利用马尔科夫链元胞自动机建立土地变化模型

利用马尔科夫链元胞自动机建立土地变化模型
利用马尔科夫链元胞自动机建立土地变化模型

7 马尔科夫链分析

在这里练习中将基于土地适宜性分析,建立Westboro市土地变化模型。利用2期土地覆盖图建立变化特征并建立为了变化模型。1971年和1985年土地利用图,预测1999年土地变化状况。

设置工作目录:\IDRISI Tutorial Data\Advanced GIS

a)显示图像LANDUSE71 和LANDUSE85,叠加矢量图层ROUTE9。

b)运行MARKOV(gis analysis/change time series),指定图像LANDUSE71为早期图像,LANDUSE85为晚期图像,周期14年,错误率0.15 ,输出概率图像的前缀名7185.

c)建立每个类型的转换条件概率(打开7185文件)

3-2 元胞自动机

d)显示适宜图:HDRESSUIT,DRESSUIT,INDCMSUIT,ROADSUIT,WATER85,CROPSUIT,,

FORESTSUIT,WETSUIT,and GRASSSUIT。

f)运行CA_MARKOV, 指定基础土地覆盖图:LANDUSE85, 7185TRANSITIONS_AREAS file,TRANSSUIT 为转换适宜图组,输出文件为LANDUSE99,周期14年。

运行时间较长

Markov链预测法

我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):贵州民族学院 参赛队员(打印并签名) :1. 龚道杰 2. 张凤 3. 姚肖伟 指导教师或指导教师组负责人(打印并签名): 日期: 2009 年 7 月 25 日 年凝冻日数的Markov链预测法 4# 【摘要】 本文根据所给数据,利用Markov链建立了预测年凝冻日数的模型,分别从整体和局部两个角度进行分析。

首先,我们直接以年凝冻日数为依据,对其进行K-均值聚类分析,划分 状态。用频率估计概率的方法,估算出一步转移概率矩阵,1/6 5/65/3328/33P ??=?? ??,然后建立Markov 链模型()1/6 5/6()(0)(0)5/3328/33n n P n P P P ??=?=??? ?? 。以2008年作为初始状态,估计出 2009 年凝冻日数所处状态为 (1)(0)P P P =?()0.1520.848=。按K-均值标准可知,即2009年凝冻的天数在 15天以内的可能性为84.8%,在15天以上的可能性为15.2%。 由于上述模型选取的是以年为单位的数据,只能估计出2009年的凝冻日 数所处区间。为提高精度,我们选取2000-2008年的具体凝冻天数和日期,记每一天只存在两种状态,出现雨凇为状态1,否则为状态0。然后由相邻两年间的状态转移变化,得出一步转移概率矩阵i P ,1,2,...,8i =。由这8个一步转移概率矩阵,根据一步转移矩阵P 的n 次方与n 步转移概率矩阵()n P 之差的范数和达到最小的准则,选出优化后的一步转移概率矩阵 0.95000.0500*0.78890.2111P ??=???? ,再次建立Markov 链模型。以2008年为初始状态,预测2009年的概率分布为 []*(2009)(2008)0.91060.0894P P P =?= ,由频率稳定于概率,知2009年凝冻天数的估计值为14天。 关键词: Markov 链 转移概率矩阵 频率估计概率 1. 问题提出 1.1背景知识 凝冻是指冬季出现的温度低于0℃有过冷却降水或固体降水和结冰现象发生的天气现象,即气象台所说的出现雨凇的天气。雨凇的形成与气温,降水量,湿度等因素有关,超冷却的降水碰到温度等于或低于零摄氏度的物体表面使所形成玻璃状的透明或无光泽的表面粗糙并覆盖层,就叫做雨凇。其造成的危害巨大,高压线塔的倒塌,电力瘫痪,交通瘫痪,农作物的冻亡等。因而对出现雨凇天气的预测显得尤为重要。

