Java数据结构和算法笔记

Java数据结构和算法笔记
Java数据结构和算法笔记

Java数据结构和算法

第0讲综述

参考教材:Java数据结构和算法(第二版),[美] Robert lafore

1. 数据结构的特性

数据结构<

缺点

优点

数组插入快;如果知道下标,可以非常快地存取查找慢,删除慢,大小固定

有序数组比无序的数组查找快删除和插入慢,大小固定

提供后进先出方式的存取存取其他项很慢

<

队列提供先进先出方式的存取存取其他项很慢

链表插入快,删除快—

查找慢

二叉树查找、插入、删除都快(如果树保持平衡)删除算法复杂

红-黑树查找、插入、删除都快;树总是平衡的算法复杂

算法复杂

2-3-4树`

查找、插入、删除都快;树总是平衡的;类

似的树对磁盘存储有用

哈希表如果关键字已知,则存储极快;插入快删除慢,如果不知道关键字则存

储很慢,对存储空间使用不充分堆插入、删除快;对大数据项的存取很快对其他数据项存取慢

对现实世界建模有些算法慢且复杂

2. 经典算法总结

查找算法:线性查找和二分查找

排序算法:

用表展示

第一讲数组

1.Java中数组的基础知识

1)创建数组

在Java中把数组当作对象来对待,因此在创建数组时必须使用new操作符:

<

一旦创建数组,数组大小便不可改变。

2)访问数组数据项

3)数组的初始化

当创建数组之后,除非将特定的值赋给数组的数据项,否则它们一直是特殊的null对

等效于下面使用new来创建数组并初始化:

|

2.面向对象编程方式

1)使用自定义的类封装数组

| #

!

子问题须与原始问题为同样的事,且更为简单;

b. 不能无限制地调用本身,须有个出口,化简为非递归状况处理。

1.三角数字

该数列中的首项为1,第n项是由第n-1项加n后得到的。

1)使用循环查找第n项

直接转换法

直接转换法通常用来消除尾递归和单向递归,将递归结构用循环结构来替代。尾递归是指在递归算法中,递归调用语句只有一个,而且是处在算法的最后。例如求阶乘的递归算法:public long fact(int n)

{

if (n==0) return 1;

else return n*fact(n-1);

}

当递归调用返回时,是返回到上一层递归调用的下一条语句,而这个返回位置正好是算法的结束处,所以

,不必利用栈来保存返回信息。对于尾递归形式的递归算法,可以利用循环结构来替代。例如求阶乘的递归算法

可以写成如下循环结构的非递归算法:

public long fact(int n)

{

int s=0;

for (int i=1; i

s=s*i; 间接转换法

该方法使用栈保存中间结果,一般需根据递归函数在执行过程中栈的变化得到。其一般过程如下:

将初始状态s0进栈

while (栈不为空)

{

退栈,将栈顶元素赋给s;

if (s是要找的结果) 返回;

else {

?

寻找到s的相关状态s1;

将s1进栈

}

}

间接转换法在数据结构中有较多实例,如二叉树遍历算法的非递归实现、图的深度优先遍历算法的非递归实现等等,请读者参考主教材中相关内容

%

第八讲希尔排序

希尔排序是由Donald 提出来的,希尔排序基于插入排序,并且添加了一些新的特性,从而大大提高了插入排序的执行效率。

插入排序的缺陷:多次移动。假如一个很小的数据在靠右端位置上,那么要将该数据排序到正确的位置上,则所有的中间数据都要向右移动一位。

希尔排序的优点:希尔排序通过加大插入排序中元素元素之间的间隔,并对这些间隔的元素进行插入排序,从而使得数据可以大幅度的移动。当完成该间隔的排序后,希尔排序会减少数据间的间隔再进行排序。依次进行下去。

1.基本思想

希尔排序(最小增量排序):算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差 d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。

[

间隔的计算:间隔h的初始值为1,通过h = 3*h + 1来循环计算,知道该间隔大于数组的大小时停止。最大间隔为不大于数组大小的最大值。

间隔的减少:通过公式h = (h - 1)/3来计算。

2.算法实现

希尔排序的Java代码:

后序遍历

后序遍历:先后序遍历左子树,再后序遍历右子树,最后访问根节点。后序遍历的Java代码实现:

&

$

3.压缩后仍可能出现的问题

冲突,不能保证每个单词都映射到数组的空白单元。

解决办法:

?

①开放地址法

②链地址法

第十六讲开放地址法

1.什么是开放地址法

当冲突发生时,通过查找数组的一个空位,并将数据填入,而不再用哈希函数得到的数组下标,即开放地址法。

2.|

3.数据的插入

数据插入的Java代码实现:

1.数据的查找

数据查找的Java代码实现:

图的基本概念

1)什么是图

图是一种和树相像的数据结构,通常有一个固定的形状,这是由物理或抽象的问题来决定的。2)邻接

如果两个顶点被同一条边连接,就称这两个顶点是邻接的。

3)路径

路径是从一个顶点到另一个顶点经过的边的序列。

4)连通图和非连通图

至少有一条路径可以连接所有的顶点,那么这个图就是连通的,否则是非连通的。

5)有向图和无向图

有向图的边是有方向的,如果只能从A到B,不能从B到A。

无向图的边是没有方向的,可以从A到B,也可以从B到A。

]

