复合材料孔隙率的测定.

合集下载

复合材料介电常数

复合材料介电常数

复合材料介电常数1. 介电常数的概念介电常数是复合材料中一个重要的物理参数,它描述了材料对电场的响应程度。

在电场作用下,材料中的电荷会发生重新排列,形成电偶极矩,从而产生极化效应。

介电常数与材料的极化能力有关,它是指材料在电场作用下,单位体积内所储存的电场能量与外加电场强度的比值。

2. 复合材料介电常数的影响因素复合材料的介电常数受多种因素的影响,下面将介绍几个主要的因素:2.1 成分复合材料的成分直接决定了其固有的介电性能。

不同材料的介电常数差异很大,例如,金属通常具有较低的介电常数,而陶瓷和聚合物等绝缘材料则具有较高的介电常数。

因此,通过优化复合材料的成分组成,可以实现对介电常数的调控。

2.2 结构复合材料的结构对介电常数也有很大影响。

例如,纤维增强复合材料中的纤维方向对于介电常数具有显著影响。

当纤维与外加电场方向垂直时,复合材料的介电常数较高,而当纤维与外加电场方向平行时,介电常数较低。

此外,复合材料中的孔隙率、孔隙形状和孔隙分布等结构参数也会对介电常数产生影响。

2.3 温度温度是影响复合材料介电常数的重要因素之一。

随着温度的升高,复合材料中分子的热运动增加,从而使介电常数减小。

不同材料对温度的敏感程度也有所不同,这需要在应用中进行考虑。

3. 复合材料介电常数的测量方法测量复合材料的介电常数是评估其电磁性能的关键。

下面介绍几种常用的测量方法:3.1 表观介电常数法表观介电常数法是最常用的测量复合材料介电常数的方法之一。

该方法通过测量样品在不同频率下的电容值,计算得到表观介电常数。

这种方法简单、快速,并且不需要破坏性的处理样品,适用于大部分复合材料。

3.2 微波共振法微波共振法利用微波介电谐振腔来测量样品的介电常数。

通过测量谐振频率和电容值的变化,可以得到样品的介电常数。

这种方法适用于对高频范围内复合材料的介电常数进行测量。

3.3 场景建模法场景建模法是一种基于数值模拟的方法,通过建立复合材料的电磁场模型,计算得到样品的介电常数。

《玻璃纤维-环氧树脂复合材料力学性能研究》

《玻璃纤维-环氧树脂复合材料力学性能研究》

《玻璃纤维-环氧树脂复合材料力学性能研究》玻璃纤维-环氧树脂复合材料力学性能研究一、引言随着现代工业技术的不断发展,复合材料以其独特的优势,如高强度、轻质、耐腐蚀等,逐渐成为各类工程领域中的重要材料。