基于马尔可夫链的市场占有率的预测

市场占有率问题 摘要 本文通过对马尔可夫过程理论中用于分析随机过程方法的研究,提出了将转移概率矩阵法应用于企业产品的市场占有率分析当中,认为该理论的无后效性和稳定性特点能够帮助企业在纵向和横向资讯不够充分的情况下克服预测的误差和决策的盲目性,并给出了均衡状态下的市场占有率模型,以期通过不同方案的模拟分析,帮助企业优化决策. 关键词马尔科夫链转移概率矩阵 一、问题重述 1.1背景分析 现代市场信息复杂多变,一个企业在激烈的市场竞争环境下要生存和发展就必须对其产品进行市场预测,从而减少企业参与市场竞争的盲目性,提高科学性。然而,市场对某产品的需求受多种因素的影响,其特性是它在市场流通领域中所处的状态。这些状态的出现是一个随机现象,具有随机性。为此,利用随机过程理论的马尔可夫(Markov)模型来分析产品在市场上的状态分布,进行市场预测,从而科学地组织生产,减少盲目性,以提高企业的市场竞争力和其产品的市场占有率。 1.2问题重述 预测A、B、C三个厂家生产的某种抗病毒药在未来的市场占有情况 二、问题分析 第一步进行市场调查.主要调查以下两件事: (1)目前的市场占有情况.若购买该药的总共1000家对象(购买力相当的医院、药店等)中,买A、B、C三药厂的各有400家、300家、300家,那么A、B、C 三药厂目前的市场占有份额分别为:40%、30%、30%.称(0.4,0.3,0.3)为目前市场的占有分布或称初始分布. (2)查清使用对象的流动情况.流动情况的调查可通过发放信息调查表来了解顾客以往的资料或将来的购买意向,也可从下一时期的订货单得出.若从定货单得表1-0.

表(1-5) 顾客订货情况表 下季度订货情况 合计 来 自 A B C A 160 120 120 400 B 180 90 30 300 C 180 30 90 300 合计 520 240 240 1000 第二步 建立数学模型. 假定在未来的时期内,顾客相同间隔时间的流动情况不因时期的不同而发生变化,以1、2、3分别表示顾客买A 、B 、C 三厂家的药这三个状态,以季度为模型的步长(即转移一步所需的时间),那么根据表(1-5),我们可以得模型的转移概率矩阵: ? ???? ??=?????? ? ? ??=????? ??=3.01.06.01.03.06.03.03.04.03009030030 3001803003030090300180400120400120400160333231232221131211p p p p p p p p p P 矩阵中的第一行(0.4,0.3,0.3)表示目前是A 厂的顾客下季度有40%仍买A 厂的药,转为买B 厂和C 厂的各有30%.同样,第二行、第三行分别表示目前是B 厂和C 厂的顾客下季度的流向. 由P 我们可以计算任意的k 步转移矩阵,如三步转移矩阵: ???? ? ? ?=????? ? ?==252.0244 .0504.0244.0252.0504 .0252.0252.0496.03.01 .06.01.03.06 .03.03.04.03 3 ) 3(P P 从这个矩阵的各行可知三个季度以后各厂家顾客的流动情况.如从第二行(0.504, 0.252,0.244)知,B 厂的顾客三个季度后有50.4%转向买A 厂的药,25.2%仍买B 厂的,24.4%转向买C 厂的药. 三、模型假设 1、购买3种类型产品的顾客总人数基本不变; 2、市场情况相对正常稳定,没有出现新的市场竞争; 3、没有其他促销活动吸引顾客。 四、模型的建立与求解 4.1模型背景 在考虑市场占有率过程中影响占有率的大量随机性因素后,可以认为这一过程充

Matlab学习系列34. 马尔可夫预测

33. 马尔可夫预测 马尔可夫预测,是一种预测事件发生的概率的方法。它是基于马尔可夫链,根据事件的目前状况预测其将来各个时刻(或时期)变动状况的一种预测方法。 马尔可夫预测法的基本要求是状态转移概率矩阵必须具有一定的稳定性。因此,必须具有足够的统计数据,才能保证预测的精度与准确性。换句话说,马尔可夫预测模型必须建立在大量的统计数据的基础之上。 (一)经典马尔可夫模型 一、几个概念 状态:指某一事件在某个时刻(或时期)出现的某种结果; 状态转移:事件的发展,从一种状态转变为另一种状态; 马尔可夫过程:在事件的发展过程中,若每次状态的转移都仅与前一时刻的状态有关,而与过去的状态无关,或者说状态转移是无后效性的,则这样的状态转移过程就称为马尔可夫过程。 状态转移概率:在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。由状态i E 转为状态j E 的状态转移概率 ()(|)i j j i ij P E E P E E p →== 状态转移概率矩阵:假定某一个事件的发展过程有n 个可能的状

