直线与圆的方程测试卷(含答案)

合集下载

第二章 直线与圆的方程单元测试卷-高二数学人教A版(2019)选择性必修第一册

第二章 直线与圆的方程单元测试卷-高二数学人教A版(2019)选择性必修第一册

第二章 直线与圆的方程满分卷-2021-2020人教A (2019)高二(上)选择性必修第一册一.选择题(共8小题)1.如图中的直线1l 、2l 、3l 的斜率分别为1k 、2k 、3k ,则( )A .123k k k <<B .312k k k <<C .321k k k <<D .132k k k <<2.已知直线1:10l ax y -+=,2:420l ax y ++=,则“2a =”是“12l l ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件3.经过点(0,1)P -的直线l 与连接(1,2)A -,(2,1)B 两点的线段总有公共点,则l 的倾斜角的取值范围是( ) A .[1-,1] B .(-∞,1][1-,)+∞C .3[,]44ππD .3[0,][,)44πππ4.已知圆22:240C x y x y +-+=关于直线32110x ay --=对称,则圆C 中以(,)22a a-为中点的弦长为( ) A .1B .2C .3D .45.两条直线1:20l x y c ++=,2:210l x y -+=的位置关系是( ) A .平行B .垂直C .重合D .不能确定6.已知实数x ,y 满足224x y +=,则函数226825S x y x y =+--+的最大值和最小值分别为( )A .49,9B .7,3C D .77.已知直线l 经过点(1,2)P -,且与直线2310x y +-=垂直,则l 的方程为( ) A .2340x y ++=B .2380x y +-=C .3270x y --=D .3210x y --=8.关于x 、y 的方程210(0)a x ay a --=≠表示的直线(图中实线)可能是( )A .B .C .D .二.多选题(共4小题)9.已知直线:20l kx y k -+=和圆222:O x y r +=,则( ) A .存在k 使得直线l 与直线0:220l x y -+=垂直B .直线l 恒过定点(2,0)C .若4r >,则直线l 与圆O 相交D .若4r =,则直线l 被圆O 截得的弦长的取值范围为 10.下列结论错误的是( )A .若直线1l ,2l 的斜率相等,则12//l lB .若直线的斜率121k k ⋅=,则12l l ⊥C .若直线1l ,2l 的斜率都不存在,则12//l lD .若直线1l ,2l 的斜率不相等,则1l 与2l 不平行11.已知动直线:0m x y λλ-+=和:320n x y λλ+--=,P 是两直线的交点,A 、B 是两直线m 和n 分别过的定点,下列说法正确的是( ) A .B 点的坐标为(3,2)- B .m n ⊥C .P 的轨迹是一条直线D .PA PB ⨯的最大值为1012.已知直线1:40l x y +-=与圆心为(0,1)M 且半径为3的圆相交于A ,B 两点,直线2:22350l mx y m +--=与圆M 交于C ,D 两点,则四边形ACBD 的面积的值可以是()A .B .C .D .1)三.填空题(共4小题)13.在平面直角坐标系中,已知(2,2)A 、(1)B -若过点(1,1)P --的直线l 与线段AB 有公共点,则直线l 斜率的取值范围是 .14.直线210x y -+=和圆222410x y x y +---=的位置关系是 . 15.直线1:3470l x y +-=与直线2:3410l x y ++=之间的距离为 .16.圆222440x y x y +-++=上的点到3490x y -+=的最大距离是 ,最小距离是 . 四.解答题(共6小题)17.已知圆C 的圆心在x 轴上,且经过点(3,0)A -,(1,2)B -. (Ⅰ)求圆C 的标准方程; (Ⅱ)过点(0,2)P 斜率为34的直线l 与圆C 相交于M ,N 两点,求弦MN 的长. 18.(1)求直线y x =被圆22(2)4x y +-=截得的弦长;(2)已知圆22:430C x y x +-+=,求过点(3,2)M 的圆的切线方程.19.在直角坐标系xOy 中,直线:40l x --=交x 轴于M ,以O 为圆心的圆与直线l 相切.(1)求圆O 的方程;(2)设点0(N x ,0)y 为直线3y x =-+上一动点,若在圆O 上存在点P ,使得45ONP ∠=︒,求0x 的取值范围;(3)是否存在定点S ,对于经过点S 的直线L ,当L 与圆O 交于A ,B 时,恒有AMO BMO ∠=∠?若存在,求点S 的坐标;若不存在,说明理由.20.已知直线10l y -+=,圆C 的方程为224210x y x y ++-+=. (Ⅰ)判断直线l 与该圆的位置关系;(Ⅱ)若直线与圆相交,求出弦长;否则,求出圆上的点到直线l 的最短距离. 21.已知圆M 过点(4,0)A ,(2,0)B -,(1,3)C . (Ⅰ)求圆M 的标准方程;(Ⅱ)若过点(2,3)P且斜率为k的直线l与圆M相切,求k的值.22.在平面直角坐标系xOy中,已知直线:20l x y++=和圆22+=,P是直线l上一O x y:1点,过点P作圆C的两条切线,切点分别为A,B.(1)若PA PB⊥,求点P的坐标;(2)求线段PA长的最小值;(3)设线段AB的中点为Q,是否存在点T,使得线段TQ长为定值?若存在,求出点T;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题)1.如图中的直线1l 、2l 、3l 的斜率分别为1k 、2k 、3k ,则( )A .123k k k <<B .312k k k <<C .321k k k <<D .132k k k <<解:由图象知,直线1l 、2l 、3l 的倾斜角分别为1α,2α,3α, 且1(2πα∈,)π,3202παα<<<;所以对应的斜率分别为10k <,320k k <<, 即132k k k <<. 故选:D .2.已知直线1:10l ax y -+=,2:420l ax y ++=,则“2a =”是“12l l ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解:直线1:10l ax y -+=,2:420l ax y ++=,12l l ⊥, (1)40a a ∴⨯+-⨯=,240a ∴-=,2a ∴=±, 2a ∴=是12l l ⊥的充分不必要条件,故选:A .3.经过点(0,1)P -的直线l 与连接(1,2)A -,(2,1)B 两点的线段总有公共点,则l 的倾斜角的取值范围是( ) A .[1-,1]B .(-∞,1][1-,)+∞C .3[,]44ππD .3[0,][,)44πππ解:如图所示,设直线l 的倾斜角为α,[0α∈,)π. 12101PA k -+==--,11102PB k --==-. 直线l 与连接(1,2)A -,(2,1)B 的线段总有公共点,1tan 1α∴-.[0α∴∈,3][44ππ,)π. 故选:D .4.已知圆22:240C x y x y +-+=关于直线32110x ay --=对称,则圆C 中以(,)22a a-为中点的弦长为( ) A .1B .2C .3D .4解:依题意可知直线过圆心(1,2)-,即34110a +-=,2a =.故(,)(1,1)22a a-=-.圆方程配方得22(1)(2)5x y -++=,(1,1)-与圆心距离为1,故弦长为4=. 故选:D .5.两条直线1:20l x y c ++=,2:210l x y -+=的位置关系是( ) A .平行B .垂直C .重合D .不能确定解:直线1l 的斜率是:2-, 直线2l 的斜率是:12, 由1212-⨯=-,得直线垂直, 故选:B .6.已知实数x ,y 满足224x y +=,则函数226825S x y x y =+--+的最大值和最小值分别为( )A .49,9B .7,3CD .7解:22226825(3)(4)S x y x y x y =+--+=-+-, 实数x ,y 满足224x y +=,22(3)(4)S x y ∴=-+-的几何意义为圆224x y +=上的动点与定点(3,4)M 的距离的平方, 如图,||5OM =,2(52)49max S ∴=+=,2(52)9min S =-=.∴函数226825S x y x y =+--+的最大值和最小值分别为49,9.故选:A .7.已知直线l 经过点(1,2)P -,且与直线2310x y +-=垂直,则l 的方程为( ) A .2340x y ++=B .2380x y +-=C .3270x y --=D .3210x y --=解:直线l 与直线2310x y +-=垂直, 所以直线l 的斜率为32, 又直线l 经过点(1,2)P -,所以直线l 的方程为:3(2)(1)2y x --=-,化简得:3270x y --= 故选:C .8.关于x 、y 的方程210(0)a x ay a --=≠表示的直线(图中实线)可能是( )A .B .C .D .解:关于x 、y 的方程210(0)a x ay a --=≠表示的直线,直线的斜率为a ,在y 轴上的截距为1a-,直线的斜率和它在y 轴上的截距的乘积等于1-,图A 中,直线的斜率和它在y 轴上的截距都是正的,这不满足条件,故排除A ;图B 中,直线的斜率小于1,它在y 轴上的截距大于1-小于零,这不满足条件,故排除B ; 图C 中,直线的斜率和它在y 轴上的截距都是负值,这不满足条件,故排除C ;图D 中,直线的斜率小于1-,它在y 轴上的截距大于零小于1,能满足条件,故D 可能成立, 故选:D .二.多选题(共4小题)9.已知直线:20l kx y k -+=和圆222:O x y r +=,则( ) A .存在k 使得直线l 与直线0:220l x y -+=垂直B .直线l 恒过定点(2,0)C .若4r >,则直线l 与圆O 相交D .若4r =,则直线l 被圆O 截得的弦长的取值范围为 解:对于A ,直线0:220l x y -+=的斜率为12,则当2k =-时,满足直线l 与直线0:220l x y -+=垂直,故A 正确;对于B ,由:20l kx y k -+=,得(2)0k x y +-=,令200x y +=⎧⎨-=⎩,解得20x y =-⎧⎨=⎩,∴直线l 恒过定点(2,0)-,故B 错误;对于C ,若4r >,则直线l 所过定点(2,0)-在圆O 内部,则直线l 与圆O 相交,故C 正确;对于D ,若4r =,则直线l 被圆O 截得的弦长的最大值为8,最小值为=即直线l 被圆O 截得的弦长的取值范围为,8],故D 错误. 