,i)==1) x(i)=c(ix,end)elsex(i)=0endendfval=-c(end,end);。
单纯形法

2013-2014(1)专业课程实践论文题目:单纯形法求解线性规划对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始基本可行解。
设初始基为B ,然后执行如下步骤:(1)解b Bx B =,求得b B x B 1-=,令0=N x ,计算目标函数值B B x c f =以()m i b i ,,2,1 =记b B 1-的第i 个分量。
(2)计算单纯形乘子w , B C B w =,得到1-=B C w B ,对于非基变量,计算判别数i i B i i i c p B c c z -=-=-1δ,令 {}i i Ri k c z -=∈max δ,R 为非基变量集合。
若判别数0≤k δ,则得到一个最优基本可行解,运算结束;否则,转到下一步。
(3)解k k p By =,得到k k p B y 1-=;若0≤k y ,即k y 的每个分量均非正数,则停止计算,问题不存在有限最优解,否则,进行步骤(4)。
(4)确定下标r ,使⎭⎬⎫⎩⎨⎧>=>0min 0:tk tk t y t rk r y y b y b tk ,且, B x 为离基变量。
k x 为进基变量,用k P 替换Br P ,得到新的基矩阵B ,返回步骤(1)。
对于极大化问题,可以给出完全类似的步骤,只是确定进基变量的准则不同。
对于极大化问题,应令{}j j k k c z C Z -=-minfunction [x,fval,it,op]=singl(c,a,b)%求解如下线性规划问题的单纯形法函数%max cx 其中c=[c1 c2 ]%s.t ax<=b(其中b>=0)%函数形式function [x,fval,it,op]=singl(c,a,b) %输出中x为最优解%fval为最优值%it为迭代次数%无最优解op=0%有最优解op=1%初始解设为x=[zeros(1,n),ones(1,m)]; [m,n]=size(a);A=[a eye(m) b;c zeros(1,m+1)];C=[c,zeros(1,m)];fval=0;op=1;it=0;e=zeros(1,m);cb=zeros(1,m);for j=1:m+nr(j)=C(j)-cb*A(1:m,j);endd=find(r>0);l=length(d);while l>0for s=1:lif d(s)>=n+1 & A(:,d(s))<=0op=0;breakendendif op==1[d1,j]=max(r);for i=1:mif A(i,j)>0e(i)=A(i,end)/A(i,j);elsee(i)=inf;endend[g h]=min(e);for w=1:m+1if w==hA(w,:)=A(w,:)/A(h,j);elseA(w,:)=A(w,:)-A(h,:)*A(w,j)/A(h,j);endendit=it+1;cb(h)=C(j);for j=1:m+nr(j)=C(j)-cb*A(1:m,j);endd=find(r>0);l=length(d);endendfor i=1:(m+n)ix=find(A(:,i));if(length(ix)==1)&(ix<=m)&(A(ix,i)==1)x(i)=A(ix,end);elsex(i)=0;endendfval=-A(end,end);四、算法实现例1. 用单纯形法求解.0,,153,102,2,32min 2121212121≥≤+≤+≤+-⋅--=x x x x x x x x t s x x z解:(1)在MATLAB 界面中依次输入c=[2 3];a=[-1 1;1 2; 3 1];b=[2;10;15];[x,fval,it,op]=singl(c,a,b)(2)得到下图所示的结果(其中it 为迭代次数,无最优解 0=op ,有最优解1=op )。
matlab优化算法100例

matlab优化算法100例1. 线性规划问题的优化算法:线性规划问题是一类目标函数和约束条件都是线性的优化问题。
Matlab中有很多优化算法可以解决线性规划问题,如单纯形法、内点法等。
下面以单纯形法为例介绍线性规划问题的优化算法。
单纯形法是一种迭代算法,通过不断改变基础解来寻找问题的最优解。
它的基本思想是从一个可行解出发,通过改变基本变量和非基本变量的取值来逐步逼近最优解。
2. 非线性规划问题的优化算法:非线性规划问题是一类目标函数和约束条件至少有一个是非线性的优化问题。
Matlab中有很多优化算法可以解决非线性规划问题,如拟牛顿法、共轭梯度法等。
下面以拟牛顿法为例介绍非线性规划问题的优化算法。
拟牛顿法是一种逐步逼近最优解的算法,通过近似目标函数的二阶导数信息来构造一个二次模型,然后通过求解该二次模型的最优解来更新当前解。
3. 全局优化问题的优化算法:全局优化问题是一类目标函数存在多个局部最优解的优化问题。
Matlab中有很多优化算法可以解决全局优化问题,如遗传算法、模拟退火算法等。
下面以遗传算法为例介绍全局优化问题的优化算法。
遗传算法是一种模拟生物进化过程的优化算法,通过基因编码、选择、交叉和变异等操作来不断迭代演化一组个体,最终找到全局最优解。
4. 多目标优化问题的优化算法:多目标优化问题是一类存在多个目标函数并且目标函数之间存在冲突的优化问题。