态,即1,,n E E ,则矩阵 1111n n nn p p P p p ????=?????? 其中,ij p 为从状态i E 转为状态j E 的状态转移概率,称为状态转移概率矩阵。 状态转移矩阵满足: (i) 01, ,1,,ij p i j n ≤≤= (ii) 1 1n ij j p ==∑ 二、状态转移矩阵的计算 即求出从每个状态转移到其它任何一个状态的状态转移概率ij p ,一般采用频率近似概率的思想进行计算。 例1某地区农业收成变化的三个状态,即E1“丰收”、E2“平收”和E3“欠收”。下表给出了该地区1960~1999年期间农业收成的状态变化情况(部分)。 计算该地区农业收成变化的状态转移概率矩阵。 datas=xlsread('Agriculture.xlsx');

Markov的各种预测模型的原理与优缺点介绍

Markov的各种预测模型的原理与优缺点介绍 建立有效的用户浏览预测模型,对用户的浏览做出准确的预测,是导航工具实现对用户浏览提供有效帮助的关键。 在浏览预测模型方面,很多学者都进行了卓有成效的研究。AZER提出了基于概率模型的预取方法,根据网页被连续访问的概率来预测用户的访问请求。SARUKKAI运用马尔可夫链进行访问路径分析和链接预测,在此模型中,将用户访问的网页集作为状态集,根据用户访问记录,计算出网页间的转移概率,作为预测依据。SCHECHTER构造用户访问路径树,采用最长匹配方法,寻找与当前用户访问路径匹配的历史路径,预测用户的访问请求。XU Cheng Zhong等引入神经网络实现基于语义的网页预取。徐宝文等利用客户端浏览器缓冲区数据,挖掘其中蕴含的兴趣关联规则,预测用户可能选择的链接。朱培栋等人按语义对用户会话进行分类,根据会话所属类别的共同特征,预测用户可能访问的文档。在众多的浏览模型中,Markov模型是一种简单而有效的模型。Markov模型最早是ZUKERMAN等人于1999年提出的一种用途十分广泛的统计模型,它将用户的浏览过程抽象为一个特殊的随机过程——齐次离散Markov模型,用转移概率矩阵描述用户的浏览特征,并基于此对用户的浏览进行预测。之后,BOERGES等采用了多阶转移矩阵,进一步提高了模型的预测准确率。在此基础上,SARUKKAI建立了一个实验系统[9],实验表明,Markov预测模型很适合作为一个预测模型来预测用户在Web站点上的访问模式。 1 Markov模型 1.1 Markov模型 Markov预测模型对用户在Web上的浏览过程作了如下的假设。 假设1(用户浏览过程假设):假设所有用户在Web上的浏览过程是一个特殊的随机过程——齐次的离散Markov模型。即设离散随机变量的值域为Web空间中的所有网页构成的集合,则一个用户在Web中的浏览过程就构成一个随机变量的取值序列,并且该序列满足Markov性。 一个离散的Markov预测模型可以被描述成三元组,S代表状态空间;A是转换矩阵,表

数学建模之马尔可夫预测

马尔可夫预测 马尔可夫过程是一种常见的比较简单的随机过程。该过程是研究一个系统的 状况及其转移的理论。它通过对不同状态的初始概率以及状态之间的转移概率的研究,来确定状态的变化趋势,从而达到对未来进行预测的目的。 三大特点: (1)无后效性 一事物的将来是什么状态,其概率有多大,只取决于该事物现在所处的状态如何,而与以前的状态无关。也就是说,事物第n 期的状态,只与第n 期内的变化和第n-1期状态有关,而与第n-1期以前的状态无关。 (2)遍历性 不管事物现在所处的状态如何,在较长的时间内马尔可夫过程逐渐趋于稳定状态,而与初始状态无关。 (3)过程的随机性。 该系统内部从一个状态转移到另一个状态是,转变的可能性由系统内部的原先历史情况的概率值表示。 1.模型的应用, ①水文预测, ②气象预测, ③地震预测, ④基金投资绩效评估的实证分析, ⑤混合动力车工作情况预测, ⑥产品的市场占有情况预测。 2.步骤 ①确定系统状态 有的系统状态很确定。如:机床工作的状态可划分为正常和故障,动物繁殖后代可以划分为雄性和雌性两种状态等。但很多预测中,状态需要人为确定。如:根据某种产品的市场销售量划分成滞销、正常、畅销等状态。这些状态的划分是依据不同产品、生产能力的大小以及企业的经营策略来确定的,一般没有什么统一的标准。在天气预报中,可以把降水量划分为旱、正常和涝等状态。 ②计算初始概率()0i S 用i M 表示实验中状态i E 出现的总次数,则初始概率为 ()()0 1 1,2,i i i n i i M S F i n M =≈= =∑L ③计算一步转移概率矩阵