故选:AC .10.下列结论错误的是( )A .若直线1l ,2l 的斜率相等,则12//l lB .若直线的斜率121k k ⋅=,则12l l ⊥C .若直线1l ,2l 的斜率都不存在,则12//l lD .若直线1l ,2l 的斜率不相等,则1l 与2l 不平行 解:若直线1l ,2l 的斜率相等,则12//l l 或重合,A 错误; 若直线的斜率121k k ⋅=-,则12l l ⊥,B 错误;若直线1l ,2l 的斜率都不存在,则12//l l 或重合,C 错误; 若直线1l ,2l 的斜率不相等,则1l 与2l 一定不平行,D 正确. 故选:ABC .11.已知动直线:0m x y λλ-+=和:320n x y λλ+--=,P 是两直线的交点,A 、B 是两直线m 和n 分别过的定点,下列说法正确的是( ) A .B 点的坐标为(3,2)- B .m n ⊥C .P 的轨迹是一条直线D .PA PB ⨯的最大值为10解:对于A ,直线:(2)30n y x λ-+-=,所以直线n 过点(3,2),故A 错误; 对于B ,1(1)0λλ⨯+-⨯=,所以m n ⊥,故B 正确;对于C ,因为PA PB ⊥,所以P 的轨迹是以AB 为直径的圆,故C 错误; 对于D ,222202PA PB AB PA PB +==⨯,所以D 正确. 故选:BD .12.已知直线1:40l x y +-=与圆心为(0,1)M 且半径为3的圆相交于A ,B 两点,直线2:22350l mx y m +--=与圆M 交于C ,D 两点,则四边形ACBD 的面积的值可以是()A .B .C .D .1)解:根据题意,圆M 的圆心为(0,1)M 且半径为3,则圆M 的方程为22(1)9x y +-=,即22280x y y +--=,直线1:40l x y +-=与圆M 相交于A ,B 两点,则有2228040x y y x y ⎧+--=⎨+-=⎩,解可得:31x y =⎧⎨=⎩或04x y =⎧⎨=⎩,即A 、B 的坐标为(3,1),(0,4),则||AB AB 的中点为3(2,5)2,直线2:22350l mx y m +--=,变形可得(23)250m x y -+-=,直线2l 恒过定点3(2,5)2,设3(2N ,5)2,当CD 与AB 垂直时,四边形ACBD 的面积最大, 此时CD 的方程为5322y x -=-,变形可得1y x =+,经过点(0,1)M , 则此时||6CD =,故ACBD S 四边形的最大值162ACB ADB S S ∆∆=+=⨯⨯=故92ACBD S 四边形, 分析选项:BC 符合题意, 故选:BC .三.填空题(共4小题)13.在平面直角坐标系中,已知(2,2)A 、(1)B -若过点(1,1)P --的直线l 与线段AB 有公共点,则直线l 斜率的取值范围是 . 解:如图,显然点P 在直线AB 下方,直线AP 的斜率为21121AP k +==+,直线BP 的斜率BP k == 所以若过点(1,1)P --的直线l 与线段AB 有公共点, 则直线l 斜率BP k k ,或者AP k k , 所以3k -或者1k ,故答案为:(-∞,[1,)+∞.14.直线210x y -+=和圆222410x y x y +---=的位置关系是 .解:圆222410x y x y +---=化简可得22(1)(2)6x y -+-=,圆心坐标为(1,2),,圆心到直线210x y -+==< ∴直线210x y -+=和圆222410x y x y +---=的位置关系是相交,故答案为:相交.15.直线1:3470l x y +-=与直线2:3410l x y ++=之间的距离为 . 解:直线1:3470l x y +-=与直线2:3410l x y ++=之间的距离85d ==.故答案为:85.16.圆222440x y x y +-++=上的点到3490x y -+=的最大距离是 ,最小距离是 . 解:圆222440x y x y +-++=即22(1)(2)1x y -++=,表示以(1,2)C -为圆心,半径为1的圆.由于圆心(1,2)C -到直线3490x y -+=的距离4d ==,故动点P 到直线3490x y -+=的距离的最小值与最大值分别为3,5, 故答案为:5,3. 四.解答题(共6小题)17.已知圆C 的圆心在x 轴上,且经过点(3,0)A -,(1,2)B -. (Ⅰ)求圆C 的标准方程;(Ⅱ)过点(0,2)P 斜率为34的直线l 与圆C 相交于M ,N 两点,求弦MN 的长. 解:(Ⅰ)设AB 的中点为D ,则(2,1)D -, 由圆的性质得CD AB ⊥, 所以1CD AB k k ⨯=-,得1CD k =-,所以线段AB 的垂直平分线方程是1y x =--,设圆C 的标准方程为222()x a y r -+=,其中(,0)C a ,半径为(0)r r >, 由圆的性质,圆心(,0)C a 在直线CD 上,化简得1a =-,所以圆心(1,0)C -,||2r CA ==,所以圆C 的标准方程为22(1)4x y ++=; (Ⅱ)因为直线l 过点(0,2)P 斜率为34, 则直线l 的方程为324y x =+, 圆心(1,0)C -到直线l的距离为3|2|1d -==,所以MN ==18.(1)求直线y x =被圆22(2)4x y +-=截得的弦长;(2)已知圆22:430C x y x +-+=,求过点(3,2)M 的圆的切线方程. 解:(1)根据题意,圆22(2)4x y +-=的圆心为(0,2),半径2r =, 圆心到直线y x =的距离d =则直线y x =被圆截得的弦长2l == 故直线y x =被圆22(2)4x y +-=截得的弦长为(2)圆22:430C x y x +-+=,即22(2)1x y -+=,其圆心为(2,0),半径1r =, 若切线的斜率不存在,则切线的方程为3x =,符合题意;若切线的斜率存在,则设切线的斜率为k ,则切线的方程为2(3)y k x -=-,即320kx y k --+=,则有1d ==,解可得:34k =,此时切线的方程为3410x y --=.综上可得,圆的切线方程为3x =或3410x y --=.19.在直角坐标系xOy 中,直线:40l x --=交x 轴于M ,以O 为圆心的圆与直线l 相切.(1)求圆O 的方程;(2)设点0(N x ,0)y 为直线3y x =-+上一动点,若在圆O 上存在点P ,使得45ONP ∠=︒,求0x 的取值范围;(3)是否存在定点S ,对于经过点S 的直线L ,当L 与圆O 交于A ,B 时,恒有AMO BMO ∠=∠?若存在,求点S 的坐标;若不存在,说明理由.解:(1)直线:40l x -=交x 轴于(4,0)M ,圆心半径2r ==,所以圆的方程224x y +=.(2)如图,直线NP 与圆相切,设PNO α∠=,则2sin ONα=, 根据图象,N 越靠近O 点,ON 越小,sin α越大,由2sin 452ON ︒==,得ON = 设(,3)N x x -,由距离公式22(3)8x x +-=,解得x =0372x +.(3)AMO BMO ∠=∠,若直线L 的斜率不存在,显然S 点存在; 当斜率存在时,设:L y kx m =+,L 与圆的交点1(A x ,1)y ,2(B x ,2)y , 根据题意只需0AM BM k k +=,即1212044y yx x +=--, 把11y kx m =+,22y kx m =+带人并化简得12122(4)()80kx x m k x x m +-+-=, 把L 与圆联立解方程224y kx m x y =+⎧⎨+=⎩,得12221kmx x k +=-+,212241m x x k -=+, 带入上式222422(2)8011m kmk m k m k k ----=++,化简得0k m +=,即m k =-,所以:(1)L y k x =-,恒过(1,0)点.20.已知直线10l y -+=,圆C 的方程为224210x y x y ++-+=. (Ⅰ)判断直线l 与该圆的位置关系;(Ⅱ)若直线与圆相交,求出弦长;否则,求出圆上的点到直线l 的最短距离. 解:(Ⅰ)圆的方程为224210x y x y ++-+=,即22(2)(1)4x y ++-=,∴圆心为(2,1)-,半径为2r =,则圆心到直线的距离d r =,∴直线与圆相交.(Ⅱ)弦长2l ==. 21.已知圆M 过点(4,0)A ,(2,0)B -,(1,3)C . (Ⅰ)求圆M 的标准方程;(Ⅱ)若过点(2,3)P 且斜率为k 的直线l 与圆M 相切,求k 的值. 解:(Ⅰ)设圆M 的标准方程为222()()x a y b r -+-=,则有222222222(4)(0)(2)(0)(1)(3)a b r a b r a b r ⎧-+-=⎪--+-=⎨⎪-+-=⎩,解得1a =,0b =,3r =,所以圆M 的标准方程为22(1)9x y -+=; (Ⅱ)因为直线l 过点(2,3)P 且斜率为k ,则直线l 的方程为:3(2)y k x -=-,即230kx y k --+=, 因为直线l 与圆M 相切,所以圆心到直线l3=,解得0k =或34-.22.在平面直角坐标系xOy 中,已知直线:20l x y ++=和圆22:1O x y +=,P 是直线l 上一点,过点P 作圆C 的两条切线,切点分别为A ,B . (1)若PA PB ⊥,求点P 的坐标; (2)求线段PA 长的最小值;(3)设线段AB 的中点为Q ,是否存在点T ,使得线段TQ 长为定值?若存在,求出点T ;若不存在,请说明理由.解:(1)若PA PB ⊥,则四边形PAOB 为正方形, 则P=P 在直线20x y ++=上,设(,2)P x x --,则||OP =1x =-, 故(1,1)P --;(2)由22||||1PA PO =-,可知当线段PO 长最小时,线段PA 长最小. 线段PO 长的最小值,即点O 到直线l 的距离,故||min PO ==∴||1min PA ==;(3)设0(P x ,02)x --,则以OP 为直径的圆的方程为222200002(2)()()224x x x x x y --+---+-=, 化简得:2200(2)0x x x x y y -+++=,与221x y +=联立, 可得AB 所在直线方程为00(2)1x x x y -+=,联立0022(2)11x x x y x y -+=⎧⎨+=⎩,得22200000(244)2430x x x x x x x ++----=, Q ∴的坐标为002200002(,)244244x x x x x x --++++, 可得Q 点轨迹为22111()()448x y +++=,圆心11(,)44--,半径4R =.故存在点11(,)44T --,使得线段TQ 长为定值.。