其中,玻璃纤维/环氧树脂复合材料因其优异的力学性能和良好的加工性能,在航空航天、汽车制造、建筑工程等领域得到了广泛应用。

因此,对玻璃纤维/环氧树脂复合材料的力学性能进行深入研究,对于推动其在实际应用中的发展具有重要意义。

二、玻璃纤维/环氧树脂复合材料的组成与制备玻璃纤维/环氧树脂复合材料主要由玻璃纤维和环氧树脂基体组成。

其中,玻璃纤维具有较高的强度和刚度,而环氧树脂基体则起到粘合和增强作用。

在制备过程中,首先将玻璃纤维进行预处理,然后与环氧树脂混合、搅拌均匀,最后进行固化、成型等工艺。

三、玻璃纤维/环氧树脂复合材料的力学性能研究1. 拉伸性能研究拉伸性能是衡量材料力学性能的重要指标之一。

通过对玻璃纤维/环氧树脂复合材料进行拉伸试验,可以了解其抗拉强度、弹性模量等参数。

研究表明,玻璃纤维的加入可以有效提高复合材料的拉伸性能,使复合材料具有更高的抗拉强度和更好的弹性。

2. 弯曲性能研究弯曲性能是指材料在受到弯曲力作用时的抵抗能力。

通过对玻璃纤维/环氧树脂复合材料进行弯曲试验,可以了解其弯曲强度、弯曲模量等参数。

研究表明,复合材料的弯曲性能与其内部结构密切相关,适当的纤维含量和分布可以有效地提高复合材料的弯曲性能。

3. 冲击性能研究冲击性能是指材料在受到冲击力作用时的抵抗能力。

对于玻璃纤维/环氧树脂复合材料而言,其冲击性能对其在实际应用中的耐久性和安全性具有重要意义。

通过冲击试验,可以了解复合材料在受到冲击力作用时的破坏形态、能量吸收等性能。

研究表明,适量的玻璃纤维加入可以有效提高复合材料的冲击性能。

四、影响因素分析1. 纤维含量:适量的玻璃纤维含量可以提高复合材料的力学性能,但过多的纤维含量可能导致材料内部结构的不均匀性增加,反而降低其力学性能。

气凝胶水泥复合材料的研究与应用

气凝胶水泥复合材料的研究与应用

气凝胶水泥复合材料的研究与应用摘要:随着现代技术的进步,市场对建材的节能、隔音、隔热等性能需求越来越迫切,研发新型水泥复合材料以进一步增强建材性能已经成为重要的研究方向。

本文首先概述了泡沫轻质水泥基复合材料的性能,该复合材料主要由微尺寸气凝胶和过氧化氢等共同构成。

经检验,含1%气凝胶和3%过氧化氢的泡沫轻质水泥基复合材料样品具有380kg/m3的低干燥密度和约3MPa的抗压强度,可以作为隔音隔热水泥基复合材料使用。

关键词:气凝胶;水泥复合材料;性能在建筑行业,建筑企业采用有效的隔热措施,如使用隔热材料等,可以有效降低能耗。

理论上说,建筑材料的隔热性能主要取决于材料的导热系数,而将不同类型的多孔轻质材料(如膨胀玻璃、玻璃微球以及粉煤灰空心球等)添加到水泥基材料中,可以将水泥基材料的导热系数降低80%。

也就是说,高效的建筑保温系统不论是用于供暖还是制冷,都可以有效节约能源。

1气凝胶及特性气凝胶是一种分散介质为气体的凝胶材料,于20世纪30年代初被发现,20世纪80年代末,因其高效的隔热性能,被广泛应用于航天工业、化学工业和运动装备,但在建筑领域的应用并不多。

如今,气凝胶被用于建筑产品的组件有,玻璃、真空隔热板(VIP)、混凝土、砂浆等。

根据表面化学性质,气凝胶分为亲水性和疏水性两类;根据前驱体的类型,气凝胶可分为有机气凝胶、无机气凝胶和混合(有机-无机)气凝胶。

气凝胶的颗粒直径从2nm到5mm不等,表面积160.8~1100m2/g,气凝胶的热导率介于0.01~0.02W/(m·K)之间。

从质量和体积上看,二氧化硅气凝胶是最好的固体绝缘体,因为与相同密度的玻璃相比,它只传输百分之一的热量。

2气凝胶的合成和复合材料的生产由于气凝胶的强度差、密度低、易碎以及疏水性,在混合过程中,气凝胶颗粒很容易碰撞、飞散和漂浮到模具中,影响气凝胶颗粒粉末在水泥基质中的均匀分布。