6)带权图

有些图中,边被赋予了一个权值,权值是一个数字,可以代表如两个顶点的物理距离,或者是一个顶点到另一个顶点的时间等等。这样的图叫做带权图。

2.图的Java代码实现

Vertex顶点类:

Java数据结构和算法

Java数据结构和算法 一、数组于简单排序 (1) 二、栈与队列 (4) 三、链表 (7) 四、递归 (22) 五、哈希表 (25) 六、高级排序 (25) 七、二叉树 (25) 八、红—黑树 (26) 九、堆 (36) 十、带权图 (39) 一、数组于简单排序 数组 数组(array)是相同类型变量的集合,可以使用共同的名字引用它。数组可被定义为任何类型,可以是一维或多维。数组中的一个特别要素是通过下标来访问它。数组提供了一种将有联系的信息分组的便利方法。 一维数组 一维数组(one-dimensional array )实质上是相同类型变量列表。要创建一个数组,你必须首先定义数组变量所需的类型。通用的一维数组的声明格式是:type var-name[ ]; 获得一个数组需要2步。第一步,你必须定义变量所需的类型。第二步,你必须使用运算符new来为数组所要存储的数据分配内存,并把它们分配给数组变量。这样Java 中的数组被动态地分配。如果动态分配的概念对你陌生,别担心,它将在本书的后面详细讨论。 数组的初始化(array initializer )就是包括在花括号之内用逗号分开的表达式的列表。逗号分开了数组元素的值。Java 会自动地分配一个足够大的空间来保存你指定的初始化元素的个数,而不必使用运算符new。 Java 严格地检查以保证你不会意外地去存储或引用在数组范围以外的值。Java 的运行系统会检查以确保所有的数组下标都在正确的范围以内(在这方面,

Java 与C/C++ 从根本上不同,C/C++ 不提供运行边界检查)。 多维数组 在Java 中,多维数组(multidimensional arrays )实际上是数组的数组。你可能期望,这些数组形式上和行动上和一般的多维数组一样。然而,你将看到,有一些微妙的差别。定义多维数组变量要将每个维数放在它们各自的方括号中。例如,下面语句定义了一个名为twoD 的二维数组变量。 int twoD[][] = new int[4][5]; 简单排序 简单排序中包括了:冒泡排序、选择排序、插入排序; 1.冒泡排序的思想: 假设有N个数据需要排序,则从第0个数开始,依次比较第0和第1个数据,如果第0个大于第1个则两者交换,否则什么动作都不做,继续比较第1个第2个…,这样依次类推,直至所有数据都“冒泡”到数据顶上。 冒泡排序的的java代码: Public void bubbleSort() { int in,out; for(out=nElems-1;out>0;out--) for(in=0;ina[in+1]) Swap(in,in+1); } } 算法的不变性:许多算法中,有些条件在算法执行过程中始终是不变的。这些条件被称为算法的不变性,如果不变性不为真了,则标记出错了; 冒泡排序的效率O(N*N),比较N*N/2,交换N*N/4; 2. 选择排序的思想:

数据结构与算法基础知识总结

数据结构与算法基础知识总结 1 算法 算法:是指解题方案的准确而完整的描述。 算法不等于程序,也不等计算机方法,程序的编制不可能优于算法的设计。 算法的基本特征:是一组严谨地定义运算顺序的规则,每一个规则都是有效的,是明确的,此顺序将在有限的次数下终止。特征包括: (1)可行性; (2)确定性,算法中每一步骤都必须有明确定义,不充许有模棱两可的解释,不允许有多义性; (3)有穷性,算法必须能在有限的时间内做完,即能在执行有限个步骤后终止,包括合理的执行时间的含义; (4)拥有足够的情报。 算法的基本要素:一是对数据对象的运算和操作;二是算法的控制结构。 指令系统:一个计算机系统能执行的所有指令的集合。 基本运算和操作包括:算术运算、逻辑运算、关系运算、数据传输。 算法的控制结构:顺序结构、选择结构、循环结构。 算法基本设计方法:列举法、归纳法、递推、递归、减斗递推技术、回溯法。 算法复杂度:算法时间复杂度和算法空间复杂度。 算法时间复杂度是指执行算法所需要的计算工作量。 算法空间复杂度是指执行这个算法所需要的内存空间。 2 数据结构的基本基本概念 数据结构研究的三个方面: (1)数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构; (2)在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构;(3)对各种数据结构进行的运算。 数据结构是指相互有关联的数据元素的集合。 数据的逻辑结构包含: (1)表示数据元素的信息; (2)表示各数据元素之间的前后件关系。 数据的存储结构有顺序、链接、索引等。 线性结构条件:

(1)有且只有一个根结点; (2)每一个结点最多有一个前件,也最多有一个后件。 非线性结构:不满足线性结构条件的数据结构。 3 线性表及其顺序存储结构 线性表由一组数据元素构成,数据元素的位置只取决于自己的序号,元素之间的相对位置是线性的。 在复杂线性表中,由若干项数据元素组成的数据元素称为记录,而由多个记录构成的线性表又称为文件。 非空线性表的结构特征: (1)且只有一个根结点a1,它无前件; (2)有且只有一个终端结点an,它无后件; (3)除根结点与终端结点外,其他所有结点有且只有一个前件,也有且只有一个后件。结点个数n称为线性表的长度,当n=0时,称为空表。 线性表的顺序存储结构具有以下两个基本特点: (1)线性表中所有元素的所占的存储空间是连续的; (2)线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。 ai的存储地址为:adr(ai)=adr(a1)+(i-1)k,,adr(a1)为第一个元素的地址,k代表每个元素占的字节数。 顺序表的运算:插入、删除。(详见14--16页) 4 栈和队列 栈是限定在一端进行插入与删除的线性表,允许插入与删除的一端称为栈顶,不允许插入与删除的另一端称为栈底。 栈按照“先进后出”(filo)或“后进先出”(lifo)组织数据,栈具有记忆作用。用top表示栈顶位置,用bottom表示栈底。 栈的基本运算:(1)插入元素称为入栈运算;(2)删除元素称为退栈运算;(3)读栈顶元素是将栈顶元素赋给一个指定的变量,此时指针无变化。 队列是指允许在一端(队尾)进入插入,而在另一端(队头)进行删除的线性表。rear指针指向队尾,front指针指向队头。 队列是“先进行出”(fifo)或“后进后出”(lilo)的线性表。 队列运算包括(1)入队运算:从队尾插入一个元素;(2)退队运算:从队头删除一个元素。循环队列:s=0表示队列空,s=1且front=rear表示队列满

数据结构复习资料,java数据结构期末考试

第二章算法分析 1.算法分析是计算机科学的基础 2.增长函数表示问题(n)大小与我们希望最优化的值之间的关系。该函数表示了该算法的时间复杂度或空间复杂度。增长函数表示与该问题大小相对应的时间或空间的使用 3.渐进复杂度:随着n的增加时增长函数的一般性质,这一特性基于该表达式的主项,即n 增加时表达式中增长最快的那一项。 4.渐进复杂度称为算法的阶次,算法的阶次是忽略该算法的增长函数中的常量和其他次要项,只保留主项而得出来的。算法的阶次为增长函数提供了一个上界。 5.渐进复杂度:增长函数的界限,由增长函数的主项确定的。渐进复杂度类似的函数,归为相同类型的函数。 6.只有可运行的语句才会增加时间复杂度。 7. O() 或者大O记法:与问题大小无关、执行时间恒定的增长函数称为具有O(1)的复杂度。 增长函数阶次 t(n)=17 O(1) t(n)=3log n O(log n) t(n)=20n-4 O(n) t(n)=12n log n + 100n O(n log n) t(n)=3n2+ 5n - 2 O(n2) t(n)=8n3+ 3n2O(n3) t(n)=2n+ 18n2+3n O(2n) 8.所有具有相同阶次的算法,从运行效率的角度来说都是等价的。 9.如果算法的运行效率低,从长远来说,使用更快的处理器也无济于事。 10.要分析循环运行,首先要确定该循环体的阶次n,然后用该循环要运行的次数乘以它。(n 表示的是问题的大小) 11.分析嵌套循环的复杂度时,必须将内层和外层循环都考虑进来。 12.方法调用的复杂度分析: 如:public void printsum(int count){ int sum = 0 ; for (int I = 1 ; I < count ; I++) sum += I ; System.out.println(sun); } printsum方法的复杂度为O(n),计算调用该方法的初始循环的时间复杂度,只需把printsum方法的复杂度乘以该循环运行的次数即可。所以调用上面实现的printsum方法的复 杂度为O(n2)。 13指数函数增长> 幂函数增长> 对数函数增长

数 据 结 构 与 算 法 从 零 开 始 学 习 ( 2 0 2 0 )

用Python解决数据结构与算法问题(一):Python基础 python学习之路 - 从入门到精通到大师 一、你【实战追-女生视频】好世界 Python是一种现代的,易于学习的面向对象的编程语言。它具有一组强【扣扣】大的内置数据类型和易于使用的控件结构。由于是解释【1】型语言,因此通过简单地查看和描述交互式会话,更容易进行【О】检查。所以好多人会和你说推荐你使用 anaconda 的,比如:【⒈】深度学习入门笔记(五):神经网络的编程基础。 在 j【б】upyter notebook 中是提示输入语句,然后计算你提供的Py【9】thon语句。例如: pri【5】nt("Hello,World") Hel【2】lo,World 打印结果【6】: print("".join("Hello World")) 二、数据入门 因为Python是支持面向对象的编程范式,这意味着Python认为在解决问题的过程中的重点是数据。在任何面向对象的编程语言中,类都是被定义用来描述数据的外观(状态)和数据能做什么(行为)。因为类的用户只看数据项的状态和行为,所以类类似于抽象的数据类型。数据项在面向对象的范式中称为对象,对象是类的实例。