上海 华东师范大学第四附属中学选修一第二单元《直线和圆的方程》测试题(答案解析)

上海 华东师范大学第四附属中学选修一第二单元《直线和圆的方程》测试题(答案解析)

一、选择题1.若圆22220x y x y k +---=上的点到直线100x y +-=的最大距离为k 的值是( )A .2-B .2C .2-或2D .2-或02.过点)引直线l 与曲线y =A ,B 两点,O 为坐标原点,当AOB 的面积取最大值时,直线l 的斜率等于( )A .B .3±C .D 3.过点()0,0A 、()2,2B 且圆心在直线24y x =-上的圆的标准方程为( ) A .()2224x y -+= B .()2224x y ++= C .()()22448x y -+-=D .()()22448x y ++-=4.已知两点()1,2A -、()2,1B ,直线l 过点()0,1P -且与线段AB 有交点,则直线l 的倾斜角的取值范围为( )A .3,44ππ⎡⎤⎢⎥⎣⎦B .30,,424πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦C .30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭ D .3,,4224ππππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦5.如果实数x 、y 满足22640x y x +-+=,那么yx的最大值是( )A .23B C .3D 6.已知圆M :22(1)(2)5x y -+-=和点(3,5)P ,过点P 做圆M 的切线,切点分别为A 、B ,则下列命题:①4PA PB k k ⋅=-;②PA =;③AB 所在直线方程为:23130x y +-=;④PAB △外接圆的方程为2247130x y x y +--+=.其中真命题的个数为( ) A .1B .2C .3D .47.在平面直角坐标系中,定义1212(,)||||d A B x x y y =-+-为两点11(,)A x y 、22(,)B x y 的“切比雪夫距离”,又设点P 及直线l 上任意一点Q ,称(,)d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(,)d P l ,给出下列三个命题: ①对任意三点A 、B 、C ,都有(,)(,)(,)d C A d C B d A B +≥; ②已知点(3,1)P 和直线:210l x y --=,则4(,)3d P l =; ③定义(0,0)O ,动点(,)P x y 满足(,)1d P O =,则动点P 的轨迹围成平面图形的面积是4;其中真命题的个数( ) A .0 B .1 C .2 D .3 8.若圆x 2+y 2+ax -by =0的圆心在第二象限,则直线x +ay -b =0一定不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限9.过点(1,2)的直线被圆229x y +=所截弦长最短时的直线方程是( ) A .250x y +-= B .20x y -= C .230x y -+=D .20x y +=10.直线:210l x my m +--=与圆22:(2)4C x y +-=交于A B 、两点,则当弦AB 最短时直线l 的方程为( ) A .2410x y +-= B .2430x y -+= C .2410x y ++=D .2430x y ++=11.若直线220++=ax y 与直线840x ay ++=平行,则a 的值为( ) A .4B .4-C .4-或4D .2-12.若圆()2220x y r r +=>上仅有4个点到直线20x y --=的距离为1,则实数r 的取值范围为( )A .)1,+∞B .)1- C .()1-D .()1二、填空题13.经过点(2,1)M ,并且与圆2268240x y x y +--+=相切的直线方程是________. 14.若M 是直线cos sin 10x y θθ++=上到原点的距离最近的点,则当θ在实数范围内变化时,动点M 的轨迹方程是______.15.点(,)P x y 是直线30kx y ++=上一动点,,PA PB 是圆22:430C x y y +-+=的两条切线,,A B 是切点,若四边形PACB 面积的最小值为2,则k 的值为______. 16.已知圆C :()2234x y -+=,线段MN 在直线211y x =-+上运动,点P 是线段MN 上任意一点,若圆C 上存在两点A ,B ,使得PA PB ⊥,则线段MN 长度的最大值是___________.17.过点(3,5)A 作圆2248800x y x y +---=的最短弦,则这条弦所在直线的方程是__.18.以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0公共弦为直径的圆的方程为________.19.过点1(,1)2M 的直线l 与圆C :(x ﹣1)2+y 2=4交于A 、B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程为_____.20.在直角坐标系xoy 中,已知圆C :()222824580x y m x my m m +---+-=,直线l 经过点()2,1,若对任意的实数m ,直线l 被圆C 截得弦长为定值,则直线l 方程为______.三、解答题21.已知一圆经过点()3,1A ,()1,3B -,且它的圆心在直线320x y --=上. (1)求此圆的方程;(2)若点D 为所求圆上任意一点,且点()3,0C ,求线段CD 的中点M 的轨迹方程. 22.已知ABC 的顶点()5,1A ,B 的平分线所在直线方程为0x y -=,C ∠的平分线所在直线方程为20x -=. (1)求BC 边所在的直线方程; (2)求B .23.如图,圆22():21M x y -+=,点(1,)P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为,A B .(1)若1t =,求两条切线所在的直线方程;(2)求直线AB 的方程,并写出直线AB 所经过的定点的坐标. 24.已知点A (8,0),点B (4,0),动点M (x ,y )满足:|MA |2MB |. (1)求点M 的轨迹方程;(2)点P (0,6),在直线OP (O 为坐标原点)上存在定点E (不同于点P ),满足对于圆M 上任意一点N ,都有NENP为常数,试求所有满足条件的点E 的坐标. 25.已知直线l :240x y +-=,圆C 的圆心在x 2,且圆心C 到直线l 的距离为55. (1)求圆C 的方程;(2)直线l 上是否存在一点Q 作圆C 的两条切线,切点分别为,M N 直线MN 恒过定点,并求定点坐标.26.已知圆C 方程222410x y x y +-++= (1)求圆C 的圆心,半径;(2)直线l 经过(2,0),并且被圆C 截得的弦长为23l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将圆的方程化成标准方程,求出圆心及半径r ,圆心到直线的距离为d ,则圆上的点到直线的最大距离为d r + 【详解】圆22220x y x y k +---=化成标准形式()()22112x y k -+-=+,圆心()1,1,半径r =2k >-;圆心()1,1到直线100x y +-=的距离===d圆上的点到直线的最大距离为+==d r=,解得:2k =或2k =-(舍去) 故选:B 【点睛】结论点睛:本题考查直线与圆的位置关系,求圆上点到直线的最大距离与最小距离常用的结论:设圆的半径r ,圆心到直线的距离为d , (1)当dr 时,圆上的点到直线的最大距离为d r +,最小距离为d r -;(2)当d r ≤时,圆上的点到直线的最大距离为d r +,最小距离为0; 2.A解析:A 【分析】由y =221x y +=()0y ≥,由题知直线斜率存在,设直线l 的斜率为k ,10k -<<,设直线l 为0(y k x -=,然后根据圆的弦长公式||AB =以及圆心O 到直线l 的距离d =12AOBSd AB =,进而化简求解即可 【详解】由y =221x y +=()0y ≥,∴曲线y =x 轴上方的部分(含与x 轴的交点),由题知,直线斜率存在,设直线l 的斜率为k若直线与曲线有两个交点,且直线不与x 轴重合,则10k -<<,∴直线l的方程为:0(y k x -=-,即0kx y --= 则圆心O 到直线l的距离d ==直线l 被半圆所截得的弦长为||AB ===12AOBSd AB ====令211tk =+ 则AOBS=,当3t 4=,即21314k =+时,AOB S 有最大值为12此时,21314k =+ 3k ∴=±又10k -<<,3k ∴=-综上所述,直线l 的斜率是3-故答案为:A 【点睛】关键点睛:通过圆的弦长公式||AB =和圆心O 到直线l的距离d =得出12AOBSd AB ==211t k =+,可得2462AOBSt t =-+-,进而利用二次函数的性质求解即可,属于中档题3.A解析:A 【分析】设圆心的坐标为(),24a a -,根据圆心到点A 、B 的距离相等可得出关于实数a 的等式,求出a 的值,可得出圆心的坐标,并求出圆的半径,由此可得出所求圆的标准方程. 【详解】设圆心为(),24C a a -,由AC BC =可得()()()222224226a a a a +-=-+-,整理可得20a -=,解得2a =,所以圆心()2,0C ,所求圆的半径为2AC =,因此,所求圆的标准方程为()2224x y -+=.故选:A. 【点睛】方法点睛:求圆的方程常见的思路与方法如下:(1)求圆的轨迹方程,直接设出动点坐标(),x y ,根据题意列出关于x 、y 的方程即可; (2)根据几何意义直接求出圆心坐标和半径,即可写出圆的标准方程;(3)待定系数法,可以根据题意设出圆的标准方程或一般方程,再根据所给条件求出参数即可.4.C解析:C 【分析】作出图形,求出直线PA 、PB 的斜率,数形结合可得出直线l 的斜率的取值范围,进而可求得直线l 的倾斜角的取值范围. 【详解】 如下图所示:直线PA 的斜率为21110PA k -+==--,直线PB 的斜率为11120PB k +==-, 由图形可知,当直线l 与线段AB 有交点时,直线l 的斜率[]1,1k ∈-. 因此,直线l 的倾斜角的取值范围是30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭.故选:C. 【点睛】关键点点睛:求直线倾斜角的取值范围的关键就是求出直线的斜率的取值范围,结合图象,利用直线PA 、PB 的斜率可得所要求的斜率的取值范围.5.D解析:D 【分析】本题首先可求出圆的圆心与半径,然后将yx看作圆上一点(),x y 与()0,0连线的斜率,并结合图像得出当过原点的直线与圆相切时斜率最大,最后根据直线与圆相切即可得出结果. 【详解】22640x y x +-+=,即()2235x y -+=,圆心为()3,0,半径为5,yx的几何意义是圆上一点(),x y 与()0,0连线的斜率, 如图,结合题意绘出图像:结合图像易知,当过原点的直线与圆相切时,斜率最大,即yx最大, 令此时直线的倾斜角为α,则5tan 2α=,y x 5,故选:D. 【点睛】关键点点睛:本题考查直线的斜率的几何意义的应用,考查直线与圆相切的相关性质,能否将yx看作点(),x y 与()0,0连线的斜率是解决本题的关键,考查数形结合思想,是中档题.6.D解析:D 【分析】设出斜率k ,得出切线方程,利用相切可得2+2440k k -=,即可得出4PA PB k k ⋅=-,判断①;由22PA PM MA =-②;可得,,,P A B M 四点共圆,圆心为PM 中点,即72,2⎛⎫ ⎪⎝⎭,半径为22PM =,写出圆的方程可判断④;两圆相减可得直线AB 方程,判断③. 【详解】可知切线的斜率存在,设斜率为k ,则切线方程为53y k x ,即350kx y k ,=2+2440k k -=,可得,PA PB k k 是该方程的两个根,故4PA PB k k ⋅=-,故①正确; 又PM ==PA MA ⊥,PA ∴==故②正确;,PA MA PB MB ⊥⊥,,,,P A B M ∴四点共圆,且圆心为PM 中点,即72,2⎛⎫⎪⎝⎭,半径为2PM =故PAB △外接圆的方程为22713(2)()24x y -+-=,即2247130x y x y +--+=,故④正确;将两圆方程相减可得23130x y +-=,即直线AB 方程,故③正确. 故选:D. 【点睛】本题考查过圆外一点作圆的切线问题,解题的关键是利用相切关系得出圆心到直线的距离为半径,且,,,P A B M 四点共圆.7.B解析:B 【分析】由新定义表示出三点,,A B C 两两之间的“切比雪夫距离”,然后根据绝对值的性质判断①,由新定义计算出(,)d P l ,判断②,根据新定义求出P 的轨迹方程,确定其轨迹,求得轨迹围成的图形面积判断③. 【详解】①设112233(,),(,),(,)A x y B x y C x y ,则1212(,)d A B x x y y =-+-,13132323(,)(,)d A C d B C x x y y x x y y +=-+-+-+-,显然1323132312()()x x x x x x x x x x -+-≥---=-,同理132312y y y y y y -+-≥-,∴(,)(,)(,)d C A d C B d A B +≥,①正确; ②设(,)P x y 是直线l 上任一点,则21y x =-,(,)31322d P l x y x x =-+-=-+-35,31,1353,1x x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩,易知(,)d P l 在[1,)+∞上是增函数,在(,1)-∞上是减函数,∴1x =时,min (,)13222d P l =-+-=,②错; ③由(,)1d P O =得1x y +=,易知此曲线关于x 轴,y 轴,原点都对称,它是以(1,0),(0,1),(1,0),(0,1)--为顶点的正方形,其转成图形面积为12222S =⨯⨯=,③错.故选:B . 【点睛】关键点点睛:本题考查新定义,解题关键是理解新定义,解题方法是把新概念转化为绝对值的问题,利用绝对值的性质求解.8.C解析:C 【分析】由圆心位置确定a ,b 的正负,再结合一次函数图像即可判断出结果. 【详解】因为圆22+0x y ax by +-=的圆心坐标为,22a b ⎛⎫- ⎪⎝⎭,由圆心在第二象限可得0,0a b >>,所以直线0x ay b +-=的斜率10a -<,y 轴上的截距为0b a>,所以直线不过第三象限. 故选:C9.A解析:A 【分析】分析可得当弦长最短时,该弦所在直线与过点(1,2)的直径垂直,先求出过点(1,2)的直径的斜率,然后再求出所求直线的斜率,最后由点斜式写出直线的方程即可. 【详解】当弦长最短时,该弦所在直线与过点(1,2)的直径垂直, 圆229x y +=的圆心为(0,0),所以过点(1,2)的直径的斜率为20210-=-, 故所求直线为12-,所求直线方程为12(1)2y x ,即250x y +-=.故选:A . 【点睛】方法点睛:本题考查直线与圆位置关系的应用,解题关键是明确当弦与圆的直径垂直时,弦长最短,考查逻辑思维能力,属于常考题.10.B解析:B 【分析】先求出直线经过定点1(,1)2P ,圆的圆心为()0,2C ,根据直线与圆的位置关系可知,当CP l ⊥时弦AB 最短,根据1CP l k k ⋅=-求出m 的值,即可求出直线l 的方程.【详解】解:由题得,(21)(1)0x m y -+-=,21010x y -=⎧∴⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩,所以直线l 过定点1(,1)2P ,圆22:(2)4C x y +-=的圆心为()0,2C ,半径为2,当CP l ⊥时,弦AB 最短,此时1CP l k k ⋅=-, 由题得212102CP k -==--,12l k ∴=, 所以212m -=,4m ∴=-, 所以直线l 的方程为:2430x y -+=.故选:B. 【点睛】本题考查直线过定点问题,考查直线方程的求法,以及直线和圆的位置关系,考查分析推理和化简运算能力.11.B解析:B 【分析】根据两直线平行,列出方程组,即可求解. 【详解】由题意,直线220++=ax y 与直线840x ay ++=平行, 可得2802240a a a ⨯-⨯=⎧⎨-⨯≠⎩,解得4a =-.故选: B. 【点睛】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线的平行的条件是解答的关键,着重考查运算与求解能力.12.A解析:A 【分析】到已知直线的距离为1的点的轨迹,是与已知直线平行且到它的距离等于1的两条直线,根据题意可得这两条平行线与222x y r +=有4个公共点,由此利用点到直线的距离公式加以计算,可得r 的取值范围. 