电化学阻抗谱及其数据处理与解析
电化学阻抗谱(原著第二版)

电化学阻抗谱(原著第二版)
电化学阻抗谱(Electrochemical Impedance Spectroscopy,简
称EIS)是一种测试技术,它旨在对物质材料的电化学性质和行为作出精确的测量。
EIS使用频域电流法来识别材料的结构特性和电化学过程,并允许分析师对复杂的测量结果作出准确的判断。
EIS在许多领域中都得到了广泛的应用,如材料性能测试、金属腐蚀监测、生物传感器和
能源相关应用等方面。
EIS过程主要由三个步骤组成,即电化学测量,信号处理和数据
分析。
在电化学测量过程中,首先向检测物质中施加一个外部电压,
然后记录电流响应信号,以确定施加电压时发生的反应过程。
信号处
理步骤涉及应用信号处理软件,以进一步分析测量的信号,从而了解
材料内部的微观结构,进而了解其导电特性和电化学反应特性。
最后,数据分析步骤利用数据拟合算法,以及基于现有知识的模型和化学过程,对数据分析之后可视化的结果进行进一步说明和解释。
EIS的使用允许材料的性质和行为有效地分析,因而成为研究不
同领域的有用工具。
它也可以帮助分析人员更好地了解实验数据,并
确定测试结果的重要性和意义。
电化学阻抗谱的有效性及其应用的潜
力可以在不同领域和领域中发挥作用,在帮助行业分析师和科学家解
决重大问题方面发挥积极作用。
电化学交流阻抗谱详解

(C)三个时间常数
CPEDL
ROX
CPEOX
RSG
CPESG
第11页,共36页。
常见的三个时间常数的电路图
第12页,共36页。
1.4. 在腐蚀与防护中的应用
(1)两个时间常数的模型
金属腐蚀机制研究
金属本 体
腐蚀产物层
第13页,共36页。
研究不同镀层的钢材的腐蚀情况
第14页,共36页。
第17页,共36页。
保护膜
钝化膜 金属本体
第18页,共36页。
金属腐蚀区
钝化膜
保护膜
第19页,
1. 保护膜电容区
2. 保护膜阻抗区 3. 钝化膜电容区 4. 钝化膜阻抗区
电容随着频率减少而增加 阻抗不随频率而变化
第20页,共36页。
保护膜层的阻抗变化
钝化膜层阻抗变化
第21页,共36页。
第35页,共36页。
优点 缺点
线性极化法
1. 快速测定金属腐蚀体系瞬间腐蚀速度
2. 对腐蚀体系的影响和干扰很少,重现性好
3. 进行连续检测和现场监控,并且可以用于筛选金属材料和缓蚀剂
以及评价金属镀层的耐腐蚀性能
1. 另行测定或者从文献中选取的塔菲尔常数不能够反映腐蚀速度随 时间的变化情况
2. 线性极化区时近似的,准确度不是很高 3. 不适用于电导率较低的体系,应用范围受到限制
Tafel区
线性极 化区
Tafel区
过渡区
a
ba
lg
ia ic
k
bk
lg
ik ic
线性极化区
a
babk
ia
2.30(3 ba +bk)ic
电化学阻抗谱分析讨论

log|Z| / deg
Nyquist plot
高频区
低频区
Bode plot
精选2021版课件
5
EIS理论分析
EIS测量的前提条件
1. 因果性条件(causality):输出的响应信号只是由输入的扰动信号引起的的。
2. 线性条件(linearity): 输出的响应信号与输入的扰动信号之间存在线性关系。电化学系统的电流与电势之间 是动力学规律决定的非线性关系,当采用小幅度的正弦波电势信号对系统扰动,电势和电流之间可近似看作 呈线性关系。通常作为扰动信号的电势正弦波的幅度在5mV左右,一般不超过10mV。
电路的阻抗:
ZRjCdRct11 1/2(1j)
实部:
虚部:
(1)低频极限。当足够低时,实部和虚部简化为:
消去,得:
精选2021版课件
Nyquist 图上扩散控制表现为倾斜 角/4(45)的直线。
17
EIS理论分析
(2)高频极限。当足够高时,含-1/2项可忽略,于是:
1
ZRjCdRct1 1/2(1j)
电路描述码 (Circuit Description Code, CDC)
等效 电路
精选2021版课件
20
EIS数据处理
第三步:利用专业的EIS分析软件,对EIS进行曲线 拟合。如果拟合的很好,则说明这个等效电路有可 能是该系统的等效电路
最后:利用拟合软件,可得到体系R、Rct、Cd以 及其它参数, 再利用电化学知识赋予这些等效电
6
EIS理论分析
EIS的特点
1. 由于采用小幅度的正弦电势信号对系统进行微扰,电极上交替出现阳极和阴极过程,二者作用相反,因此,即 使扰动信号长时间作用于电极,也不会导致极化现象的积累性发展和电极表面状态的积累性变化。因此EIS法是 一种“准稳态方法”。
电化学阻抗谱基础讲解学习