令由状态i E 转移到状态j E 的概率为()|ij j i P P E E =,则得到一步转移概率矩阵为: 1112121 2221 2n n n n nn p p p p p p P p p p ??????=??????L L M M M M L ④计算K 步转移概率矩阵 若系统的状态经过了多次转移,则就要计算K 步转移概率与K 步转移概率矩阵。 K 步转移概率矩阵为: 11121212221 2()k n n k n n nn p p p p p p P k p p p p ??????==??????L L M M M M L ⑤预测及分析 根据转移概率矩阵对系统未来所处状态进行预测,即: () ()111210212221 2K n K n n n nn p p p p p p S S p p p ??????=??????L L M M M M L 例题: 设某企业生产洗涤剂为A 型,市场除A 型外,还有B 型、C 型两种。为了生产经营管理上的需要,某企业要了解本厂生产的A 型洗涤剂在未来三年的市场占有倩况。为此,进行了两项工作,一是进行市场调查,二是利用模型进行预测。 市场调查首先全面了解各型洗涤剂在市场占有情况。年终调查结果:市场洗涤剂目前总容量为100万件,其中A 型占40万,B 型和C 型各占30万。 再者,要调杏顾客购买各型洗涤剂的变动情况。调查发现去年购买A 型产品的顾客,今年仍购A 型产品24万件,转购B 型和C 型产品备占8万件,去年购买B 型产品顾客,今年仍购B 型产品9万件,转购A 型15万件,转购C 型6万件,去年购买C 型产品的顾客,今年仍购C 型产品9万件,转购A 型15万件,转购B 型6万件。计算各型产品保留和转购变动率。 模型的建立: ①计算初始概率 用i M 表示i E 型产品出现的总次数,则初始概率为 ()()0 1 1,2,i i i n i i M S F i n M =≈= =∑L (1) ②计算各类产品保留和转购变动率

马尔科夫预测

第6章 马尔可夫预测 马尔可夫预测方法不需要大量历史资料,而只需对近期状况作详细分析。它可用于产品的市场占有率预测、期望报酬预测、人力资源预测等等,还可用来分析系统的长期平衡条件,为决策提供有意义的参考。 6.1 马尔可夫预测的基本原理 马尔可夫(A.A.Markov )是俄国数学家。二十世纪初,他在研究中发现自然界中有一类事物的变化过程仅与事物的近期状态有关,而与事物的过去状态无关。具有这种特性的随机过程称为马尔可夫过程。设备维修和更新、人才结构变化、资金流向、市场需求变化等许多经济和社会行为都可用这一类过程来描述或近似,故其应用范围非常广泛。 6.1.1 马尔可夫链 为了表征一个系统在变化过程中的特性(状态),可以用一组随时间进程而变化的变量来描述。如果系统在任何时刻上的状态是随机的,则变化过程就是一个随机过程。 设有参数集(,)T ?-∞+∞,如果对任意的t T ∈,总有一随机变量t X 与之对应,则称 {,}t X t T ∈为一随机过程。 如若T 为离散集(不妨设012{,,,...,,...}n T t t t t =),同时t X 的取值也是离散的,则称 {,}t X t T ∈为离散型随机过程。 设有一离散型随机过程,它所有可能处于的状态的集合为{1,2,,}S N =L ,称其为状态空间。系统只能在时刻012,,,...t t t 改变它的状态。为简便计,以下将n t X 等简记为n X 。 一般地说,描述系统状态的随机变量序列不一定满足相互独立的条件,也就是说,系统将来的状态与过去时刻以及现在时刻的状态是有关系的。在实际情况中,也有具有这样性质的随机系统:系统在每一时刻(或每一步)上的状态,仅仅取决于前一时刻(或前一步)的状态。这个性质称为无后效性,即所谓马尔可夫假设。具备这个性质的离散型随机过程,称为马尔可夫链。用数学语言来描述就是: 马尔可夫链 如果对任一1n >,任意的S j i i i n ∈-,,,,121Λ恒有 {}{}11221111,,,n n n n n n P X j X i X i X i P X j X i ----=======L (6.1.1) 则称离散型随机过程{,}t X t T ∈为马尔可夫链。 例如,在荷花池中有N 张荷叶,编号为1,2,...,N 。假设有一只青蛙随机地从这张荷叶上跳到另一张荷叶上。青蛙的运动可看作一随机过程。在时刻n t ,青蛙所在的那张荷叶,称为青蛙所处的状态。那么,青蛙在未来处于什么状态,只与它现在所处的状态()N i i ,,2,1Λ=有关,与它以前在哪张荷叶上无关。此过程就是一个马尔可夫链。 由于系统状态的变化是随机的,因此,必须用概率描述状态转移的各种可能性的大小。 6.1.2 状态转移矩阵 马尔可夫链是一种描述动态随机现象的数学模型,它建立在系统“状态”和“状态转移”的概念之上。所谓系统,就是我们所研究的事物对象;所谓状态,是表示系统的一组记号。当确定了这组记号的值时,也就确定了系统的行为,并说系统处于某一状态。系统状态常表示为向量,故称之为状态向量。例如,已知某月A 、B 、C 三种牌号洗衣粉的市场占有率分别是0.3、0.4、0.3,则可用向量()0.3,0.4,0.3P =来描述该月市场洗衣粉销售的状况。