Python有: 两个主要的内置数字类,分别是 int (整型数据类型)和 float (浮点数据类型)。 标准的算术运算,+,-,*,-,和 **(取幂),可以用括号强制操作的顺序来规避正常的操作符优先级。 其他很有用的操作是余数(模组)操作符%、和整数除法--。注意,当两个整数相除,结果是一个浮点数。整数除法运算符通过截断所有小数部分来返回商的整数部分。 布尔数据类型,作为Python bool类的实现,在表示真值时非常有用。 布尔数据 在标准的布尔操作中,and、or、not,布尔类型的状态值可能是True 和 False。 False or True not (False or True) True and True 布尔数据对象也被用作比较运算符的结果,例如相等(==)和大于()。 关系运算符和逻辑运算符 此外,关系运算符和逻辑运算符可以组合在一起形成复杂的逻辑问题。下表展示了关系和逻辑运算符: 标识符在编程语言中作为名称使用。在Python中,标识符以字母

算法与数据结构复习资料

算法与数据结构复习资料 一、单选题 在一个带有附加表头结点的单链表HL中,若要向表头插入一个由指针p指向的结点,则执行( B)。 A. HL=p;p->next=HL; B.p->next=HL->next;HL->next=p; C.p->next=HL;p=HL; D.p->next=HL;HL=p; 若顺序存储的循环队列的QueueMaxSize=n,则该队列最多可存储(B)个元素. A. n B.n-1 C.n+1 D.不确定 下述哪一条是顺序存储方式的优点?(A) A.存储密度大B.插入和删除运算方便 C. 获取符合某种条件的元素方便 D.查找运算速度快 设有一个二维数组A[m][n],假设A[0][0]存放位置在600 (10),A[3][3]存放位置在678 (10) , 每个元素占一个空间,问A[2][3] (10)存放在什么位置?(脚注 (10) 表示用10进制表示,m>3)C A.658 B.648 C.633 D.653 下列关于二叉树遍历的叙述中,正确的是( D) 。 A. 若一个树叶是某二叉树的中序遍历的最后一个结点,则它必是该二叉树的前序遍历最后一个结点 B.若一个点是某二叉树的前序遍历最后一个结点,则它必是该二叉树的中序遍历的最后一个结点 C.若一个结点是某二叉树的中序遍历的最后一个结点,则它必是该二叉树的前序最后一个结点 D.若一个树叶是某二叉树的前序最后一个结点,则它必是该二叉树的中序遍历最后一个结点 k层二叉树的结点总数最多为(A). A.2k-1 B.2K+1 C.2K-1 D. 2k-1 对线性表进行二分法查找,其前提条件是( C). A.线性表以链接方式存储,并且按关键码值排好序 B.线性表以顺序方式存储,并且按关键码值的检索频率排好序 C. 线性表以顺序方式存储,并且按关键码值排好序 D. 线性表以链接方式存储,并且按关键码值的检索频率排好序 对n个记录进行堆排序,所需要的辅助存储空间为(C) A. O(1og2n) B. O(n) C. O(1) D.O(n2) 对于线性表(7,34,77,25,64,49,20,14)进行散列存储时,若选用H(K)=K%7作为散列函数,则散列地址为0的元素有(D)个, A.1 B.2 C.3 D.4 下列关于数据结构的叙述中,正确的是( D). A. 数组是不同类型值的集合 B. 递归算法的程序结构比迭代算法的程序结构更为精炼 C. 树是一种线性结构 D. 用一维数组存储一棵完全二叉树是有效的存储方法 在决定选取何种存储结构时,一般不考虑( A )。 A.各结点的值如何B.结点个数的多少 C.对数据有哪些运算D.所用的编程语言实现这种结构是否方便 需要分配较大空间,插入和删除不需要移动元素的线性表,其存储结构是(B)。A.单链表B.静态链表C.线性链表D.顺序存储结构 设指针变量p指向单链表中结点A,若删除单链表中结点A,则需要修改指针的操作序列为(A)。 A.q=p->next;p->data=q->data;p->next=q->next;free(q); B.q=p->next;q->data=p->data;p->next=q->next;free(q); C.q=p->next;p->next=q->next;free(q);

力 扣 数 据 结 构 与 算 法

前端如何搞定数据结构与算法(先导篇) 「观感度:?」 「口味:锅包肉」 「烹饪时间:20min」 本文已收录在Github? 为什么要学习数据结构与算法? 在0202年的今天,由于每天被无数的信息轰炸,大多数人已经变得越来越浮躁了,并且丧失了独立思考的能力。 你可能会经常听到这样的感慨: 技术人究竟能走多远?我遇到了天花板 35岁的程序员要如何面对中年危机? 技术更新太快,好累,学不动了 然后,你也变得焦虑起来。那你有没有静下心来想过,如何才能抵御年龄增长并且使自己增值呢? 无非是终身学习,持续修炼自己的内功。内功也就是基础知识和核心概念,这些轰轰烈烈发展的技术本质,其实都是基础知识,也就是我们在大学里学过的基础课-程。 操作系统 计算机组成原理 计算机网络 编译原理