【详解】解:作出到直线20x y --=的距离为1的点的轨迹,得到与直线20x y --=平行, 且到直线20x y --=的距离等于1的两条直线, 圆222x y r +=的圆心为原点, 原点到直线20x y --=的距离为22d ==,∴两条平行线中与圆心O 距离较远的一条到原点的距离为21d '=+,又圆222(0)x y r r +=>上有4个点到直线20x y --=的距离为1,∴两条平行线与圆222x y r +=有4个公共点,即它们都与圆222x y r +=相交.由此可得圆的半径r d '>, 即21r >+,实数r 的取值范围是()21,++∞.故选:A .【点睛】本题给出已知圆上有四点到直线的距离等于半径,求参数的取值范围.着重考查了圆的标准方程、直线与圆的位置关系等知识,属于中档题.二、填空题13.或【分析】求出圆心和半径判断斜率不存在的直线是否是切线斜率存在时设出直线方程由圆心到切线距离等于半径求得参数值得切线方程【详解】圆标准方程是圆心为半径为1易知直线与圆相切设斜率存在的切线方程为即由解解析:2x =或4350x y --= 【分析】求出圆心和半径,判断斜率不存在的直线是否是切线,斜率存在时设出直线方程,由圆心到切线距离等于半径求得参数值得切线方程. 【详解】圆标准方程是22(3)(4)1x y -+-=,圆心为(3,4),半径为1. 易知直线2x =与圆相切,设斜率存在的切线方程为1(2)y k x -=-,即210kx y k --+=,1=,解得43k =,切线方程为481033x y --+=,即4350x y --=.故答案为:2x =或4350x y --=. 【点睛】本题考查求圆的切线方程,解题方法是由圆心到切线的距离等于半径求解.但解题时要注意过定点斜率不存在的直线是否是切线,否则由方程求不出此直线方程.如果所过的点在圆上,由可由过切点的半径与切线垂直得出切线斜率后得直线方程.14.【分析】直线上到原点的距离最近的点就是过原点作直线的垂线垂足即为又原点到直线的距离为定值所以可知动点的轨迹【详解】∵原点到直线的距离为∴当在实数范围内变化时动点的轨迹为以原点为圆心半径为1的圆即其轨 解析:221x y +=【分析】直线cos sin 10x y θθ++=上到原点的距离最近的点,就是过原点作直线的垂线,垂足即为M ,又原点到直线的距离为定值,所以可知动点M 的轨迹. 【详解】∵原点()0,0到直线cos sin 10x y θθ++=1=,∴当θ在实数范围内变化时,动点M 的轨迹为以原点()0,0为圆心,半径为1的圆, 即其轨迹方程为221x y +=. 故答案为:221x y += 【点睛】本题主要考查轨迹方程,解决与直线有关的轨迹问题时,要充分考虑到图形的几何性质,属于中档题.15.【分析】根据圆的切线性质可知四边形的面积转化为直角三角形的面积结合最小值可求的值【详解】由于是圆的两条切线是切点所以当最小时四边形的面积最小而的最小值即为到直线的距离又所以故答案为:解析:2±【分析】根据圆的切线性质可知四边形PACB 的面积转化为直角三角形的面积,结合最小值可求k 的值. 【详解】由于,PA PB 是圆()22:21C x y +-=的两条切线,,A B 是切点,所以2222||||2||2||||2||4PACB PAC S S PA AC PA PC AC PC ∆==⋅==-=-, 当||PC 最小时,四边形PACB 的面积最小,而||PC 的最小值即为C 到直线的距离d , 又2,1d k =+所以222424 2.d k k -=⇒=⇒=± 故答案为:2±.16.【分析】题目等同于点P 在已知直线上的轨迹长度考虑边界的情况此时△APC 和△ABC 均为等腰直角三角形先算出进一步求出答案【详解】题目等同于点P 在已知直线上的轨迹长度考虑边界的情况也就是PAPB 分别与圆 解析:23【分析】题目等同于点P 在已知直线上的轨迹长度,考虑边界的情况,此时△APC 和△ABC 均为等腰直角三角形,先算出2232lPC d =-=,进一步求出答案. 【详解】题目等同于点P 在已知直线上的轨迹长度,考虑边界的情况,也就是PA ,PB 分别与圆相切的情况,此时△APC 和△ABC 均为等腰直角三角形,由题意知,圆心()3,0C ,半径2r线段PC 的长为22r =圆心到直线的距离22301152+1d -⨯-+==,根据图像的对称性可知2232lPC d =-= 所以线段MN 长度的最大值为3故答案为: 【点睛】本题考查了直线与圆位置关系的应用.本题的难点是分析何时EF 取到最值.根据考虑边界的情况数形结合得出结论.17.【分析】利用配方法将圆化成标准方程得其圆心为当垂直这条弦时所得到的弦长最短求出直线的斜率后再根据两条直线垂直的条件和点斜式即可得解【详解】解:将圆化成标准形式为圆心为则点A 在圆内当垂直这条弦时所得到 解析:80x y +-=【分析】利用配方法将圆化成标准方程,得其圆心为M ,当AM 垂直这条弦时,所得到的弦长最短,求出直线AM 的斜率AM k 后,再根据两条直线垂直的条件和点斜式即可得解. 【详解】解:将圆2248800x y x y +---=化成标准形式为22(2)(4)100x y -+-=,圆心为(2,4)M ,则点A 在圆内,当AM 垂直这条弦时,所得到的弦长最短,54132AM k -==-, ∴这条弦所在直线的斜率为1-,其方程为5(3)y x -=--,即80x y +-=.故答案为:80x y +-=. 【点睛】本题考查直线截圆的弦长问题,熟练掌握圆的一般方程与标准方程互化、两条直线垂直的条件等基础知识点是解题的关键,考查学生的数形结合思想、逻辑推理能力和运算能力,属于中档题.18.x2+y2-4x +4y -17=0【解析】试题分析:解法一:先两圆方程相减得到公共弦方程再联立直线和圆的方程求出公共点坐标进而求出圆的半径和圆心写出圆的方程即可;解法二:先两圆方程相减得到公共弦方程再解析:x 2+y 2-4x +4y -17=0【解析】试题分析:解法一:先两圆方程相减,得到公共弦方程,再联立直线和圆的方程求出公共点坐标,进而求出圆的半径和圆心,写出圆的方程即可;解法二:先两圆方程相减,得到公共弦方程,再利用圆系方程进行求解. 试题解法一:联立两圆方程22221221301216250x y x y x y x y ⎧+---=⎨+++-=⎩, 相减得公共弦所在直线方程为4x +3y -2=0.再由221221304320x y x y x y ⎧+---=⎨+-=⎩,联立得两圆交点坐标(-1,2)、(5,-6). ∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2),半径为221(51)(62)52++--=, ∴圆C 的方程为(x -2)2+(y +2)2=25.解法二:由解法一可知公共弦所在直线方程为4x +3y -2=0.设所求圆的方程为x 2+y 2-12x -2y -13+λ(x 2+y 2+12x +16y -25)=0(λ为参数). 可求得圆心1212162(,)2(1)2(1)C λλλλ----++.∵圆心C 在公共弦所在直线上, ∴121216243202(1)2(1)λλλλ---⨯+⨯-=++,解得λ=12. ∴圆C 的方程为x 2+y 2-4x +4y -17=0.19.2x ﹣4y+3=0【分析】要∠ACB 最小则分析可得圆心C 到直线l 的距离最大此时直线l 与直线垂直即可算出的斜率求得直线l 的方程【详解】由题得当∠ACB 最小时直线l 与直线垂直此时又故又直线l 过点所以即故解析:2x ﹣4y +3=0 【分析】要∠ACB 最小则分析可得圆心C 到直线l 的距离最大,此时直线l 与直线CM 垂直,即可算出CM 的斜率求得直线l 的方程. 【详解】由题得,当∠ACB 最小时,直线l 与直线CM 垂直,此时102112CM k -==-- ,又1CM l k k ⋅=-,故12l k =,又直线l 过点1(,1)2M ,所以11:1()22l y x -=-,即2430x y -+= . 故答案为2430x y -+=本题主要考查直线与圆的位置关系,过定点的直线与圆相交于两点求最值的问题一般为圆心到定点与直线垂直时取得最值.同时也考查了线线垂直时斜率之积为-1,以及用点斜式写出直线方程的方法.20.【分析】先将圆的方程化为标准形式求出圆心和半径通过分析可以看出圆心在一条直线上若对于任意的实数直线被圆截得弦长为定值可得直线与圆心所在的直线平行即可得出结论【详解】圆:化为标准形式可得:所以圆心半径 解析:25x y +=【分析】先将圆的方程化为标准形式,求出圆心和半径,通过分析可以看出,圆心在一条直线上,若对于任意的实数m ,直线l 被圆C 截得弦长为定值,可得直线l 与圆心所在的直线平行,即可得出结论. 【详解】圆C :()222824580x y m x my m m +---+-=化为标准形式可得:()()224216x m y m --+-=⎡⎤⎣⎦ ,所以圆心()4,2C m m - ,半径4r =, 令4,2x m y m =-= ,可得28x y += ,所以圆心在28x y +=上,又因为直线l 经过点()2,1,若对任意的实数m ,直线l 被圆C 截得弦长为定值, 所以直线l 与圆心所在的直线平行,, 所以设直线l 的方程为:2x y c +=, 将()2,1代入得:5c =, 所以则直线l 方程为:25x y +=. 故答案为:25x y += 【点睛】本题主要考查了圆的标准方程,直线和圆的位置关系,考查分析解决问题的能力,属于基础题.三、解答题21.(1) 22(2)(4)10x y -+-=(2) ()2255222x y ⎛⎫-+-= ⎪⎝⎭【分析】(1)首先设出方程,将点坐标代入得到关于参数的方程组,通过解方程组得到参数值,从而确定其方程;(2)首先设出点M 的坐标,利用中点得到点D 坐标,代入圆的方程整理化简得到的中点M 的轨迹方程.(1)由已知可设圆心N (a ,3a -2),又由已知得|NA |=|NB |,=,解得:a =2.于是圆N 的圆心N (2,4),半径r ==所以,圆N 的方程为22(2)(4)10x y -+-=,(2) 设M (x ,y ),D ()11,x y ,则由C (3,0)及M 为线段CD 的中点得:113202x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,解得11232x x y y=-⎧⎨=⎩又点D 在圆N :22(2)(4)10x y -+-=上,所以有()()222322410x y --+-=,化简得:()2255222x y ⎛⎫-+-= ⎪⎝⎭. 故所求的轨迹方程为()2255222x y ⎛⎫-+-= ⎪⎝⎭.【点睛】方法点睛:与圆相关的点的轨迹问题,一般可以考虑转移法(相关点法),设动点的坐标,根据条件,用动点坐标表示圆上点的坐标,再根据圆上点的坐标满足圆的方程求解即可.22.(1)23y x =+;(2)4arccos 5B ∠=. 【分析】(1)求出点()5,1A 关于直线0x y -=和20x -=对称的点,利用两个对称点都在直线BC 上,即可求得BC 边所在的直线方程;(2)联立直线方程求出,B C 两点的坐标,利用两点间距离公式求出ABC 三条边长,再利用余弦定理即可求得B . 【详解】(1)作点()5,1A 关于B 的平分线0x y -=的对称点()11,5A , 作点()5,1A 关于C ∠的平分线20x -=的对称点()21,1A -, 由题意得B ,1A ,2A ,C 四点共线, 所以直线BC 的方程为511(1)11y x --=++,即23y x =+;(2)由023x y y x -=⎧⎨=+⎩得()3,3B --,由2023x y x -=⎧⎨=+⎩得()2,7C , 又()5,1A , 所以AB ==AC ==BC ==由余弦定理得2224cos 25AB BC AC B AB BC +-===⨯, 所以4arccos 5B ∠=. 【点睛】关键点点睛:根据角的两边所在的直线关于角的平分线所在的直线对称,可得BA 与BC 关于直线0x y -=对称,CB 与CA 关于直线20x -=对称,所以点()5,1A 关于直线0x y -=,20x -=对称的点都在直线BC 上,即可求得BC 边所在的直线方程;第二问求角B 要想到利用余弦定理,因此需要求,B C 两点的坐标,利用两点间距离公式求三边长.23.(1) 切线方程为1y =和3410x y +-=;(2) 直线AB 的方程为350x ty --=,恒过定点5,03⎛⎫ ⎪⎝⎭. 【分析】(1) 设切线方程为()1y t k x -=+,由相切可得圆心到切线的距离等于半径,结合1t =即可求出切线的斜率,从而可求出切线方程.(2)求出以P 为圆心,PA 为半径的圆方程,与圆M 方程联立即可求出直线AB 的方程,进而可求出定点的坐标. 【详解】解:(1)由题意知,切线的斜率一定存在,设切线方程为()1y t k x -=+, 即y kx k t =++,则圆心()2,0到直线的距离1d ===,整理得228610k kt t ++-=.当1t =时,222861860k kt t k k ++-=+=,解得0k =或34-, 则切线方程为1y =和3410x y +-=. (2)由题意知,()()22221209PMt t =--+-=+,所以22228PA PM MA t =-=+,即以P 为圆心,PA 为半径的圆方程为()()22218x y t t ++-=+,与圆M 方程联立得,()()2222218(2)1x y t t x y ⎧++-=+⎪⎨-+=⎪⎩,两式相减整理得350x ty --=,当0y =时,53x =, 所以直线AB 的方程为350x ty --=,恒过定点5,03⎛⎫ ⎪⎝⎭. 【点睛】 方法点睛:直线和圆相切问题的处理方法一般有两种:一是联立直线方程和圆的方程,通过0∆=解决问题;二是结合几何意义,即圆心到直线的距离等于半径求解. 24.(1)2232x y +=;(2)160,3⎛⎫⎪⎝⎭E . 【分析】(1)直接用坐标表示出已知等式,化简后可得方程; (2)点(0,)E m ,(,)N x y ,由NEt NP=t =与圆方程联立方程组消去x 后得关于y 的恒等式,由此可求得m ,t . 【详解】解:,==MA MB2232x y ∴+=,即点M 的轨迹方程是2232x y +=.(2)设点(0,)E m ,(,)N x y,,=NEt NP =t又∵2232x y +=②,由①②整理,得222(122)32680-++-=t m y m t ,即2221220,32680,t m m t ⎧-=⎨+-=⎩解得16,63m m ==(舍),3=t ∴满足条件的点E 的坐标为16(0,)3E . 【点睛】本题考查直接法求轨迹方程,考查圆中的定点问题.求定点方法:设定点坐标(0,)E m ,动点坐标(,)N x y ,NENP为常数t ,把常数t 的等式用动点坐标表示,同时结合圆的方程,得出关于变量x 或y 的恒等式,由恒等式知识求得常数及定点坐标.25.(1)22(2)2++=x y ;(2)存在,52,33⎛⎫- ⎪⎝⎭【分析】(1)直接利用圆心到直线的距离公式求解即可;(2)先假设存在,写出以QC 为直径的圆的方程,两圆相减得到公共弦MN 的方程, 再求出定点即可. 【详解】解:(1)依题意知:圆心(,0)(0)C a a <,5=, 解得:2a =-或10a =,0a <,2a ∴=-,即圆的方程为22(2)2++=x y ;(2)设存在(2,2)-Q t t ,则,,,M N Q C 四点共圆,即以QC 为直径的圆的方程为:(2)(2)(2)0x x t y y t +-+-+=, 即22(22)(2)40++-+--=x y t x t y t ①22420x y x +++=②由①-②得:直线MN 的方程为:(22)(2)240+--++=t x t y t , 即(24)2220t x y x y -++++=,令2402220x y x y -+=⎧⎨++=⎩, 解得:5323x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线MN 恒过定点的坐标为52(,)33-.【点睛】关键点点睛:本题解题的关键是找到,,,M N Q C 四点共圆,写出以QC 为直径的圆的方程,利用两圆方程相减得到公共弦方程.26.(1)圆心(1,2)-;半径2;(2)2x =或3460x y --=. 【分析】(1)将圆的方程化为标准方程,直接求圆心和半径;(2)利用弦长公式,得到圆心到直线的距离,分斜率存在和不存在两种情况,求直线方程. 【详解】(1)()()22222410124x y x y x y +-++=⇔-++=圆心(1,2)- 半径2;(2)圆222410x y x y +-++=可化为22(1)(2)4x y -++=. 所以圆心到直线的距离为1d ==当直线l 的斜率不存在时,直线l 的方程为2x =,此时直线l 被圆C 截得的弦长为当直线l 的斜率k 存在时,设直线l 的方程为(2)y k x =-,即20kx y k --=1= 解得34k = ∴直线的方程为3460x y --=综上所述,直线l 的方程为2x =或3460x y --=.【点睛】 易错点睛:本题第二问,根据弦长求直线方程时,不要忽略过定点直线,其中包含斜率存在和不存在两种情况,否则容易丢根.。