人力供给预测之马尔科夫模型

人力供给预测之马尔科夫模型 马尔科夫模型是根据历史数据,预测等时间间隔点上的各类人员分布状况。此方法的基本思想是根据过去人员变动的规律,推测未来人员变动的趋势。因此,运用马尔科夫模型时假设——未来的人员变动规律是过去变动规律的延续。既是说,转移率要么是一个固定比率,要么可以通过历史数据以某种方式推算出。 步骤: (1)根据历史数据推算各类人员的转移率,得出转移率的转移矩阵;(2)统计作为初始时刻点的各类人员分布状况; (3)建立马尔科夫模型,预测未来各类人员供给状况。 运用马尔科夫模型可以预测一个时间段后的人员分布,虽然这个时间段可以自由定义,但较为普遍的是以一年为一个时间段,因为这样最为实用。在确定转移率时,最粗略的方法就是以今年的转移率作为明年的转移率,这种方法认为最近时间段的变化规律将继续保持到下一时间段。虽然这样很简便,但实际上一年的数据过于单薄,很多因素没有考虑到,一个数据的误差可能非常大。因为以一年的数据得出的概率很难保证稳定,最好运用近几年的数据推算。在推算时,可以采用简单移动平均法、加权移动平均法、指数平滑法、趋势线外推法等,可以在试误的过程中发现哪种方法推算的转移率最准确。尝试

用不同的方法计算转移率,然后用这个转移率和去年的数据来推算今年的实际情况,最后选择与实际情况最相符的计算方法。转移率是一类人员转移到另一类人员的比率,计算出所有的转移率后,可以得到人员转移率的转移矩阵。 转移出i类人员的数量 i类人员的转移率= (3-1) i类人员原有总量 人员转移率的转移矩阵: P11 P12 (1) P21 P22 (2) P = P31 P32 (3) (3-2)

基于绝对分布的马尔可夫链预测方法

基于绝对分布的马尔可夫链预测方法 对于一列相依的随机变量,用步长为一的马尔可夫链模型和初始分布推算出未来时段的绝对分布来做预测分析,即为传统的马尔可夫链预测方法之一,可称之为“基于绝对分布的马尔可夫链预测方法”,不妨记其为“ADMCP法”。其具体方法步骤如下: (1)计算指标值序列均值x,均方差s,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体间题的要求进行。例如,可以样本均方差为标准(也可以用有序聚类的方法建立分级标准等)将指标值分级,即按4.2.1中指出的方法确定马尔可夫链的状态空间E=[1, 2,一,m]; (2)按(1)所建立的分级标准,确定资料序列中各时段指标值所对应的状态; (3)对(2)所得的结果进行统计计算,可得步长为一的马尔可夫链的转移概率矩阵 ,它决定了指标值状态转移过程的概率法则; (4)“马氏性”检验(应用工作者使用该方法时,一般都不做这一步,本文加上这一步意在完善"ADMCP法,’); (5)若以第1时段作为基期,该时段的指标值属于状态i,则可认为初始分布为 这里P(0)是一个单位行向量,它的第i个分量为1,其余分量全为0。于是第l+1时段的绝对分布为 第l+1时段的预测状态j满足: ;为预测第l+k时段的状态,则可 得到所预测的状态j满足: (6)可进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。 4.3.2叠加马尔可夫链预测方法 对于一列相依的随机变量,利用各阶(各种步长)马尔可夫链求得的绝对分布叠加来做预测分析,也是传统的马尔可夫链预测方法之一,可称之为“叠加马尔可夫链预测方法”不妨记其为“SPMCP 法’,。其具体方法步骤如下: (1)计算指标值序列均值x,均方差s,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体问题的要求进行; (2)按“(1)"所建立的分级标准,确定资料序列中各时段指标值所对应的状态: (3)对“(2)”所得的结果进行统计,可得不同滞时(步长)的马尔可夫链的转移概率矩阵,它决定了指标值状态转移过程的概率法则; (4)“马氏性”检验(应用工作者使用该方法时,一般也不做这一步,本文加上这一步同样意在完善,"SPMCP法”): (5)分别以前面若干时段的指标值为初始状态,结合其相应的各阶转移概率矩阵即可预测出该时段指标值的状态概率 (6)将同一状态的各预测概率求和作为指标值处于该状态的预测概率,即 ,所对应的i即为该时段指标值的预测状态。待该时段的指标值确定之后,将其加入到原序列之中,再重复步骤"(1)一(6)",可进行下时段指标值状态的预测。