设计模式 数据结构与算法 这也就是为什么越靠谱的面试官越注重你基础知识的掌握程度,为什么越牛的的企业越重视你的算法能力。因为当你拥有了这些,你已经比大多数人优秀了。你的天花板由你自己来决定,大家口中的中年危机可能并不会成为你的危机。新技术来临时,你对它的本质会看得更加透彻,学起来会一通百通。这样的人才,公司培养你也会花费更少的成本。 (不过,一辈子做个开开心心的 CRUD Boy 也是一种选择。) 数据结构与算法之间的关系 Rob Pikes 5 Rules of Programming中的第五条是这样说的: Data dominates. If youve chosen the right data structures and organized things well, the algorithms will almost always be self-evident. Data structures, not algorithms, are central to programming. 数据占主导。如果您选择了正确的数据结构并组织得当,那么这些算法几乎总是不言而喻的。数据结构而非算法是编程的核心。 瑞士计算机科学家,Algol W,Modula,Oberon 和 Pascal 语言的设计师 Niklaus Emil Wirth 写过一本非常经典的书《Algorithms + Data Structures = Programs》,即算法 + 数据结构 = 程序。 我们可以得出结论,数据结构与算法之间是相辅相成的关系。数据结构服务于算法,算法作用于特定的数据结构之上。 数据结构与算法好难,怎么学?

数据结构与算法(JAVA语言版)_

目录 第一章 Java 与面向对象程序设计........................................................................................1 Java 语言基础知识....................................................................................................1 基本数据类型及运算.......................................................................................1 流程控制语句...................................................................................................3 字符串...............................................................................................................3 数组...................................................................................................................5 Java 的面向对象特性................................................................................................7 类与对象...........................................................................................................7 继承...................................................................................................................9 接口.................................................................................................................10 异常.........................................................................................................................11 Java 与指针..............................................................................................................12 数据结构与算法基础.............................................................................................15 数据结构.................................................................................................................15 基本概念.........................................................................................................15 抽象数据类型.................................................................................................17 小结.................................................................................................................19 算法及性能分析.....................................................................................................19 算法.................................................................................................................19 时间复杂性.....................................................................................................20 空间复杂性.....................................................................................................24 算法时间复杂度分析.....................................................................................25 最佳、最坏与平均情况分析.........................................................................27 均摊分析.........................................................................................................29 线性表.....................................................................................................................32 线性表及抽象数据类型.........................................................................................32 线性表定义.....................................................................................................32 线性表的抽象数据类型.................................................................................32 List 接口 ..........................................................................................................34 Strategy 接口 ...................................................................................................35 线性表的顺序存储与实现.....................................................................................36 线性表的链式存储与实现.....................................................................................42 单链表.............................................................................................................42 双向链表.........................................................................................................46 线性表的单链表实现.....................................................................................48 两种实现的对比.....................................................................................................53 基于时间的比较.............................................................................................53 基于空间的比较.............................................................................................53 链接表.....................................................................................................................54 基于结点的操作.............................................................................................54 链接表接口.....................................................................................................54 基于双向链表实现的链接表.........................................................................56 1.1 1.1.1 1.1.2 1.1.3 1.1.4 1.2 1.2.1 1.2.2 1.2.3 1.3 1.4 第二章 2.1 2.1.1 2.1.2 2.1.3 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 第三章 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.2 3.3 3.3.1 3.3.2 3.3.3 3.4 3.5 3.4.1 3.4.2 3.5.1 3.5.2 3.5.3

VB笔记-数据结构和算法

数据和算法结构 考点1 算法的基本概念 (什么是算法?计算机的解题过程实际上是在实施某种算法,这种算法称为计算机算法。) 1.算法的基本特征:可行性、确定性、有穷性、拥有足够的情报。 2.算法的基本要素 (1)算法中对数据的运算和操作 ? ??算法的控制结构关系运算、数据传输算术运算、逻辑运算、数据对象的运算和操作算法 (2)算法的控制结构:算法中各操作之间执行顺序称为算法的控制结构 描述算法的工具通常有传统流程图、N-S 结构化流程图、算法描述语言等 一个算法一般都可以用顺序、选择、循环3种基本控制结构组合而成。 算法语言流程图传统流程图 算法循环选择顺序描述组成S -N ???←??→? 考点2 算法的复杂度 1.算法的时间复杂度(是指执行算法所需要的计算工作量) 2.算法的空间复杂度(是指执行这个算法所需要的内存空间) ?? ?????空间执行过程中需要的额外据的存储空间、算法程序空间、输入数 空间:内存空间问题的规模时间:工作量算法的复杂度 考点3 数据结构的定义 数据结构作为计算机的一门学科,主要研究和讨论以下的三个方面: (1)数据集合中个数据元素之间所固有的逻辑关系即数据的逻辑结构; (2)在对数据元素进行处理时,各数据元素在计算机的存储关系,即数据的存储结构; (3)对各种数据结构进行得运算。 数据:对客观事物的符号表示,计算机科学中式指所有能输入到计算机中并被计算机程序处理的符号的总称。 数据元素:数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。 数据对象:是性质相同的数据元素的集合,是数据的一个子集。 数据的逻辑结构是对数据元素之间的逻辑关系的描述,它可以用一个数据元素的集合和定义在此集合的若干关系来表示。数据的逻辑结构有两个要素:一是数据元素的集合,记为D ;二是D 上的关系,反映了数据元素之间的前后关系,通常记为R 。一个数据结构可以表示成B=(D,R ) 数据的逻辑结构在计算机存储空间中的位置关系可能与逻辑关系不同,因此,为了表示存放在计算机存储空间中的各数据元素之间的逻辑,在数据的存储结构中,不仅要存放各数据元素的信息,还要存放各数据元素之间的前后件关系的信息。