这种现象可严重影响复合材料的力学和隔热性能。

一种VARI工艺成型用树脂及其复合材料的研究

一种VARI工艺成型用树脂及其复合材料的研究

一种VARI工艺成型用树脂及其复合材料的研究梁凤飞;金迪;何勇【摘要】以一种VARI(Vacuum Assisted Resin Infusion)成型工艺用环氧树脂RTM6-2为基体,研究了其固化特性,并使用VARI工艺制备了碳纤维增强复合材料层合板,对其性能进行了研究.结果表明:RTM6-2的工艺操作温度为100±10℃,工艺温度下的适用期可达7~9h,树脂浇铸体的经过180℃固化后的玻璃化转变温度为203℃~207℃;层合板的纤维体积含量在56%~57%之间,孔隙率小于1%,玻璃化转变温度为160℃~167℃.同时,通过试验得到了层合板的力学性能.【期刊名称】《西安航空技术高等专科学校学报》【年(卷),期】2018(036)001【总页数】5页(P34-38)【关键词】VARI;工艺;树脂;复合材料【作者】梁凤飞;金迪;何勇【作者单位】中航西飞民用飞机有限责任公司工程技术中心,西安 710089;中航西飞民用飞机有限责任公司工程技术中心,西安 710089;中航西飞民用飞机有限责任公司工程技术中心,西安 710089【正文语种】中文【中图分类】O633.130 引言复合材料的比强度、比刚度大,结构可设计性强,能有效地减轻结构重量、提高结构效率,同时具有良好的耐腐蚀性能和抗疲劳性能,可降低飞机结构的维护成本[1],在飞机上的应用越来越广[2]。

在复合材料总成本中,制造成本约占60%~70%[3]。

目前飞机结构使用的复合材料构件大多采用热压罐成型工艺,该工艺居高不下的制造成本制约了复合材料在船舶、汽车、建筑等领域的应用。

因此,复合材料的低成本应用,已经成为新一代复合材料的发展方向[4]。

近年来,真空辅助树脂渗透成型(VARI)作为一种典型的高性能、低成本的液体成型工艺,已广泛应用于飞机复合材料零件制造,被认为是最有发展潜力的复合材料低成本制造工艺之一[5]。

VARI工艺是将按照结构和性能要求制备好的纤维预成型体放置在模具上,在真空作用下使液态树脂在预成型体内流动,浸润纤维,并在相应的工艺温度条件下固化成一定纤维/树脂比例复合材料的成型工艺方法[6],工艺过程如图1所示。