Matlab中有很多优化算法可以解决多目标优化问题,如多目标粒子群优化算法、多目标遗传算法等。
下面以多目标粒子群优化算法为例介绍多目标优化问题的优化算法。
多目标粒子群优化算法是一种基于粒子群优化算法的多目标优化算法,通过在粒子的速度更新过程中考虑多个目标函数来实现多目标优化。
5. 其他优化算法:除了上述提到的优化算法,Matlab还提供了很多其他的优化算法,如模拟退火算法、蚁群算法等。
这些算法可以根据具体的问题选择合适的算法进行求解。
综上所述,Matlab提供了丰富的优化算法,可以解决不同类型的优化问题。
Matlab单纯形法

• 线性规划问题 • 解决这一问题我们用的是linprog函数,linprog 函数求的是最小值,线性规划是求最大,所以 要在目标函数前加一个负号. • x = linprog( c , A , b , Aeq , beq , lb , ub , x0 )是求 解线性规划问题的命令。 • c是目标函数的系数向量,A是不等式约束 AX<=b的系数矩阵,b是不等式约束AX<=b的常 数项,Aeq是等式约束AeqX=beq的系数矩阵, beq是等式约束AeqX=beq的常数项,lb是X的下 限,ub是X的上限,X是向量[x1,x2,...xn]即决策 变量。
Matlab单纯形法
• 运行matlab会显示三个窗口,分别是变量窗 口,命令窗口和历史窗口。 • 在命令窗口中出现命令提示符 “>>”,就 可以输入命令,按回车键完成运算。 • 命令窗口的说明: • 1.在命令中,空格不参与运算。 • 2.几条命令可以写在同一行,用逗号隔开。 • 3.在命令窗口中不能返回到前面的命令行 进行修改后在重新执行。
• 如果模型中不包含不等式约束条件,可用 []代替A和b表示缺省;如果没有等式约 束条件,可用[]代替Aeq和beq表示缺省; 如果某个xi无下界或上界,可以设定lb(i) =-inf或ub(i)=inf; 用[x , Fval]代替上述各命令行中左边的x, 则可得到在最优解x处的b中,用[1 2 3]表示行向量;[1;2;3] 表示列向量;[1 2 3;4 5 6;7 8 9]表示矩阵。 • 矩阵按行输入,元素之间用空格或“,” 隔开,行与行之间用“;”隔开。 • 特殊命令创建矩阵a=[m:q:n],m是起始值;n 是终止值;q是增量。如a=[1:2:13] • 特殊矩阵建立:eye创建一个单位矩阵,如 eye(4);ones创建一个元素全是1的矩阵,如 ones(1,4);zeros创建一个全是0的矩阵,如 zeros(1,4).
运用Matlab进行线性规划求解

线性规划线性规划是处理线性目标函数和线性约束的一种较为成熟的方法,目前已经广泛应用于军事、经济、工业、农业、教育、商业和社会科学等许多方面。
8.2.1 基本数学原理线性规划问题的标准形式是:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥=+++=+++=++++++=0,,,min 21221122222121112121112211n m n mn m m n n n n n n x x x b x a x a x a b x a x a x a b x a x a x a x c x c x c z ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ 或⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥===∑∑==n j x m i b x a x c z j n j i j ij n j jj ,,2,1,0,,2,1,min 11ΛΛ写成矩阵形式为:⎪⎩⎪⎨⎧≥==O X b AX CX z min线性规划的标准形式要求使目标函数最小化,约束条件取等式,变量b 非负。
不符合这几个条件的线性模型可以转化成标准形式。
MATLAB 采用投影法求解线性规划问题,该方法是单纯形法的变种。
8.2.2 有关函数介绍在MATLAB 工具箱中,可用linprog 函数求解线性规划问题。
linprog 函数的调用格式如下:●x=linprog(f,A,b):求解问题minf'*x ,约束条件为A*x<=b 。
●x=linprog(f,A,b,Aeq,beq):求解上面的问题,但增加等式约束,即Aeq*x=beq 。
若没有不等式约束,则令A=[ ],b=[ ]。
●x=linprog(f,A,b,Aeq,beq,lb,ub):定义设计x 的下界lb 和上界ub ,使得x 始终在该范围内。
若没有等式约束,令Aeq=[ ],beq=[ ]。
●x=linprog(f,A,b,Aeq,beq,lb,ub,x0):设置初值为x0。
该选项只适用于中型问题,默认时大型算法将忽略初值。
单纯形法MATLAB程序