高一数学选择性必修第一册第二章《直线和圆的方程》章末练习题卷含答案解析 (20)

高一数学选择性必修第一册第二章《直线和圆的方程》章末练习题卷含答案解析 (20)

高一数学选择性必修第一册第二章《直线和圆的方程》章末练习题卷(共22题)一、选择题(共10题)1.已知直线l过点(1,2)且到点A(3,3)和B(5,7)的距离相等,求直线l的方程.情况二、直线l过线段AB的中点(5,7),直线l的方程为( )A.32B.54C.5x−4y+3=0D.3x−2y+1=0 2.已知直线l过点(2,1)和点(4,0),则直线l的斜率为( )A.−2B.−12C.12D.23.“m=43”是“直线x−my+4m−2=0与圆x2+y2=4相切”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.已知实数x,y满足x2+y2+4x−6y+12=0,则y的最小值是( )A.4B.2C.−1D.−35.直线ax+by+a+b=0(ab≠0)和圆x2+y2−2x−5=0的交点个数为( )A.0B.1C.2D.与a,b有关6.对于平面直角坐标系内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:∣∣AB∣∣=∣x2−x1∣+∣y2−y1∣.给出下列三个命题:①若点C在线段AB上,则∣∣AC∣∣+∣∣CB∣∣=∣∣AB∣∣;②在△ABC中,∣∣AC∣∣+∣∣CB∣∣>∣∣AB∣∣;③在△ABC中,若∠A=90∘,则∣∣AB∣∣2+∣∣AC∣∣2=∣∣BC∣∣2.其中错误的个数为( )A.0B.1C.2D.37.圆x2+y2−2x=0与圆x2+y2+4y=0的位置关系是( )A.相离B.外切C.相交D.内切8.圆(x−2)2+(y+3)2=2上的点与点(0,−5)的最大距离为( )A.√2B.2√2C.4√2D.3√29.阿波罗尼斯(约公元前262∼190年)证明过这样一个命题:平面内到两定点距离之比为常数k(k>0且k≠1)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A,B间的距离为2,动点P与A,B距离之比为√2,当P,A,B不共线时,△PAB面积的最大值是( )A.2√2B.√2C.2√23D.√2310.下列关于直线倾斜角的说法中,正确的是( )A.任意一条直线都有唯一的倾斜角B.一条直线的倾斜角可以为−π6C.倾斜角为0的直线只有一条,即x轴D.若直线的倾斜角为α,则sinα∈(0,1)二、填空题(共6题)11.已知0<k<4,直线l1:kx−2y−2k+8=0和直线l2:2x+k2y−4k2−4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k值为.12.已知直线l的倾斜角为2α−20∘,则α的取值范围是.13.设圆(x−3)2+(y+5)2=r2上有且只有两个点到直线4x−3y−2=0的距离等于1,则半径r取值范围的区间为.14.两条直线的夹角的取值范围为.15.过点A(2,−1)与B(1,2)半径最小的圆的方程为.16.若两圆x2+y2=4与x2+y2−2ax+a2−1=0相内切,则a=.三、解答题(共6题)17.已知圆C经过点O(0,0),A(8,−4),且圆心C在直线l:x−y−7=0上,求圆C的一般方程.18.直线l的方程为(a+1)x+y+2−a=0(a∈R).(1) 若l在两坐标轴上的截距相等,求实数a的值;(2) 若l不经过第二象限,求实数a的取值范围.19.在平面直角坐标系xOy中,已知圆M:x2+y2−12x−14y+60=0及其上一点A(2,4).(1) 设圆N与x轴相切,与圆M内切,且圆心N在直线x=6上,求圆N的标准方程;(2) 设垂直于 OA 的直线 l 与圆 M 相交于 B ,C 两点,且 BC =OA ,求直线 l 的方程; (3) 设点 T (0,t ) 满足:存在圆 M 上的两点 P ,Q ,使得 TA ⃗⃗⃗⃗⃗ +TP ⃗⃗⃗⃗⃗ =TQ ⃗⃗⃗⃗⃗ ,求实数 t 的取值范围.20. 已知两条直线的方程分别为 x +y +a =0 和 x +y +b =0,设 a ,b 是方程 x 2+x +c =0 的两个实数根,其中 0≤c ≤18,求两条直线间距离的最大值和最小值.21. 已知 △ABC 的顶点 B (3,4) 、 AB 边上的高所在的直线方程为 x +y −3=0,E 为 BC 的中点,且 AE 所在的直线方程为 x +3y −7=0. (1) 求顶点 A 的坐标;(2) 求过 E 点且在 x 轴、 y 轴上的截距相等的直线 l 的方程.22. 已知直线 l 1:ax +by +1=0(a ,b 不同时为 0),l 2:(a −2)x +y +a =0.(1) 若 b =−3 且 l 1⊥l 2,求实数 a 的值.(2) 当 b =3 且 l 1∥l 2 时,求直线 l 1 与 l 2 之间的距离.答案一、选择题(共10题)1. 【答案】C【知识点】直线的一般式方程、两直线交点坐标与两点间距离公式2. 【答案】B【解析】由题意可知,直线l的斜率为0−14−2=−12.【知识点】直线倾斜角与斜率3. 【答案】A【解析】由直线x−my+4m−2=0与圆x2+y2=4相切,得√1+m2=2,解得m=0或m=43.则由m=43能推出直线x−my+4m−2=0与圆x2+y2=4相切,反之,由直线x−my+4m−2=0与圆x2+y2=4相切,不一定得到m=43,则“m=43”是“直线x−my+4m−2=0与圆x2+y2=4相切”的充分不必要条件.【知识点】直线与圆的位置关系4. 【答案】B【知识点】圆的一般方程5. 【答案】C【解析】因为直线ax+by+a+b=0(ab≠0)可化为a(x+1)+b(y+1)=0,所以直线恒过定点(−1,−1),而(−1,−1)在圆x2+y2−2x−5=0内,故直线ax+by+a+b=0过圆内的点,则直线与圆相交,且有2个交点,故选C.【知识点】直线与圆的位置关系6. 【答案】B【解析】不妨设直线AB的方程为y=kx+b(k>0),令x2>x0>x1,因为点C(x0,y0)在线段AB上,所以∣AC∣=∣x0−x1∣+∣y0−y1∣=(k+1)(x0−x1),同理可得,∣CB∣=(k+1)(x2−x0),∣AB∣=(k+1)(x2−x1),因为∣∣AC∣+∣CB∣∣=(k+1)(x0−x1)+(k+1)(x2−x0)=(k+1)(x2−x1)=∣AB∣,所以①正确.②取C(0,0),A(1,0),B(0,1),则∣AC∣+∣CB∣=∣AB∣=2,故②正确.③因为在△ABC中,若∠C=90∘,取C(1,1),A(3,2),则B在直线x+y=3上,不妨取B(0,3),∣CA∣=∣3−1∣+∣2−1∣=2+1=3,∣CB∣=∣0−1∣+∣3−1∣=1+2=3,∣AB∣=∣3−0∣+∣2−3∣=4,显然,∣AC∣+∣CB∣≠∣AB∣,所以③错误.综上所述,其中真命题的个数为1.【知识点】直线的点斜式与斜截式方程7. 【答案】C【解析】圆O1:(x−1)2+y2=1,圆心O1(1,0),半径r1=1.圆O2:x2+(y+2)2=4,圆心O2(0,−2),半径r2=2.则有O1O2=√5,r2−r1<O1O2<r1+r2,故两圆相交.【知识点】圆与圆的位置关系8. 【答案】D【解析】圆(x−2)2+(y+3)2=2的圆心为(2,−3),点(0,−5)与圆心的距离为√(2−0)2+(−3+5)2=2√2,又圆的半径为√2,故所求的最大距离为2√2+√2=3√2.【知识点】圆的标准方程9. 【答案】A【解析】如图,以经过A,B的直线为x轴,线段AB的垂直平分线为y轴,建立直角坐标系:则:A(−1,0),B(1,0),设P(x,y),因为∣PA∣∣PB∣=√2,所以√(x+1)2+y2√(x−1)2+y2=√2,两边平方并整理得:x2+y2−6x+1=0⇒(x−3)2+y2=8.所以当点P在点C或点D时,△PAB面积的最大值是12×2×2√2=2√2.【知识点】圆的标准方程、轨迹与轨迹方程10. 【答案】A【解析】任意一条直线都有唯一的倾斜角,故A正确;若直线的倾斜角为α,则α的取值范围是[0,π),所以sinα∈[0,1],故B错误,D错误;倾斜角为0的直线不唯一,所有与x轴平行或重合的直线的倾斜角都是0,故C错误.【知识点】直线倾斜角与斜率二、填空题(共6题)11. 【答案】18【解析】直线l1:kx−2y−2k+8=0即k(x−2)−2y+8=0,过定点B(2,4),与y轴的交点为C(0,4−k);直线l2:2x+k2y−4k2−4=0,即2x−4+k2(y−4)=0,过定点(2,4),与x轴的交点为A(2k2+2,0).如图所示,由题意知,四边形的面积等于三角形ABD的面积和梯形OCBD的面积之和,故所求四边形的面积为12×4×(2k2+2−2)+2×(4−k+4)2=4k2−k+8,所以k=18时,所求四边形的面积最小.【知识点】直线的基本量与方程12. 【答案】 10°≤α<100°【解析】由 0∘≤2α−20∘<180∘,得 10∘≤α<100∘. 【知识点】直线倾斜角与斜率13. 【答案】 (4,6)【知识点】直线与圆的位置关系14. 【答案】 [0,π2]【知识点】直线倾斜角与斜率15. 【答案】 (x −32)2+(y −12)2=52【解析】设所求的圆的圆心为 C ,圆的半径为 R ,圆心到直线 AB 的距离为 d ,则 R 2=d 2+(AB 2)2,由已知得 AB =√(2−1)2+(−1−2)2=√10,要使半径 R 最小,则需 d 最小,d 最小是 0,此时圆的圆心为 AB 的中点,圆的直径为 AB , 圆的方程是 (x −32)2+(y −12)2=(√102)2,即(x −32)2+(y −12)2=52.【知识点】圆的标准方程16. 【答案】 ±1【知识点】圆与圆的位置关系三、解答题(共6题)17. 【答案】设圆 C 的一般方程为 x 2+y 2+Dx +Ey +F =0,则 {F =0,64+16+8D −4E +F =0,−D2−(−E2)−7=0,解得 {D =−6,E =8,F =0,所以圆 C 的一般方程为 x 2+y 2−6x +8y =0. 【知识点】圆的一般方程18. 【答案】(1) 当直线 l 过原点时,直线 l 在 x 轴和 y 轴上的截距都为 0,相等, 所以 2−a =0,a =2.所以直线 l 的方程为 3x +y =0.若 a ≠2,且 a ≠−1,则 a−2a+1=a −2,即 a +1=1, 所以 a =0,所以直线 l 的方程为 x +y +2=0. 所以实数 a 的值为 0 或 2.(2) 当直线 l 过原点时,直线 l 的方程为 y =−3x ,直线 l 经过第二象限,不合题意; 若直线 l 不过原点,且 l 不经过第二象限,则 {a +1=0,a −2<0. 或 {−(a +1)>0,a −2<0.解得 a ≤−1.故实数 a 的取值范围为 (−∞,−1].【知识点】直线的一般式方程、直线的两点式与截距式方程19. 【答案】(1) (x −6)2+(y −6)2=36. (2) y =−12x −32 或 y =−12x +132.(3) 4−4√6≤t ≤4+4√6.【知识点】圆的切线、直线与圆的位置关系、直线与圆的综合问题、圆与圆的位置关系20. 【答案】由一元二次方程根与系数的关系,得 a +b =−1,ab =c .易知两条直线平行,设两条平行直线间的距离为 d ,则 d =√2,所以 d 2=(a+b )2−4ab2=12−2c (0≤c ≤18),因为 d 2 是关于 c 的单调递减函数,所以当 c =0 时,d 2 有最大值,且 d max 2=12,即 d max =√22; 当 c =18 时,d 2 有最小值,且 d min 2=14,即 d min =12.所以两条直线间距离的最大值为√22,最小值为 12. 【知识点】两直线交点坐标与两点间距离公式21. 【答案】(1) 由题意得 k AB =1,所以直线 AB 的方程为 y −4=x −3,即 x −y +1=0. 已知 AE 所在的直线方程为 x +3y −7=0, 由 {x −y +1=0,x +3y −7=0, 解得 {x =1,y =2,所以 A 的坐标为 (1,2).(2) 设 E (x 0,y 0),则 C (2x 0−3,2y 0−4).因为点 E 在直线 AE 上,点 C 在直线 x +y −3=0 上, 所以 {x 0+3y 0−7=0,(2x 0−3)+(2y 0−4)−3=0, 解得 {x 0=4,y 0=1,即点 E 的坐标是 (4,1).因为直线 l 在 x 轴、 y 轴上的截距相等,所以当直线 l 经过原点时,设直线 l 的方程为 y =kx , 把点 E (4,1) 代入,得 1=4k ,解得 k =14,此时直线 l 的方程为 x −4y =0.当直线 l 不经过原点时,设直线 l 的方程为 xa +ya =1, 把点 E (4,1) 代入,得 4a+1a =1,解得 a =5,此时直线 l 的方程为 x +y −5=0.综上所述,所求直线 l 的方程为 x −4y =0 或 x +y −5=0.【知识点】直线的两点式与截距式方程、两直线交点坐标与两点间距离公式22. 【答案】(1) 当 b =−3 时,l 1:ax −3y +1=0,由 l 1⊥l 2 知 a (a −2)−3=0,解得 a =−1 或 a =3. (2) 当 b =3 时,l 1:ax +3y +1=0,当 l 1∥l 2 时,有 {a −3(a −2)=0,3a −1≠0, 解得 a =3,此时,l 1 的方程为:3x +3y +1=0,l 2 的方程为:x +y +3=0,即 3x +3y +9=0, 则它们之间的距离为 d =√32+32=4√23. 【知识点】直线与直线的位置关系、点到直线的距离与两条平行线间的距离。