Nyquist图
Bode图
Nyquist plot 阻抗模值
的对数
Bode plot
虚部
相位角
log|Z| / deg
高频区
低频区
实部
频率的对数
7
利用EIS进行动力学研究的基本思路
EIS谱图 (频率响应)
等效电路
理论模型 (机理)
将研究对象看作是一个等效电路,它一般由电阻(R) 、电容(C)、 电感(L) 等基本元件按串联或并联等方式组合而成。通过EIS拟合可以 得出等效电路的构成以及各元件的大小,利用这些元件的物理含义, 来分析电池的结构及载流子动力学性质等。
16
EIS的数据处理与解析
EIS分析常用的方法:等效电路曲线拟合法 (ZSimpWin 或 Z-view软件) 第一步:实验测定EIS。
等效电路 17
阻抗谱测量仪器
Potentiostat (EG&G, M2273)
706房间
Zahner CIMPS 系统
718房间
18
第二步:根据电化学体系的特征,利用电化学知识,估计这个 系统中可能有哪些个等效电路元件,它们之间有可能怎样组合, 然后提出一个可能的等效电路。
电阻 R
电容 C 电感 L
8
简单电路的基本性质
(1). 电阻
欧姆定律: eiR
纯电阻,=0
i Esin(t)
R
写成复数: ZC R
实部:
ZR' R
虚部:
ZR'' 0
-Z'' Z'
Nyquist 图上为横轴(实部)上一个点
9
史美伦 编著,交流阻抗谱原理及应用,2001
电化学阻抗谱参数设置

电化学阻抗谱参数设置电化学阻抗谱参数设置1. 引言电化学阻抗谱(Electrochemical Impedance Spectroscopy, EIS)是一种广泛应用于材料科学、电池技术、腐蚀研究等领域的电化学测试方法。
EIS通过对测试物体施加小振幅交流电信号并测量其响应,得到频率范围内材料或电池的等效电路参数,进而可以推断材料的电化学特性、离子传输过程以及电池的性能状态等信息。
2. 基本原理EIS的基本原理是利用交流电信号对电化学系统进行激励,通过测量响应电流与激励电压之间的相位差和幅值来确定系统的阻抗。
电化学系统的阻抗由电解液、电极表面和界面上的电荷传输、离子传输、质量传输等过程共同贡献。
3. 测试仪器和电化学接口EIS测试通常需要使用电化学工作站或电化学测量系统,该系统通常包括频率响应分析器(Frequency Response Analyzer, FRA)、电位电流源(电化学接口)和计算机控制及数据处理软件。
3.1 频率响应分析器频率响应分析器是EIS测试的核心设备,它能够产生某一频率范围内的交流电信号,并测量电化学系统对这些信号的响应。
常见的频率响应分析器包括Lock-in放大器、扫频信号发生器、数字信号处理器等。
3.2 电位电流源电位电流源是电化学接口的核心部分,它主要用于控制电化学系统的电位和电流,使系统处于不同的工作状态。
常见的电位电流源有电化学工作站和电化学调谐器。
4. EIS测试参数设置4.1 交流电信号振幅交流电信号振幅应该足够小,以确保电化学系统处于线性响应区,同时又要保证信号不至于过于微弱,避免噪声干扰的影响。
通常,可以设置交流电信号振幅为电化学系统的开路电位的10倍以下,即Ua<0.1ER,其中Ua为交流电信号振幅,ER为开路电位。
4.2 频率范围选择EIS测试通常需要在较宽的频率范围内进行,从低频到高频逐渐增加。
低频范围可选择0.01 Hz至0.1 Hz,用于测量材料或电池的电化学界面及离子传输等慢速过程;中频范围可选择1 Hz至10 kHz,用于测量质量传输等中速过程;高频范围可选择10 kHz至1 MHz,用于测量电解液电导率等快速过程。
电化学阻抗谱介绍