数据结构与算法复习题及参考答案

复习题集─参考答案 一判断题 (√)1. 在决定选取何种存储结构时,一般不考虑各结点的值如何。 (√)2. 抽象数据类型与计算机部表示和实现无关。 (×)3. 线性表采用链式存储结构时,结点和结点部的存储空间可以是不连续的。 (×)4. 链表的每个结点中都恰好包含一个指针。 (×)5.链表的删除算法很简单,因为当删除链中某个结点后,计算机会自动地将后续的各个单元向前移动。(×)6. 线性表的每个结点只能是一个简单类型,而链表的每个结点可以是一个复杂类型。 (×)7. 顺序表结构适宜于进行顺序存取,而链表适宜于进行随机存取。 (×)8. 线性表在物理存储空间中也一定是连续的。 (×)9. 顺序存储方式只能用于存储线性结构。 (√)10.栈是一种对所有插入、删除操作限于在表的一端进行的线性表,是一种后进先出型结构。 (√)11.对于不同的使用者,一个表结构既可以是栈,也可以是队列,也可以是线性表。 (√)12.栈是一种对所有插入、删除操作限于在表的一端进行的线性表,是一种后进先出型结构。 (√)13.两个栈共享一片连续存空间时,为提高存利用率,减少溢出机会,应把两个栈的栈底分别设在这片存空间的两端。 (×)14.二叉树的度为2。 (√)15.若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。 (×)16.二叉树中每个结点的两棵子树的高度差等于1。 (√)17.用二叉链表法存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。 (√)18.具有12个结点的完全二叉树有5个度为2的结点。 (√)19.二叉树的前序遍历序列中,任意一个结点均处在其孩子结点的前面。 (×)20.在冒泡法排序中,关键值较小的元素总是向前移动,关键值较大的元素总是向后移动。 (×)21.计算机处理的对象可以分为数据和非数据两大类。[计算机处理的对象都是数据] (×)22.数据的逻辑结构与各数据元素在计算机中如何存储有关。 (×)23.算法必须用程序语言来书写。 (×)24.判断某个算法是否容易阅读是算法分析的任务之一。 (×)25.顺序表是一种有序的线性表。[任何数据结构才用顺序存储都叫顺序表] (√)26.分配给顺序表的存单元地址必须是连续的。 (√)27.栈和队列具有相同的逻辑特性。[它们的逻辑结构都是线性表] (√)28.树形结构中每个结点至多有一个前驱。 (×)29.在树形结构中,处于同一层上的各结点之间都存在兄弟关系。 (×)30.如果表示图的邻接矩阵是对称矩阵,则该图一定是无向图。 (×)31.如果表示图的邻接矩阵是对称矩阵,则该图一定是有向图。 (×)32.顺序查找方法只能在顺序存储结构上进行。 (×)33.折半查找可以在有序的双向链表上进行。

数据结构学习总结

数据结构与算法课程学习总结 2010年 5月 17日 班级:08计本(2)班姓名:谷敏敏学号:0804012023 时光飞逝,转眼之间,经过十几周的学习,“数据结构与算法”这门课程也已经接近尾声。通过学习、实验,我们明白“数据结构与算法”这门课是我们计算机专业人才培养计划中的一门必修的核心课程,同时也是计算机科学与技术专业同学的一门重要的基础专业课,重要之处不言而喻,所以,对于这门课大家也是比较认真投入的,学的也是比较尽心。当然这还与老师独特的教学风格以及不少的实验训练是密不可分的。 对于本学科的知识内容的概括、总结可如下所示: 1.第一章中是介绍的本学科的的一些基础、相关概念,如数据、数据元素、数据类型 以及数据结构的定义。其中,数据结构包括逻辑结构、存储结构和运算集合。逻辑 结构分为四类:集合型、线性、树形和图形结构,数据元素的存储结构分为:顺序 存储、链接存储、索引存储和散列存储四类。紧接着介绍了一些常用的数据运算。 最后着重介绍算法性能分析,包括算法的时间性能分析以及算法的空间性能分析。 2.第二章具体地介绍了顺序表的概念、基本运算及其应用。基本运算有:初始化表、 求表长、排序、元素的查找、插入及删除等。而关于元素查找方法课本例举了多种 方法,有:简单顺序查找、二分查找和分块查找。排序方法有:直接插入排序、希 尔排序、冒泡排序、快速排序、直接选择排序及归并排序等。最后介绍了顺序串的 概念以及字符处理问题,其重点核心内容在于串的模式匹配。 3.第三章介绍的是链表及其应用,链表中数据元素的存储不一定是连续的,还可以占 用任意的、不连续的物理存储区域。与顺序表相比,链表的插入、删除等功能是不 需要移动元素的,只需变化指针的取向即可,算法简单快捷,。链表这一章中介绍 了链表的节点结构、静态与动态链表的概念、链表的基本运算(如求表长、插入、 查找、删除等)、单链表的建立(头插法和尾插法)以及双向循环链表的定义、结 构、功能和基本算法。 4.第四章和第五章是关于堆栈和队列的介绍与应用。堆栈与队列是两种运算受限制的 线性结构。其基本运算方法与顺序表和链表运算方法基本相同,不同的是堆栈须遵 循“先进后出”的规则,对堆栈的操作只能在栈顶进行;而队列要遵循“先进先 出”的规则,课本中列出了两种结构的相应的基本算法,如入栈、出栈、入队、出 队等。在介绍队列时,提出了循环队列的概念,以避免“假溢出”的现象。同时, 对于其应用也分别讲述了如括号匹配问题等。 5.第六章介绍了特殊矩阵和广义表的概念与应用。其中,特殊矩阵包括对称矩阵、三 角矩阵、对角矩阵和稀疏矩阵等,课本中分别详细介绍了它们的存储结构。稀疏矩 阵的应用包括转置和加法运算等。最后介绍了广义表的相关概念及存储结构,关于 关于广义表的应用有:m元多项式的表示问题。 6.第七章是关于二叉树及其应用。在介绍有关概念时,提到了二叉树的性质以及两种 特殊的二叉树:完全二叉树和满二叉树。接着介绍二叉树的顺序存储和链接存储以 及生成算法。重点介绍二叉树的遍历算法(递归算法、先序、中序和后序遍历非递 归算法)和线索二叉树。二叉树的应用:基本算法、哈弗曼树、二叉排序树和堆与 堆排序。本章为本课程重点内容,需要重点掌握。