单纯形法(Mat lab程序)%%单纯形法(Mat lab程序)a= input (' input the major matrix A '); b=input (' input the matrix b '); n=input C input the judgement ');%%为计数器(确定循环次数)萨0;while g<40%%确定非负alength=max(size(n));blength二max(size(b));m=0;for i=l:alength辻n(i)〉=0m二m+1;endend;if m==alengthx=b;breakend;%%找Ks二min(n);for i=l:alengthif n(i) ==sk二i;breakend;end;%%a[i,k]的非负性m=0;for i=l:blengthif a(i, k)<0m二m+1;end;end;if m==blengthdisp('x does not exit');judge二1;breakend;%%找L确定主元cc=100000;for i=l:blengthif a (i, k) >0if(b(i)/a(i, k))<cccc=b(i)/a(i, k);endend end; for i=l:blengthif a(i, k)~=0if (b(i)/a(i, k))==cc1二i;breakendend end; %%计算,a 标准化zu=a(l, k); aa=a; for i=l:1-1 for j=l:alength aa(i, j)=a(i, j)-a(l, j)*a(i, k)/a(l, k);end end; for i=l+l:blengthfor j=l :alength aa(i, j)=a(i, j)-a(l, j)*a(i, k)/a(l, k);end end; for j=l:alengthaa(l, j)=a(l, j)/zu; end;%%b 勺判别bb=b; bb(l)=b(l)/zu;for i=l: 1~1 bb(i)=b(i)~b⑴*a(i, k)/a(l, k);end;for i=l+l:blength bb(i)二b(i)-b(l)*a(i, k)/a(l, k);end;b二bb; %%确定判别数tt 二n;for j=l:alength11 (j) =n(j)-a(1, j)*n(k)/a(1, k) ; end; n=tt;a=aa;%%显示单纯形表sa sa二[b' aa;0 n];dispC单纯表示例’);disp(g+1);disp(sa);g二g+l;judge=2;end;if judge==2q二0; result=zeros (alength, 2); for j=l+q:alengthif n(j)=0 t=a(:, j) ; zu=find( t) ; resu lt( j, l)=j ; result (j, 2)=x(zu) ; q 二q+1 ;endif n(j)>0 result(j,l)=q+l; q=q+l;endend;dispC最优解’);disp (result);dispC循环次数');end。
线性规划中Matlab的运用
§1 线性规划在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。
此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。
自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。
特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。
1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。
生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。
若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足(目标函数)2134m ax x x z += (1)s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x (2)这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。
上述即为一规划问题数学模型的三个要素。
由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。
总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。
在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。
而选取适当的决策变量,是我们建立有效模型的关键之一。
改进单纯形法寻优的MATLAB实现(1)
6 改进单纯形法的寻优原理
676 改进单纯形法简介
单 纯 形 法 是 应 用 规 则 的 几 何 图 形 !通 过 计 算 单 纯 形 顶 点 的 函 数 值 !根 据 函 数 值 大 小 的 分 布 来 判 断 函 数 变 化 的 趋 势 !然 后 按 一 定 的 规 则 搜 索 寻 优 的 方 法 %8!9’"该 方 法 因 步 长 固 定 !具 有 不 能 加 速 的 缺 点 "改 进 单 纯 形 法 是 在 单 纯 形 法 的 基 础 上 对 步 长 作 适 当 修 改 得 到 的 寻 优 方 法 !在 化 学 化 工 中 应 用 较 广"设需要寻优的目标函数为 :; :<=&!=4!>!=?@!其中 =A<A; &!4!>!?@是自变量!:为响应值"
?@
320175BC
? A /0/2# /0/.1
/
#
D#$/0/#1A/.0/56BC
D$/0//1 .