直线与圆的方程复习(含答案)

直线与圆的方程复习(含答案)

,解得
k
=
3
所以
y x
的最大值为
3 ,最小值为 -
3
(2) 令 x = 3 cos θ + 2 , y = 3 sin θ
得 x + y = 3 (sin θ + cos θ)+ 2
因为 sin θ + cos θ = 2 sinèæçççθ + π4 øö÷÷÷Î éêë- 2, 2ùúû
所以 x + y 的最大值为 2 + 6 ,最小值为 2 - 6
sinPAM = PM =
2
=2
AM (3 + 1)2 +(3 -1)2 2
所以 PAM = 45
即 PAQ = 90
(2) 过 A(a,b)作 AD,AE 分别与圆 M 相切于 D,E 两点
因为 DAE ³ BAC
所以要使圆 M 上存在两点 B,C,使得 BAC = 60 ,只要作 DAE ³ 60
+
1 2
ö÷÷ø÷2
+ æèçççy
+
1 2
öø÷÷÷2
=
5 4
10.解:由题意得,(x - 2)2 + y2 = 3
(1)

y x
=
k
,则 y = kx
,是一条恒过点 (0, 0)
的直线
画图可知,它与圆 (x
- 2)2
+
y2
=
3
的两条切线的斜率就是
y x
的最大值和最小值
所以
(2k)2
k2 +1
=
3
从而 a = 2 , c = 5 , b2 = c2 - a2 = 1

2022衡水名师原创数学专题卷:专题12 直线与圆的方程(含答案)

2022衡水名师原创数学专题卷:专题12 直线与圆的方程(含答案)

2022衡水名师原创数学专题卷 专题十二《直线与圆的方程》考点38:直线方程与两直线的的位置关系(1-4题,9,10题,13,14题)考点39:圆的方程及点,线,圆的位置关系(5-8题,11,12题,15,16题,17-22题)考试时间:120分钟 满分:150分说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上第I 卷(选择题)一、选择题(本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.直线1y =-的倾斜角是( ) A .30︒B .45︒C .60︒D . 90︒2.经过点(1,1)-,斜率是直线2y =-的斜率的2倍的直线方程是( ). A .1x =-B .1y =C .11)y x -=+D .11)y x -=+3.经过点()2,P m -和(),4Q m 的直线平行于斜率等于1的直线,则m 的值是( ) A.4B.1C.1或3D.1或44.如图,已知()()4,00,4A B 、,从点0(2)P ,射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A.B . C .6 D .5.已知直线10x y ++=与圆C 相切,且直线210()mx y m m ---=∈R 始终平分圆C 的面积,则圆C 的方程为( )A.22(2)(1)1x y -+-=B.22(2)(1)1x y -++=C.22(2)(1)2x y -+-=D.22(2)(1)2x y -++=6.直线20x y ++=分别与x 轴,y 轴交于,A B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( )A .[2,6]B .[4,8]C .D .7.若过点(2)1,的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )8.已知圆22(7)(4)9x y -++=与圆22(5)(6)9x y ++-=关于直线l 对称 ,则直线l 的方程是( )A. 56110x y +-=B. 6510x y --=C. 65110x y +-=D. 5610x y -+=二、选择题(本题共4小题,每小题5分,共20分。

第二章 直线和圆的方程(基础过关)(原卷版)附答案.pdf

第二章 直线和圆的方程(基础过关)(原卷版)附答案.pdf

第二章直线和圆的方程基础过关卷班级___________ 姓名___________ 学号____________ 分数____________(考试时间:120分钟试卷满分:150分)一、单项选择题:(本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.过三点A(1,﹣1),B(1,4),C(4,﹣2)的圆的方程是( )A.x2+y2﹣7x﹣3y+2=0B.x2+y2+7x﹣3y+2=0C.x2+y2+7x+3y+2=0D.x2+y2﹣7x+3y+2=02.点P,Q在圆x2+y2+kx﹣4y+3=0上(k∈R),且点P,Q关于直线2x+y=0对称,则该圆的半径为( )A.B.C.1D.23.在圆M:x2+y2﹣4x﹣4y﹣1=0中,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为( )A.6B.12C.24D.364.圆心为M(1,3),且与直线3x﹣4y﹣6=0相切的圆的方程是( )A.(x﹣1)2+(y﹣3)2=9B.(x﹣1)2+(y﹣3)2=3C.(x+1)2+(y+3)2=9D.(x+1)2+(y+3)2=35.直线y=kx+3被圆(x﹣2)2+(y﹣3)2=4截得的弦长为2,则直线的倾斜角为( )A.B.或C.或D.或6.直线l:mx﹣y+1﹣4m=0(m∈R)与圆C:x2+(y﹣1)2=25交于两点P、Q,则弦长|PQ|的取值范围是( )A.[6,10]B.[6,10)C.(6,10]D.(6,10)7.已知点M为直线x+y﹣3=0上的动点,过点M引圆x2+y2=1的两条切线,切点分别为A,B,则点P(0,﹣1)到直线AB的距离的最大值为( )A.B.C.D.8. 已知点P(x,y)是直线kx+y+2=0(k>0)上一动点,PA、PB是圆C:x2+y2﹣2x=0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为( )A.2B.C.D.二、多项选择题:(本题共4小题,每小题5分,共20分。

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习〔含答案〕一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是〔 C 〕 A 3B 6C 23D 562.已知过点A(-2,m)和B 〔m,4〕的直线与直线2x+y-1=0平行,则m 的值为〔 C 〕 A 0 B 2 C -8 D 103.假设直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于〔 D 〕A -1或2 B23C 2D -1 4.假设点A 〔2,-3〕是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 〔a 1,b 1〕和〔a 2,b 2〕所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=0 5.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m= 12〞是“直线〔m+2〕x+3my+1=0与直线〔m-2〕x+(m+2y)-3=0相互垂直〞的〔 B 〕A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B 〔-5,6〕,则直线L 的方程为〔B 〕 A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).假设直线2l 经过点〔0,5〕且1l 2l ,则直线2l 的方程为〔 B 〕A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为〔 A 〕A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是〔A 〕A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是〔 C 〕A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为〔D 〕, A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于〔 B 〕A B 4 C 8 D 914.假设直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为〔 B 〕A 1B -1C 3D -315.假设直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba 11+的最小值是〔 C 〕 A.41B.2C.4D.2116.假设直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 〔 A 〕A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,0 17.设两圆1C ,2C 都和两坐标轴相切,且过点〔4,1〕,则两圆心的距离 ︱1C 2C ︱等于〔 C 〕A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 〔 C 〕 A.2B.5C.3D.3519.假设直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211b a +≤1 D.2211b a +≥120.已知A 〔-3,8〕和B 〔2,2〕,在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为〔 B 〕A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x +2(2)y =4相交于M 、N 两点,假设︱MN ︱≥23,则k 的取值范围是〔 A 〕A [-34,0] B [-∞,-34] [0,∞〕 C [-33,33] D [-23,0] 22.〔X 理科2〕已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则A B 的元素个数为〔 C 〕A .0B .1C .2D .3 23.〔X 理科9〕假设曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以了解,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。

人教版高中数学选修一第二单元《直线和圆的方程》测试卷(有答案解析)

人教版高中数学选修一第二单元《直线和圆的方程》测试卷(有答案解析)