实验7 马尔科夫预测

实验7:马尔柯夫预测 7.1实验目的 1、了解状态及状态转移的概念,理解马尔科夫链定义和性质,能根据具体实例和研究目的划分状态; 2、掌握用Excel 软件计算一步转移概率矩阵的全过程; 3、掌握利用Excel 软件进行马尔科夫链、市场占有率、马尔科夫稳态的相关预测。 7.2实验原理 7.2.1 马尔柯夫预测的基本原理 马尔可夫预测法是马尔科夫过程和马尔科夫链在经济预测领域的一种应用,这种方法通过对事物状态划分、研究各状态的初始概率和状态之间转移概率来预测事物未来状态变化趋势,以预测事物的未来。 7.2.1.1马尔可夫链 若时间和状态参数都是离散的马尔科夫过程,且具有无后效性,这一随机过程为马尔可夫链。无后效性可具体表述为如果把随机变量序列{}(),Y t t T ∈的时间参数s t 作为“现在”,那么s t t >表示“将来”,s t t <表示“过去”,那么,系统在当前的情况()s Y t 已知的条件下,()Y t “将来”下一时刻所处的的情况与“过去”的情况无关,随机过程的这一特性称为无后效性。 7.2.1.2状态及状态转移 1、状态是指客观事物可能出现或存在的状况。在实际根据研究的不同事物、不同的预测目的,有不同的预测状态划分。 (1)预测对象本身有明显的界限,依状态界限划分。如机器运行情况可以分为“有故障”和“无故障”两种状态,天气有晴、阴、雨三种状态。(2)研究者根据预测事物的实际情况好预测目的自主划分。如:公司产量按获利多少人为的分为畅销、一般销售、滞销状态。这种划分的数量界限依产品不同而不同。 2、状态转移是指所研究的系统的状态随时间的推移而转移,及系统由某一时期所处的状态转移到另一时期所处的状态。发生这种转移的可能性用概率描述,称为状态转移概率 7.2.2状态转移概率矩阵及计算原理 1、概念:状态转移概率指假如预测对象可能有E 1,E 2,…,E n 共n 种状态,