电化学阻抗谱介绍
电化学阻抗谱(Electrochemical Impedance Spectroscopy,EIS)是一种用于研究电化学体系的分析技术。
它通过在电化学系统中施加交流信号并测量响应来获得样品的电化学特性信息。
电化学阻抗谱广泛应用于电化学领域,如电化学腐蚀、电化学储能、电解水、传感器等。
电化学阻抗谱通过在一定频率范围内扫描交流信号的大小和相位来测量电化学系统的阻抗。
在频率域内,电化学阻抗谱通常以复数形式表示,其中包括实部(电阻)和虚部(电抗)。
实部表示系统的电导,虚部表示系统的电容或电感。
电化学阻抗谱可以绘制成Bode图(频率对数坐标图)或Nyquist图(虚部对实部的图)。
通过分析电化学阻抗谱,可以获得许多电化学参数和信息,如电解质电阻、电荷传输电阻、电荷转移过程的速率常数、电极界面的双电层容量等。
这些参数对于了解电化学反应机制、界面特性以及材料性能具有重要意义。
电化学阻抗谱的实验操作相对简单,可以使用专用的电化学阻抗谱仪或多用途电化学工作站进行测量。
对于复杂的系统,可能需要进行数据拟合和模型分析来解释阻抗谱的特征和提取相关参数。
总之,电化学阻抗谱是一种重要的电化学分析技术,可提供关于电化学体系的电化学特性和界面特性的详细信息。
它在材料研究、电化学工程和能源领域中具有广泛的应用。
电化学阻抗谱电荷转移电阻

电化学阻抗谱电荷转移电阻
电化学阻抗谱(EIS)是一种广泛应用于电化学研究中的技术。
其中一项重要的参数是电荷转移电阻(Rct),它反映了电极表面与溶液中反应物之间的电荷转移阻力。
Rct的大小与电极表面反应速率有关,因此它可以用来评估电极表面的反应性能。
在研究电极材料、催化剂和电化学传感器等方面,Rct是一个重要的参数。
在EIS测量中,通过施加交流电势,测量电荷传递和电荷分布的变化,从而获得Rct。
一般情况下,Rct是通过等效电路模型拟合EIS 数据得到的。
等效电路模型通常包括电解质电容(Cdl)、电极电容(Cdl)、双层电容(Cdl)、电荷转移电阻(Rct)和电解质电阻(Rs)等元件。
Rct的大小取决于电极表面的活性位点密度、反应物的扩散速率、电极材料的特性以及溶液条件等因素。
因此,在评估电极表面反应活性和传递特性时,需要综合考虑这些因素。
总之,电荷转移电阻在电化学阻抗谱中是一个重要的参数,它可以用于评估电极表面反应性能和传递特性。
在电化学研究中,Rct的测量和分析可以为电极材料、催化剂和电化学传感器等领域的研究提供重要参考。
- 1 -。
电化学原理与方法-电化学阻抗谱

iR
E i sin(t ) R
-Z''
Z'
Nyquist 图上为横轴(实部)上一个点
Z Z jZ ''
12 '
Z Z ' jZ ''
2. 电容
iC de dt i CE sin(t ) 2
i
E sin(t ) XC 2
28
29
某些吸附型物质在电极表面成膜后,这层吸附层覆盖于紧密 双电层之上,且其本身就具有一定的容性阻抗Cf,它与电极 表面的双电层串联在一起组成具有两个时间常数的阻抗谱, 其阻抗图如图13所示。
30
当电极反应出现中间产物时,这种中间产物吸附与金属 电极表面产生表面吸附络合物,该表面络合物产生于电 极反应的第一步,而消耗于第二步反应,而一般情况下, 吸附过程的弛豫时间常数要比电双层电容Cdl与Rt组成 的充放电过程的弛豫时间常数RtCdl大的多,因此在阻 抗图的低频部分会出现感抗弧。
Z Z '2 Z ''2
Z tan ' Z
''
|Z|
实部Z'
6
EIS技术就是测定不同频率(f)的扰动信号X和响应信 号 Y 的比值,得到不同频率下阻抗的实部Z‘、虚部Z’‘、 模值|Z|和相位角,然后将这些量绘制成各种形式的曲 线,就得到EIS抗谱。 奈奎斯特图 波特图
Nyquist plot
左右,一般不超过10mV。
8
3. 稳定性条件(stability): 扰动不会引起系统内部结构 发生变化,当扰动停止后,系统能够回复到原先的状 态。可逆反应容易满足稳定性条件;不可逆电极过程, 只要电极表面的变化不是很快,当扰动幅度小,作用 时间短,扰动停止后,系统也能够恢复到离原先状态 不远的状态,可以近似的认为满足稳定性条件。