线性规划Matlab求解
结果为: x= 9.0000 0.0000 fval =360 即只需聘用9个一级检验员。
注:本问题应还有一个约束条件:x1、x2取整数。故它
是一个整数线性规划问题。这里把它当成一个线性规划来 解,求得其最优解刚好是整数:x1=9,x2=0,故它就是该 整数规划的最优解。若用线性规划解法求得的最优解不是 整数,将其取整后不一定是相应整数规划的最优解,这样 的整数规划应用专门的方法求解。
线性规划的基本算法——单纯形法
1.线性规划的标准形式:
min z = f (x)
x
s.t . g i (x ) 0 ( i 1,2,, m)
其中目标函数 f (x) 和约束条件中gi (x) 都是线性函数
2. 线性规划的基本算法——单纯形法
用单纯法求解时,常将标准形式化为:
c min f = x b s.t. Ax = x
x1 30 0 x2 50
x 3 20
s.t .
1 0
解: 编写M文件xxgh2.m如下: c=[6 3 4]; A=[0 1 0]; b=[50]; Aeq=[1 1 1]; beq=[120]; vlb=[30,0,20]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
x1 1 x2 1 0 x 3 x1 3 0 0 x 2 2 0 x3 1
1 2 0 50
例3 问题一的解答
改写为: S.t.
min z 13 9 10 11 12 8X
引入松弛变量x3, x4, x5, 将不等式化为等式, 即单纯形标准形: min z = 10x1 + 9x2 s.t.6x1 + 5x2 + x3 = 60 10x1 + 20x2 - x4 = 150 x1 + x5 = 8 xi≥ 0 (i = 1,2,3,4,5) 系数矩阵为: 6 5 1 0 0 A = 10 20 0 -1 0 = (P1 P2 P3 P4 P5) 1 0 0 0 1 b = (60, 150, 8 ) T
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
matlab 单纯形法
并解释如何使用MATLAB 中的单纯形法来求解线性规划问题。
【引言】
在运筹学和数学规划领域,线性规划是一种重要的数学建模和优化方法。
它用于解决实际问题中关于资源分配、生产计划、物流安排等的决策问题。
单纯形法是一种经典的线性规划解法,它通过迭代优化目标函数的值来找到最优解。
MATLAB 提供了强大的高级优化工具箱,包括对线性规划问题的求解。
在本文中,我将逐步介绍如何使用MATLAB 中的单纯形法来求解线性规划问题。
【前提条件】
在使用单纯形法求解线性规划问题之前,我们需要明确问题的数学模型。
线性规划问题可以形式化为如下的标准形式:
最大化:C^T * X
约束条件:AX <= B, X >= 0
其中,X 是变量向量,C 是目标函数系数向量,A 是约束条件的系数矩阵,B 是约束条件的右端向量。
在MATLAB 中,我们可以通过定义这些
向量和矩阵来表示线性规划问题。
接下来,我将演示如何使用MATLAB 的优化工具箱来完成线性规划求解任务。
【问题定义】
以下是一个简单的线性规划问题的例子,我们将以此为例来展示MATLAB 中单纯形法的求解过程。
最大化:2x1 + 3x2
约束条件:x1 + x2 <= 4
x1 - x2 <= 2
x1, x2 >= 0
【MATLAB 实现】
首先,在MATLAB 中创建变量和约束条件的向量和矩阵。
代码如下:
MATLAB
C = [-2; -3]; 目标函数的系数向量
A = [1, 1; 1, -1]; 约束条件的系数矩阵
B = [4; 2]; 约束条件的右端向量
接下来,我们使用`linprog` 函数来求解线性规划问题。
这个函数将返回最优解X 和最优解的目标函数值FVAL。
代码如下:
MATLAB
[X, FVAL, EXITFLAG] = linprog(-C, A, B);
注意,我们在输入目标函数系数向量C 时,在前面添加了负号。
这是因为`linprog` 函数默认求解最小化问题,而我们是要求解最大化问题。
因此,通过取目标函数的相反数来转化为最小化问题。
【结果解释】
运行上述代码后,我们可以通过查看结果来获得最优解和最优目标函数值。
代码如下:
MATLAB
disp("最优解为:")
disp(X)
disp("最优目标函数值为:")
disp(-FVAL)
在上述示例的情况下,最优解为X = [2; 2],最优目标函数值为-10。
这意味着当x1 = 2,x2 = 2 时,目标函数取得最大值-10。
【总结】
通过以上步骤,我们成功使用MATLAB 中的单纯形法求解了一个简单的线性规划问题。
MATLAB 的优化工具箱提供了丰富的线性规划求解方法,包括单纯形法和内点法等。
同时,它还支持设置约束条件的上下界、整数规划等更多高级功能。
要注意的是,在实际应用中,由于问题规模复杂,往往需要进一步考虑算法的效率和求解时间。
希望本文能对您理解并使用MATLAB 中的单纯形法求解线性规划问题有所帮助。