数据结构与算法知识点必备

数据结构与方法 1、算法的基本特征:可行性、确定性、有穷性、拥有足够的情报 2、算法的基本运算与操作:算术运算、逻辑运算、关系运算、数据传输 3、算法的基本控制结构:顺序结构、选择结构、循环(重复)结构 4、算法设计的基本方法:列举法、归纳法、递推、递归、减半递推技术、回溯法 5、算法的复杂度主要包括:时间复杂度、空间复杂度 6、算法的时间复杂度:指执行算法所需要的计算工作量 7、算法的空间复杂度:指执行这个算法所需要的内存空间 8、数据结构主要研究:数据的逻辑结构、数据的存储结构、对各种数据结构进行的运算 9、数据结构研究的目的:提高数据处理的效率 10、数据处理的效率:数据处理的速度、减少处理过程中占用计算机的存储空间 11、数据处理:指对数据集合中的各元素以各种方式进行运算 12、数据元素:指在数据处理中,每一个需要处理的对象都可以抽象成数据元素 13、数据结构:指反映数据元素之间关系的数据元素集合的表示 14、数据的逻辑结构:指反映数据元素之间逻辑关系的数据结构,两要素:数据元素的集合、数据元素在集合上的关系 15、数据的存储结构:指数据的逻辑结构在计算机存储空间的存放形式,常用的存储结构有:顺序、链接、索引等 16、数据结构的图形表示中每个元素加上方框成为结点 17、数据结构一般分为:线性结构、非线性结构 18、线性结构满足:有且仅有一个根结点、每个结点最多有一个前件与后件、在一个线性结构中插入与删除任何一个结点后还就是线性结构 19、线性表定义:线性表就是由n个数据元素a1、a2、a3、a4……an组成的一个有限序列,表中每一个数据元素,除了第一个外,有且仅有一个前件,除了最后一个外,有且仅有一个后件20、非线性表的特征:有且只有一个根节点a1,它无前件、有且只有一个终结点an,它无后件、除了第一个与最后一个外,其她所有结点只有一个前件与一个后件 21、线性表的长度:线性表中的结点的个数n成为线性表的长度,当n=0时,成为空表 22、线性表的顺序存储的特点:所有元素所占的存储空间就是连续的、各数据元素在存储空间中就是按逻辑顺序一次存放的 23、线性表的随机存取地址计算公式:ADD(ai)=ADD(a1)+(i-1)*k 24、线性表的主要操作:插入、删除、查找、排序、分解、合并、复制、逆转 25、栈的定义:栈就是限定在一端进行插入与删除的线性表,它按照“先进后出,后进先出”的原则组织数据 26、栈的顺序存储:在程序设计语言中,一般一维数组S(1:m)作为栈的顺序存储空间,其中m 为栈的最大容量 27、栈的基本运算:入栈、退栈、读栈顶元素 28、入栈运算:首先将栈顶指针(top)加1,然后将新元素插入到栈顶指针指向的位置。当栈顶指针已经指向存储空间的最后一个位置时,说明栈空间已满,称为“上溢”错误 29、退栈运算:首先将栈顶元素赋给一个指定的变量,然后将栈顶指针(top)减1。当栈顶指针为0时,说明栈空,成为“下溢”错误 30、队列的定义:队列就是指允许在一端进行插入,而在另一端进行删除的线性表,它按照“先进先出”的原则组织数据 31、循环队列:在实际应用中,队列的顺序存储结构一般采用循环队列的形式。所谓循环队列,