一、选择题1.已知直线1:210l ax y +-=2:820l x ay a ++-=,若12l l //,则a 的值为( )A .4±B .-4C .4D .2±2.已知(1,1)P ,(2,3)Q --,点P ,Q 到直线l 的距离分别为2和4,则满足条件的直线l的条数是( ) A .1B .2C .3D .43.已知M (3,),N (-1,),F (1,0),则点M 到直线NF 的距离为( )A B .C .D .4.圆22(1)2x y ++=上一点到直线5y x =+的距离最小值为( ) A .1 B .2CD .5.直线220ax by -+=被222440x y x y ++--=截得弦长为6,则ab 的最大值是( ) A .9B .4C .12D .146.已知圆1C :224470x y x y ++-+=与圆2C :()()222516x y -+-=的位置关系是( ) A .外离B .外切C .相交D .内切7.在平面直角坐标系中,定义1212(,)||||d A B x x y y =-+-为两点11(,)A x y 、22(,)B x y 的“切比雪夫距离”,又设点P 及直线l 上任意一点Q ,称(,)d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(,)d P l ,给出下列三个命题: ①对任意三点A 、B 、C ,都有(,)(,)(,)d C A d C B d A B +≥; ②已知点(3,1)P 和直线:210l x y --=,则4(,)3d P l =; ③定义(0,0)O ,动点(,)P x y 满足(,)1d P O =,则动点P 的轨迹围成平面图形的面积是4;其中真命题的个数( ) A .0B .1C .2D .38.过坐标原点O 作圆()()22341x y -+-=的两条切线,切点为,A B ,直线AB 被圆截得弦AB 的长度为( )A .5B .5CD9.直线l :230kx y --=与圆C :()()22124x y -++=交于A 、B 两点,若ABC的周长为4+k 的值为( ) A .32B .32-C .32±D .12±10.点(2,3)P 到直线:(1)30ax a y +-+=的距离d 最大时,d 与a 的值依次为( ) A .3,-3 B .5,2 C .5,1D .7,111.圆221:2410C x y x y ++++=与圆222:4410C x y x y +---=的公切线有几条( ) A .1条B .2条C .3条D .4条12.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221x y +≤,若将军从点()20A ,处出发,河岸线所在直线方程为4x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )A 1B .1C .D二、填空题13.已知点M 是直线l :22y x =--上的动点,过点M 作圆C :()()22114x y -+-=的切线MA ,MB ,切点为A ,B ,则当四边形MACB 的面积最小时,直线AB 的方程为______.14.直线()130m x my m ++++=被圆2225x y +=所截的弦长的最小值为________. 15.已知方程:22(42)20,()x y m x my m m R +-+--=∈ ①该方程表示圆,且圆心在直线210x y --=上; ②始终可以找到一条定直线与该方程表示的曲线相切;③当1m =-时,该方程表示的曲线关于直线:10l x y -+=的对称曲线为C ,则曲线C上的点到直线l 的最大距离为22; ④若m 1≥,过点(1,0)-作该方程表示的面积最小的曲线的两条切线,切点分别为,A B ,则AB 所在的直线方程为420x y +-=.以上四个命题中,是正确的有_______________(填序号)16.将直线:10l x y +-=,20l nx y n +-=:,3:0l x ny n +-=(n *∈N ,2n ≥)围成的三角形面积记为n S ,则n n lim S →∞=___________.17.已知等腰三角形的底边所在直线过点()2,1P ,两腰所在的直线为20x y +-=与740x y -+=,则底边所在的直线方程是_____________.18.直线:20180l x y +-=的倾斜角为__________;19.已知直线l 过点(4,1)A -,且和直线320x y -+=的夹角为30°,则直线l 的方程为____________.20.直线2ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(0,1)之间的距离的最大值为________.三、解答题21.已知三条直线123121323:20,:20,:210,,,l x y l x l x y l l A l l B l l C -=+=+-=⋂=⋂=⋂=.(1)求ABC 外接圆的方程;(2)若圆22:20D x y ax +-=与ABC 的外接圆相交,求a 的取值范围.22.已知直线方程为()()221340m x m y m -++++=,其中m R ∈. (1)当m 变化时,求点()3,4Q 到直线的距离的最大值;(2)若直线分别与x 轴、y 轴的负半轴交于A ,B 两点,求AOB 面积的最小值及此时的直线方程.23.已知圆C :222430x y x y ++-+=(1)若圆C 的切线在x 轴和y 轴上的截距相等,且截距不为零,求此切线的方程; (2)若从圆C 外一点()1,2P -向该圆引切线PA 和PB (A ,B 为切点),求弦长AB 的大小.24.已知圆1C 过点(0,6)A ,且与圆222:10100C x y x y +++=相切于原点,直线:(21)(1)740l m x m y m +++--=.(1)求圆1C 的方程;(2)求直线l 被圆1C 截得的弦长最小值.25.(1)如图,已知直线l : 0mx ny r ++=(0mn ≠)外一点P (a ,b ),请写出点P 到直线l 的距离PH 的公式及公式的推导过程.....(2)一质点从点(4,0)A 处沿向量(1,1)a =-方向按每秒2个单位速度移动,求几秒后质点与点(2,4)B 距离最近.26.已知正方形的一条边AB 所在直线为310--=x y ,正方形的中心为()0,1R .求:(1)该正方形的面积;(2)该正方形的两条对角线所在直线的一般式方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由12l l //可得280,a a ⨯-⨯=解得4a =±,然后再检验,得出答案. 【详解】因为12l l //,所以280,4a a a ⨯-⨯=∴=±. 当4a =时,两直线重合,所以4a =舍去. 当4a =-时,符合题意. 所以4a =-. 故选:B 【点睛】易错点睛:已知直线1110a x b y c ++=和直线2220a x b y c ++=平行求参数的值时,除了要计算12210a b a b -=,还一定要把求出的参数值代入原直线方程进行检验,看直线是否重合.本题就是典型例子,否则容易出现错解,属于中档题2.B解析:B 【分析】以P 为圆心,以2为半径的圆记为圆P ,以Q 为圆心,以4为半径的圆记为圆Q ,利用圆P 与圆Q 相交,两圆有两条公切线,可得结果.【详解】22||(12)(13)5PQ =+++=,以P 为圆心,以2为半径的圆记为圆P ,以Q 为圆心,以4为半径的圆记为圆Q , 因为42-<524<+,所以圆P 与圆Q 相交,所以两圆有两条公切线,所以满足条件的直线l 的条数是2. 故选:B 【点睛】关键点点睛:转化为判断两个圆的公切线的条数是解题关键.3.B解析:B 【分析】首先利用题中所给的点N (-1,,F (1,0),求出直线NF 的方程,之后利用点到直线的距离公式求得结果. 【详解】易知NF 的斜率kNF 的方程为y(x -1),+y=0. 所以M 到NF.故选:B. 【点睛】思路点睛:该题考查的是有关点到直线的距离的问题,解题思路如下:(1)根据题意首先求出直线的方程,可以先求斜率,利用点斜式求,也可以直接利用两点式求;(2)之后利用点到直线的距离公式直接求结果.4.C解析:C 【分析】求出圆心到直线距离,减去半径得解. 【详解】圆心为(1,0)-,直线方程为5y x =+,所以d == ,圆22(1)2x y ++=上一点到直线5y x =+的距离最小值d r -=故选C . 【点睛】圆上的点到直线的距离的最值的几何求法通常运用圆心到直线的距离加减半径得到.属于基础题.5.D解析:D 【分析】根据弦长可知直线过圆心,再利用基本不等式求ab 的最大值. 【详解】将222440x y x y ++--=化为标准形式:22(1)(2)9x y ++-=, 故该圆圆心为(1,2)-,半径为3. 因为直线截圆所得弦长为6,故直线过圆心,所以2220a b --+=,即1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭(当且仅当12a b ==时取等号),故选:D. 【点睛】关键点点睛:本题考查直线与圆相交,基本不等式求最值,本题的关键是根据弦长判断直线过圆心,这样问题就变得简单易求.6.B解析:B 【分析】分别求得两圆的圆心坐标和半径,结合圆与圆的位置关系的判定方法,即可求解. 【详解】由题意,圆1C :224470x y x y ++-+=,可得圆心坐标为1(2,2)C -,半径为11r =,圆2C :()()222516x y -+-=,可得圆心坐标为1(2,5)C ,半径为14r =,又由125C C ==,且12145r r =+=+,即1212C C r r =+,所以圆12,C C 相外切. 故选:B. 【点睛】圆与圆的位置关系问题的解题策略:判断两圆的位置关系时常采用几何法,即利用两圆的圆心之间的距离与两圆的半径间的关系进行判断,一般不采用代数法;若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.7.B解析:B 【分析】由新定义表示出三点,,A B C 两两之间的“切比雪夫距离”,然后根据绝对值的性质判断①,由新定义计算出(,)d P l ,判断②,根据新定义求出P 的轨迹方程,确定其轨迹,求得轨迹围成的图形面积判断③. 【详解】①设112233(,),(,),(,)A x y B x y C x y ,则1212(,)d A B x x y y =-+-,13132323(,)(,)d A C d B C x x y y x x y y +=-+-+-+-,显然1323132312()()x x x x x x x x x x -+-≥---=-,同理132312y y y y y y -+-≥-,∴(,)(,)(,)d C A d C B d A B +≥,①正确; ②设(,)P x y 是直线l 上任一点,则21y x =-,(,)31322d P l x y x x =-+-=-+-35,31,1353,1x x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩,易知(,)d P l 在[1,)+∞上是增函数,在(,1)-∞上是减函数,∴1x =时,min (,)13222d P l =-+-=,②错; ③由(,)1d P O =得1x y +=,易知此曲线关于x 轴,y 轴,原点都对称,它是以(1,0),(0,1),(1,0),(0,1)--为顶点的正方形,其转成图形面积为12222S =⨯⨯=,③错.故选:B . 【点睛】关键点点睛:本题考查新定义,解题关键是理解新定义,解题方法是把新概念转化为绝对值的问题,利用绝对值的性质求解.8.A解析:A 【分析】求得圆的圆心坐标和半径,借助11222AOM AB S OA MA OM ∆=⨯⨯=⨯⨯,即可求解. 【详解】如图所示,设圆()()22341x y -+-=的圆心坐标为(3,4)M ,半径为1r =,则5OM ==,OA ===,则11222AOM AB S OA MA OM ∆=⨯⨯=⨯⨯,可得25OA MA AB OM ⨯⨯== 故选A.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到圆的切线方程应用,着重考查了推理与运算能力,属于基础题.9.A解析:A 【分析】先根据半径和周长计算弦长23AB =即可. 【详解】圆C :()()22124x y -++=中,圆心是()1,2C -,半径是2r,故ABC 的周长为423+2423r AB +=+23AB =又直线与圆相交后的弦心距2243144k k d k k +-+==++,故由2222AB r d ⎛⎫=+ ⎪⎝⎭得()221434k k +=++,解得32k . 故选:A. 【点睛】本题考查了直线与圆的综合应用,考查了点到直线的距离公式,属于中档题.10.C解析:C 【分析】将直线方程整理为()()30a x y y ++-=,可得直线()130ax a y +-+=经过定点()3,3Q -,由此可得当直线()130ax a y +-+=与PQ 垂直时PQ 的长,并且此时点P 到直线的距离达到最大值,从而可得结果. 【详解】直线()130ax a y +-+=,即()()30a x y y ++-=,∴直线()130ax a y +-+=是过直线0x y +=和30y -=交点的直线系方程,由030x y y +=⎧⎨-=⎩,得33x y =-⎧⎨=⎩,可得直线()130ax a y +-+=经过定点()3,3Q -,∴当直线()130ax a y +-+=与PQ 垂直时,点()2,3P 到直线()130ax a y +-+=的距离最大,d ∴的最大值为5PQ ==,此时//PQ x 轴,可得直线()130ax a y +-+=斜率不存在,即1a =. 故选:C. 【点睛】本题主要考查直线的方程与应用,以及直线过定点问题,属于中档题. 探索曲线过定点的常见方法有两种:① 可设出曲线方程 ,然后利用条件建立等量关系进行消元(往往可以化为()(),,0tf x y g x y +=的形式,根据()(),0,0f x y g x y ⎧=⎪⎨=⎪⎩求解),借助于曲线系的思想找出定点(直线过定点,也可以根据直线的各种形式的标准方程找出定点). ,从特殊情况入手,先探求定点,再证明与变量无关.11.C解析:C 【分析】将两圆化为标准形式,求出圆心距和两圆半径之和,判断即可. 【详解】圆221:(1)(2)4C x y +++=,圆心 1(1,2)C -- ,12r =, 圆222:(2)(2)9C x y -+-= ,圆心2C ()2,2,23r =,圆心距125C C ==1212C C r r =+,∴两圆外切,有3条公切线.故选:C. 【点睛】本题考查圆与圆的位置关系,考查学生数形结合思想以及求解运算能力,属于基础题.12.B解析:B 【分析】先求出点A 关于直线4x y +=的对称点'A ,点'A 到圆心的距离减去半径即为最短. 【详解】解:设点A 关于直线4x y +=的对称点(,)A a b ','2AA bk a =-,AA '的中点为2,22a b +⎛⎫⎪⎝⎭,故122422b a a b ⎧=⎪⎪-⎨+⎪+=⎪⎩解得4a =,2b =, 要使从点A 到军营总路程最短,即为点f A 到军营最短的距离, 即为点'A 和圆上的点连线的最小值,为点'A 和圆心的距离减半径, “将军饮马”的最短总路程为4161251+-=-,故选:B 【点睛】本题考查了数学文化问题、点关于直线的对称问题、点与圆的位置关系等等,解决问题的关键是将实际问题转化为数学问题,建立出数学模型,从而解决问题.二、填空题13.【分析】由已知结合四边形面积公式可得四边形MACB 面积要使四边形MACB 面积最小则需最小此时CM 与直线垂直求得以CM 为直径的圆的方程再与圆C 的方程联立可得AB 所在直线方程【详解】由圆的标准方程可知圆 解析:210x y ++=【分析】由已知结合四边形面积公式可得四边形MACB 面积22||||2||2||4,CAM S S CA AM MA CM ==⋅==-△要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,求得以CM 为直径的圆的方程,再与圆C 的方程联立可得AB 所在直线方程.【详解】由圆的标准方程可知,圆心C (1,1) ,半径r =2.因为四边形MACB的面积2||||2||CAM S S CA AM MA ==⋅==△ 要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直. 直线CM 的方程为11(x 1)2y -=- ,即11.22y x =+联立112222y x y x ⎧=+⎪⎨⎪=--⎩,解得(1,0)M -则以CM 为直径的圆的方程为2215()24x y +-=, 联立222215(),24(1)(1)4x y x y ⎧+-=⎪⎨⎪-+-=⎩消去二次项可得直线AB 的方程为210x y ++=, 故答案为:210x y ++= 【点睛】关键点点睛:根据四边形的面积表达式可以看出要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,此时所做圆的直径为CM ,写出圆的方程,两圆方程相减即可求出过AB 的直线方程.14.【分析】转化条件为直线过结合垂径定理可得当直线与直线垂直时弦长最小即可得解【详解】直线可变为由可得所以直线过定点又圆的圆心为半径所以点在圆内所以当直线与直线垂直时弦长最小此时弦长为故答案为:【点睛】解析:【分析】转化条件为直线过()3,2A -,结合垂径定理可得当直线AO 与直线()130m x my m ++++=垂直时,弦长最小,即可得解.【详解】直线()130m x my m ++++=可变为()130x y m x ++++=,由1030x y x ++=⎧⎨+=⎩可得32x y =-⎧⎨=⎩,所以直线()130m x my m ++++=过定点()3,2A -, 又圆2225x y +=的圆心为()0,0O ,半径=5r ,所以213AO =,点()3,2A -在圆内,所以当直线AO 与直线()130m x my m ++++=垂直时,弦长最小,此时弦长为==.故答案为: 【点睛】关键点点睛:解决本题的关键是找到直线经过的定点,再利用几何法转化出弦长.15.③④【分析】先将方程:化为:确定出圆心半径判断选项①②;将代入得圆方程可转化为该圆上的点到直线的最大距离问题求解;先求出以圆外点与圆心连线为直径的圆方程再将两圆方程相减即可得两切点连线的直线方程【详解析:③④ 【分析】先将方程:22(42)20x y m x my m +-+--=化为:()()22221551x m y m m m -++-=++⎡⎤⎣⎦,确定出圆心,半径判断选项①②;将1m =-代入得圆方程,可转化为该圆上的点到直线l 的最大距离问题求解;先求出以圆外点(1,0)-与圆心连线为直径的圆方程,再将两圆方程相减即可得两切点连线的直线方程.【详解】方程:22(42)20x y m x my m +-+--=可化为:()()22221551x m y m m m -++-=++⎡⎤⎣⎦,当25510m m ++>即m >或m <时,方程表示圆,故①错;由①知,当m >或m <时,该方程表示圆,且圆心()21,M m m +在直线210x y --=上移动,且半径不定,故②显然不正确;当1m =-时,方程表示圆M :()()22111x y +++=,由条件知曲线C 上的点到直线l 的最大距离即为圆M 上的点到直线l 212+=,所以③正确;当m 1≥时,22211551524r m m m ⎛⎫=++=+- ⎪⎝⎭,所以当1m =时,圆面积最小,此时圆心为()3,1M ,圆M 方程为:()()223111x y -+-=,设()1,0P -,则PM 的中点为11,2⎛⎫ ⎪⎝⎭,217PM =, 所以PM 为直径的圆方程为()22117124x y ⎛⎫-+-= ⎪⎝⎭,两圆方程相减即得AB 所在的直线方程为420x y +-=,故④正确. 故答案为:③④ 【点睛】方法点睛:已知圆外一点引圆的两条切线,求解切点连线的直线方程,通常先求出以圆外一点与圆心连线为直径的圆方程,然后将两圆方程相减,即可得切点连线的直线方程.16.【分析】求出三条直线的交点坐标从而可求得三角形的面积再求极限即可【详解】由得即同理可得到直线的距离为∴∴故答案为:【点睛】本题考查数列的极限解题关键是求出三角形的面积 解析:12【分析】求出三条直线的交点坐标,从而可求得三角形的面积n S ,再求极限即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- - . - 总结资料- 直线和圆的方程 (满分:150分 时间:120分钟) 一、选择题(本大题共12小题,每小题5分,共60分) 1.若直线x+ay-a=0与直线ax-(2a-3)y-1=0垂直,则a的值为( ) A.2 B.-3或1 C.2或0 D.1或0