复合材料的抗拉强度与性能评估

复合材料的抗拉强度与性能评估

复合材料的抗拉强度与性能评估在现代工程领域,复合材料凭借其优异的性能,逐渐成为众多应用场景中的首选材料。

而复合材料的抗拉强度作为一项关键性能指标,对于评估其在实际使用中的可靠性和适用性具有至关重要的意义。

要深入理解复合材料的抗拉强度,首先需要明确什么是复合材料。

复合材料是由两种或两种以上具有不同物理和化学性质的材料组合而成的多相材料。

这些不同的组分在性能上相互补充、协同作用,从而赋予了复合材料独特的性能优势。

复合材料的抗拉强度受到多种因素的影响。

其中,增强纤维的种类、性能和含量是关键因素之一。

例如,碳纤维具有高强度和高模量的特点,当其作为增强纤维加入到复合材料中时,能够显著提高材料的抗拉强度。

玻璃纤维相对成本较低,但在一定程度上也能增强复合材料的抗拉性能。

此外,增强纤维的含量越高,通常复合材料的抗拉强度也会相应提高,但同时也可能会影响材料的加工性能和成本。

基体材料的性能同样对复合材料的抗拉强度产生重要影响。

常见的基体材料包括树脂、金属等。

基体材料的强度、韧性以及与增强纤维的界面结合强度,都会直接关系到复合材料在受到拉伸载荷时的表现。

良好的界面结合能够有效地将载荷从基体传递到增强纤维,从而提高复合材料的整体抗拉强度。

复合材料的制备工艺也在很大程度上决定了其抗拉强度。

不同的制备方法,如手糊成型、喷射成型、模压成型等,会导致复合材料内部的纤维分布、孔隙率等微观结构的差异,进而影响其抗拉性能。

例如,采用先进的自动化成型工艺能够更精确地控制纤维的取向和分布,减少孔隙和缺陷,从而获得更高的抗拉强度。

在评估复合材料的抗拉强度时,实验测试是不可或缺的手段。

常见的抗拉强度测试方法包括拉伸试验。

在拉伸试验中,通过对标准试样施加逐渐增加的拉伸载荷,测量试样在断裂前所能承受的最大拉力,并结合试样的横截面积计算出抗拉强度。

然而,需要注意的是,实验结果可能会受到试样制备、测试环境等多种因素的影响。

因此,在进行测试时,需要严格遵循相关的标准和规范,以确保测试结果的准确性和可靠性。

《ZnIn2S4基复合材料的制备及其光催化性能研究》

《ZnIn2S4基复合材料的制备及其光催化性能研究》

《ZnIn2S4基复合材料的制备及其光催化性能研究》一、引言随着环境污染和能源短缺问题的日益严重,光催化技术因其独特的优势和潜力,已成为当前科研的热点领域。

ZnIn2S4作为一种重要的光催化材料,具有优异的光吸收性能和光催化活性,受到了广泛关注。

本文以ZnIn2S4基复合材料的制备及其光催化性能为研究对象,通过实验探究了其制备工艺和性能表现。

二、ZnIn2S4基复合材料的制备1. 材料与试剂制备ZnIn2S4基复合材料所需的原材料包括锌源、铟源、硫源以及其他添加剂。

所有试剂均需为分析纯,购买后直接使用。

2. 制备方法采用水热法结合煅烧工艺制备ZnIn2S4基复合材料。

首先,将锌源、铟源和硫源按照一定比例混合,加入适量的去离子水,搅拌至形成均匀的溶液。

然后,将溶液转移至反应釜中,在一定的温度和压力下进行水热反应。

反应结束后,将产物进行离心分离、洗涤、干燥,最后进行煅烧处理,得到ZnIn2S4基复合材料。

三、光催化性能研究1. 实验装置与方法光催化性能实验在封闭的光催化反应器中进行。

将制备好的ZnIn2S4基复合材料置于反应器中,加入一定量的目标污染物(如有机染料)。

然后,使用特定波长的光源照射反应器,记录不同时间点的污染物降解情况。

2. 性能评价指标光催化性能的评价主要依据污染物的降解率和降解速度。

通过测定反应前后污染物的浓度变化,计算降解率和降解速度。

同时,还考察了ZnIn2S4基复合材料的光稳定性和循环利用性能。

四、结果与讨论1. 制备结果通过水热法和煅烧工艺成功制备了ZnIn2S4基复合材料。

通过XRD、SEM、TEM等手段对产物进行表征,结果表明制备得到的材料具有较高的纯度和良好的结晶性。

2. 光催化性能分析(1)降解率与降解速度:在相同实验条件下,ZnIn2S4基复合材料对目标污染物的降解率和降解速度均高于其他光催化材料。

这主要得益于其优异的光吸收性能和光催化活性。

(2)光稳定性:ZnIn2S4基复合材料具有较好的光稳定性,在连续光照下,其光催化性能基本保持不变。

预浸料简介

预浸料简介


如:孔隙对于动态的力学性能来说就是一个应力集中点,在反复载荷下 会成为一个疲劳源,对于静态力学性能来说,孔隙会造成材料内部疏松 并使力学性能下降。
孔隙对复合材料剪切性能的影响

研究表明,每含1%的孔隙率,复合材料的层间剪切性能下降5%至15%不 等,知道孔隙率达到4%时,这种规律基本保持不变。通过实验得出复合 材料孔隙率与层间剪切性能的关系,当孔隙率小于0.75%时,剪切强度都 在76MPa左右,孔隙率对剪切强度的影响不大,当孔隙率大于1.5%时, 剪切强度迅速下降,只有60%的保持率。当孔隙率较低时(尤其低于4% 时),剪切强度随孔隙率增大而下降的比较快,当孔隙率大于5%以后强 度损失已经过大,并随孔隙率的增大下降的比较缓慢或稳定。 孔隙率0%增大到1%时,强度下降约9%,当孔隙率增大到4%时,强度已经 下降32%。孔隙率在0%-4%,没增1%剪切强度平均下降约8%,基本成线性 关系。
预浸料简介
预浸料定义:

预浸料是用树脂基体在严格控制的条件下浸渍连续 纤维或织物,制成树脂基体与增强体的组合物,是 制造复合材料的中间材料。
预浸料的制备方法

预浸科的制备方法有干法和湿法2种。干法为生产过程中不 含溶剂,湿法为生产过程中含有溶剂(丙酮)。比较由干法 预浸料和湿法预浸料制成的复合材料,一般前者外观更好, 材料内树脂含量的控制精度更高一 。就目前航空用先进复合 材料而言,常表现出热熔法复合材料的湿热稳定性优于溶液 法复合材料:同在沸水中煮48h,前者的力学性能(如弯曲模 量与强度、层问剪切强度等)保持率,特别是高温力学性能保 持率,明显高于后者的。
湿法生产预浸料

优点:设备简单、操作方便、通用性大等特点;价格低廉。

缺点:树脂基体与增强纤维比例难以精确控制,树脂基体材料的均匀分 布于预浸料上也较难精确控制,挥发分的含量控制也较困难;预浸料当 中残留的溶剂在制作成复合材料时会形成孔隙,对复合材料的强度造成 影响;溶剂的挥发会对空气造成严重污染。 现状:国外除在实验室里还保留湿法制造预浸料设备外,工业界已钢钒 采用干法制造预浸料。

纤维增强复合材料的压缩性能研究

纤维增强复合材料的压缩性能研究

纤维增强复合材料的压缩性能研究近年来,纤维增强复合材料在航空航天、汽车、船舶、建筑等领域中得到了广泛应用,其轻质、高强度、耐腐蚀等特性,使得它成为替代传统材料的新选择。

然而,在实际应用中,复合材料的压缩性能一直是研究的热点和难点之一。

本文将探讨纤维增强复合材料的压缩性能及其研究进展。

一、纤维增强复合材料的压缩性能简介纤维增强复合材料是由纤维增强体(如玻璃纤维、碳纤维等)和基体(如聚合物基体、金属基体等)组成的复合材料。

与传统材料相比,纤维增强复合材料具有更高的强度和刚度。

然而,由于其纤维增强体的特殊结构,它在受到压缩加载时表现出一些特殊的性能。

二、纤维增强复合材料的压缩性能影响因素1. 纤维增强体类型:不同类型的纤维增强体具有不同的结构和性能特点,因此对材料的压缩性能产生了影响。

如碳纤维具有高模量和高强度,能够提高复合材料的耐压性能。

2. 纤维体积分数:纤维体积分数是指纤维在复合材料中所占的比例。

在一定范围内,增加纤维体积分数可以提高复合材料的压缩强度和刚度,但过高或过低的纤维体积分数都会影响材料的性能。

3. 纤维排列方式:纤维在复合材料中的排列方式也对材料的压缩性能有影响。

常见的排列方式有单向、双向、多向等。

不同的排列方式会导致复合材料在受到压缩力时的不同应力分布。

4. 基体材料:基体材料对复合材料的压缩性能也具有重要影响。

通过选取合适的基体材料,可以改善复合材料的压缩强度和耐压性能。

三、纤维增强复合材料的压缩性能测试方法为了研究纤维增强复合材料的压缩性能,需要进行一系列的力学性能测试。

目前常用的测试方法有:1. 压缩强度测试:通过加载复合材料样品,在组织学检测仪上观察其破坏形态,并记录其破坏强度。

这种方法能够直观地反映出材料在受压力时的承载能力。

2. 压缩模量测试:通过加载复合材料样品,在力学性能测试仪上测定其应力-应变曲线,进而计算得到材料的压缩模量。

这种方法适用于材料的刚度评估。

3. 石蜡浸渍法:将复合材料样品浸渍于融化的石蜡中,制成浸渍体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档