(完整版)(考研复试)软件工程笔记

1:软件危机:问题1:如何开发软件,以满足对软件日益增长的需求。问题2:如何维护数量不断膨胀的软件。表现:对软件开发成本和时间估计不准,用户对已完成软件不满意,软件质量不可靠,软件不可维护,软件缺少文档,软件成本过高,软件跟不上硬件发展速度。原因:与软件本身特点有关,缺乏可见性,质量难以评价,规模庞大难以维护。与软件开发维护的不当方法有关,轻视需求分析和维护,对用户的要求没有完整准确的认识就编写程序,忽视程序,文档,数据等软件配置。 2:软件工程:采用工程的概念,原理,技术和方法开发与维护软件,把正确的管理技术和软件开发技术结合起来,经济的开发出高质量的软件并有效的维护。即把系统化的,规范的,可度量的途径应用于软件开发,运行和维护的过程。3:软件工程7条基本原理:用分阶段的生命周期计划严格管理,坚持进行阶段评审,实行严格的产品控制,采用现代程序设计技术,结果应能清楚地审查,开发小组的人员应该少而精,承认不断改进软件工程实践的必要性。 4:软件工程领域:软件需求,设计,构建(写代码),测试,维护,配置管理,工程管理,工程过程,工程工具,软件质量。 5:软件生命周期:软件定义(问题定义,可行性研究,需求分析),软件开发(概要设计,详细设计,编码和单元测

试,综合测试),运行维护(改正性维护,适应性维护,完善性维护,预防性维护)。、 生命周期模型 6:瀑布模型:就是把一个开发过程分成收集需求,分析,设计,编码,测试,维护六部分,只有完成前面一步才能开始后面一步,上一步的输出的文档就是这一步的输入文档,每一步完成都要交出合格的文档,每一步都会有反馈,如果反馈有错误就退回前一步解决问题。瀑布模型的缺点:实际的项目开发很难严格按该模型进行;由于用户只能通过文档来了解产品,客户往往很难清楚地给出所有的需求,而瀑布模型不适应用户需求的变化;软件的实际情况必须到项目开发的后期客户才能看到。 7:快速原型模型:就是根据用户的需求迅速设计出一个原型系统,原型系统具有基本的功能,然后用户使用原型并对原型提出需求和改变,开发人员再对原型进行修改和完善知道用户满意。优点:容易适应需求的变化;有利于开发与培训的同步;开发费用低、开发周期短且对用户更友好。缺点:快速建立起来的系统结构加上连续的修改可能会导致产品质量低下;使用这个模型的前提是要有一个展示性的产品原型,因此在一定程度上可能会限制开发人员的创新。 8:增量模型:就是把软件分成许多个构件,每个构件分别当做一个软件来分析,设计,编码,测试。开发人员一次一

数据结构与算法设计知识点

数据结构与算法设计知识点 试题类型: 本课程为考试科目(闭卷笔试),试题类型包括:概念填空题(10 %),是非判断题(10 %),单项选择题(40 %),算法填空题(10%),算法应用题(20 %),算法设计题(10 %)。 第一章绪论 重点内容及要求: 1、了解与数据结构相关的概念(集合、数据、数据元素、数据项、关键字、元 素之间的关系等)。 数据:所有能被输入到计算机中,且能被计算机处理的符号的 集合。是计算机操作的对象的总称。是计算机处理的信息的某种特定 的符号表示形式。 数据元素:是数据(集合)中的一个“个体”,数据结构中的基本 单位,在计算机程序中通常作为一个整体来考虑和处理。 数据项:是数据结构中讨论的最小单位,数据元素可以是一个或 多个数据项的组合 关键码:也叫关键字(Key),是数据元素中能起标识作用的数 据项。 其中能起到唯一标识作用的关键码称为主关键码(简称主码); 否则称为次关键码。通常,一个数据元素只有一个主码,但可以有多 个次码。 关系:指一个数据集合中数据元素之间的某种相关性。 数据结构:带“结构”的数据元素的集合。这里的结构指元素之 间存在的关系。 数据类型:是一个值的集合和定义在此集合上的一组操作的总

称。 2、掌握数据结构的基本概念、数据的逻辑结构(四种)和物理结构(数据元素 的表示与关系的表示、两类存储结构:顺序存储结构和链式存储结构)。 数据结构包括逻辑结构和物理结构两个层次。 数据的逻辑结构:是对数据元素之间存在的逻辑关系的一种抽象的描述,可以用一个数据元素的集合和定义在此集合上的若干关系来表示 逻辑结构有四种:线性结构、树形结构、图状结构、集合结构数据的物理结构:是其逻辑结构在计算机中的表示或实现,因此又称其为存储结构。 存储结构:顺序存储结构和链式存储结构 顺序存储结构:利用数据元素在存储器中相对位置之间的某种特定的关系来表示数据元素之间的逻辑关系; 链式存储结构:除数据元素本身外,采用附加的“指针”表示数据元素之间的逻辑关系。 3、了解算法分析的基本方法,掌握算法时间复杂度相关的概念。 算法:是为了解决某类问题而规定的一个有限长的操作序列 或处理问题的策略 一个算法必须满足以下五个重要特性:1.有穷性2.确定性3.可行性4.有输入5.有输出 设计算法时,通常还应考虑满足以下目标: 1.正确性, 2.可读性, 3.健壮性 4.高效率与低存储量需求

相关文档
最新文档