2.集合M={(x,y)|y=21x,x、y∈R},N={(x,y)|x=1,y∈R},则M∩N等于( )

A.{(1,0)} B.{y|0≤y≤1} C.{1,0} D. 解析:y=21x表示单位圆的上半圆,x=1与之有且仅有一个公共点(1,0).

答案:A 3.菱形ABCD的相对顶点为A(1,-2),C(-2,-3),则对角线BD所在直线的方程是 …( ) A.3x+y+4=0 B.3x+y-4=0 C.3x-y+1=0 D.3x-y-1=0 解析:由菱形的几何性质,知直线BD为线段AC的垂直平分线,AC中点O)25,2

1

(在BD

上,3

1ACk,故3BDk,代入点斜式即得所求.

答案:A 4.若直线1bya

x经过点M(cosα,sinα),则 ……( )

A.a2+b2≤1 B.a2+b2≥1 C.11122ba D.11122ba 解析:直线1byax经过点M(cosα,sinα),我们知道点M在单位圆上,此问题可转化为直线1bya

x和圆x2+y2=1有公共点,圆心坐标为(0,0),由点到直线的距离公式,有

.111111|1|2222

baba

答案:D 5.当圆x2+y2+2x+ky+k2=0的面积最大时,圆心坐标是( ) A.(0,-1) B.(-1,0) C.(1,-1) D.(-1,1) - - . - 总结资料- 解析:r2=222431444kkk,

∴当k=0时,r2最大,从而圆的面积最大.

此时圆心坐标为(-1,0),故选B. 答案:B 6.过直线y=x上的一点作圆(x-5)2+(y-1)2=2的两条切线l1,l2,当直线l1,l2关于y=x对称时,它们之间的夹角为( ) A.30° B.45° C.60° D.90° 解析:由已知,得圆心为C(5,1),半径为2,设过点P作的两条切线的切点分别为M,N,当CP垂直于直线y=x时,l1,l2关于y=x对称,|CP|为圆心到直线y=x的距离,即

|CP|=2211|15|,|CM|=2,故∠CPM=30°,∠NPM=60°. 答案:C 7.在如图所示的坐标平面的可行域(阴影部分且包括边界),若是目标函数z=ax+y(a>0)取得最大值的最优解有无数个,则a的值等于( )

A.31 B.1 C.6 D.3 解析:将z=ax+y化为斜截式y=-ax+z(a>0),则当直线在y轴上截距最大时,z最大. ∵最优解有无数个,∴当直线与AC重合时符合题意.又kAC=-1,

∴-a=-1,a=1. 答案:B

8.已知直线l1:y=x,l2:ax-y=0,其中a为实数,当这两条直线的夹角在(0,12)变动时,a的取值围是( )

A.(0,1) B.)3,3

3( - - . - 总结资料- C.(33,1)∪(1,3) D.(1,3)

解析:结合图象,如右图, 其中α=45°-15°=30°,β=45°+15°=60°. 需a∈(tan30°,1)∪(1,tan60°),

即a∈(3

3

,1)∪(1,3).

答案:C 9.把直线x-2y+λ=0向左平移1个单位,再向下平移2个单位后,所得直线正好与圆x2+y2+2x-4y=0相切,则实数λ的值为( ) A.3或13 B.-3或13 C.3或-13 D.-3或-13 解析:直线x-2y+λ=0按a=(-1,-2)平移后的直线为x-2y+λ-3=0,与圆相切,则圆心(-1,2)到直线

的距离55

|8|

d,求得λ=13或3.

答案:A 10.如果直线y=kx+1与圆x2+y2+kx+my-4=0交于M、N两点,且M、N关于直线x+y=0对称,

则不等式组0,0,01ymykxykx表示的平面区域的面积是( ) A.41 B.21 C.1 D.2 解析:由题中条件知k=1,m=-1,易知区域面积为4

1

.

答案:A

11.两圆sin24,cos23yx与

sin3,cos3yx

的位置关系是( ) - - . - 总结资料- A.切 B.外切 C.相离 D.含 解析:两圆化为标准式为(x+3)2+(y-4)2=4和x2+y2=9,圆心C1(-3,4),C2(0,0).

两圆圆心距|C1C2|=5=2+3.∴两圆外切.

答案:B

12.方程29x=k(x-3)+4有两个不同的解时,实数k的取值围是( )

A.)247,0( B.(247,+∞) C.(32,31) D.]32,24

7(

解析:设y=29x,其图形为半圆;直线y=k(x-3)+4过定点(3,4),由数形结合可知,当直线

y=k(x-3)+4与半圆y=29x有两个交点时,32247k.

∴选D. 答案:D 二、填空题(本大题共4小题,每小题5分,共20分)

13.若x,y满足约束条件



,30,03,0xyxyx

则z=2x-y的最大值为__________.

解析:作出可行域如图所示.

当直线z=2x-y过顶点B时,z达到最大,代入得z=9. 答案:9 - - . - 总结资料- 14.在y轴上截距为1,且与直线2x-3y-7=0的夹角为4

的直线方程是_________.

解析:由题意知斜率存在,设其为k,则直线方程为y=kx+1.

则|321||32|4tankk



.解得k=5或5

1.

∴直线方程为y=5x+1或y=15

1

x,

即5x-y+1=0或x+5y-5=0. 答案:5x-y+1=0或x+5y-5=0 15.设A(0,3),B(4,5),点P在x轴上,则|PA|+|PB|的最小值是________,此时P点坐标是_______. 解析:点A关于x轴的对称点为A′(0,-3),

则|A′B|=45为所求最小值. 直线A′B与x轴的交点即为P点,求得P(2

3

,0).

答案:45 (2

3

,0)

16.已知圆M:(x+cosθ)2+(y-sinθ)2=1,直线l:y=kx,下面四个命题: ①对任意实数k与θ,直线l和圆M相切; ②对任意实数k与θ,直线l和圆M有公共点; ③对任意实数θ,必存在实数k,使得直线l和圆M相切; ④对任意实数k,必存在实数θ,使得直线l和圆M相切. 其中真命题的序号是.(写出所有真命题的序号)

解析:圆心M(-cosθ,sinθ)到直线l:kx-y=0的距离1|sincos|1|sincos|22kkk

kd

1|)sin(1|22kk =|sin(φ+θ)|(其中tanφ=k) ≤1=r, 即d≤r,故②④正确. 答案:②④ - - . - 总结资料- 三、解答题(本大题共6小题,共70分) 17.(本小题满分10分)已知△ABC的三个顶点A(4,-6),B(-4,0),C(-1,4),求: (1)AC边上的高BD所在直线的方程; (2)BC的垂直平分线EF所在直线的方程; (3)AB边的中线的方程. 解:(1)易知kAC=-2,∴直线BD的斜率kBD=21.又BD直线过点B(-4,0),代入点斜式易得直线

BD的方程为x-2y+4=0. (2)∵kBC=34, ∴kEF=

4

3.

又线段BC的中点为(2

5,2),

∴EF所在直线的方程为y-2=)25(4

3

x.

整理得所求的直线方程为6x+8y-1=0. (3)∵AB的中点为M(0,-3), ∴直线CM的方程为1343

xy.

整理得所求的直线方程为7x+y+3=0(-1≤x≤0). 18.(本小题满分12分)已知圆C与y轴相切,圆心C在直线l1:x-3y=0上,且截直线l2:x-y=0的弦长为22,求圆C的方程. 解:∵圆心C在直线l1:x-3y=0上,

∴可设圆心为C(3t,t). 又∵圆C与y轴相切, ∴圆的半径r=|3t|. ∴222||3)2()23(ttt

,解得t=±1.

∴圆心为(3,1)或(-3,-1),半径为3. ∴所求的圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.

19.(本小题满分12分)已知等边△ABC的边AB所在的直线方程为3x+y=0,点C的坐标为(1,3),求边AC、BC所在的直线方程和△ABC的面积.

相关文档
最新文档