马尔可夫链预测方法及其一类应用【开题报告】

开题报告 数学与应用数学 马尔可夫链预测方法及其一类应用 一、综述本课题国内外研究动态, 说明选题的依据和意义 概率论自1654年创立以来, 已由最初的博弈分析问题发展成为现今的方法论综合性学科. 而其中随机过程已经是现代概率论发展的必然性. 在这其中, 马尔可夫在1906年的"大数定理关于相依变量的扩展"(Extension de la loi de grands bombers etc)论文中首次创立的马尔可夫链已经成为了概率论的重中之重. 马尔可夫是世界上著名的数学家、社会学家. 他所研究的范围非常的广泛, 涉及到概率论、数论、数的集合、函数逼近论、数理统计、微分方程等方面. 马尔可夫在1906~1912年间, 他提出并研究了一种能用数学分析方法研究自然过程的一般图示, 后人把这种图示以他的姓氏命名为马尔可夫链(Markov Chain). 在当时, 马尔可夫开创性地采用了一种对无后效性的随机过程的研究范式, 即在已知当前状态的情况下, 过程的未来状态与其过去状态无关, 这就是现在大家非常熟悉了解的马尔可夫过程. 在现实生活当中, 有许多过程都能被看作成马尔可夫过程. 如软件可靠性测试、传染病受感染的人数、农村剩余劳动力流动趋势预测、液体中微粒所作的布朗运动、产品市场占有率及利润率的变动等等. 也正是由于马尔可夫链在生活中所具有的普遍存在性, 马尔可夫链理论才被广泛应用于近代的物理学, 生物学, 地质学, 计算机科学, 公共事业, 教育管理、经济管理、以及企业人员管理、桥梁建筑等各个领域. 马尔可夫链运用数学模型对定性问题进行预测提供了一种思路, 丰富了预测的内容. 其大体上可以分为以下几个步骤: 首先, 把现象看作成为一个系统, 并对该系统进行科学的划分. 根据系统的实际和需要划分出多个状态, 系统所划分出来的各个状态就是要预测的内容. 其次, 对现象各种状态的状态概率进行统计测定, 也就是判定出系统当前处于什么状态. 然后, 对各系统未来发展的每次转移概率进行预测, 就是要确定出系统是如何转移的. 最后, 根据系统当前的各种状态和转移概率矩阵, 推测出系统经过若干次转移后, 到达

马尔可夫链预测股票例1

1、对单支股票走势、收益的预侧 现以上海A股精伦电子的股价时间序列为例(原始资料如表1),应用马尔可夫链对股价分别进行中短期和长期预测分析,这里不妨将时间序列的单位以天记。 表1:上海A股精伦电子2002年6月13日一7月17日23个交易日的收盘价格资料 将表1中这23个收盘价格划分成4个价格区间(由低到高每区间1.5个价格单位),得到区间状态为: S1:(26.00以下)、S2:(26.00--27.50)、S3:(27.50--28.00)、S4:(28.00及以上)。则到达个区间的频数分别为5, 3, 9, 6。综合这些资料于是得到这23个交易日的收盘价格状态转移情况如表2, 由此得到各状态之间的转移概率和转移概率矩阵: 表1知,第23个交易日的收盘价格是27.53(即为k状态区间),所以用马尔可夫链进行预测时初始状态向量,P(0) =( 0,0,1,0),第24, 25日的收盘价格状态向量分别为即

P(1)=P(0)P=(0,0.125,0.625,0.25); P(2)=P(1)P=(0.042,0.078,0.451,0.323) 预测这两日的收盘价格处于k状态区间的概率最大,与实际情况27.21和27.39一致. 随着交易日的增加,即n足够大时,只要状态转移概率不变(即稳定条件),则状态向量趋向于一个和初始状态无关的值,并稳定下来.按马尔可夫系统平稳定条件,可得一个线性方程组: 解得的数值即为较长时间后股价处于各区间的平稳分布。对照资料可以看出,由上述公式计算出的各收盘价格状态区间基本上是准确的。 2、用马氏链对沪市的走势进行预铡及相应分析 我们利用沪市1998年1月5日至2001年11月2日的上证综合指数每周收盘资料,将上证指数划分为六个区间,即六种状态:区间1(1000点一1300点);区间2 (1300点一1600点);区间3 (1600点一1800点):区间4 (1800点~2000点);区间 5 (2000点~2200点);区间6 (2200点以上)。即可得到上证综合指数以周为单位的转移概率矩阵 因为11月2日上证综合指数周收盘为1691点,处于状态3,所以在对沪市进行预测时,初始状态向量P(0)=(0,0,1,0,0,0),然后按上例中的马尔可夫方法进行中短期和长期预测分析。通过对比可以发现,马尔可夫链对整个证券市场的预测结果是比较准确的,而且长期预测所得的结论与股票价格根本上是由股票内在投资价值决定的这一基本原理也是惊人的一致。

论述马尔可夫模型的降水预测方法

随机过程与随机信号处理课程论文

论述马尔可夫模型的降水预测方法 摘要:预测是人们对未知事物或不确定事物行为与状态作出主观的判断。中长 期降水量的预测是气象科学的一个难点问题, 也是水文学中的一个重要问题。今年来,针对降水预测的随机过程多采用随机过程中的马尔可夫链。本文总结了降水预测的马尔可夫预测的多种方法和模型,对其中的各种方法的马尔可夫链进行了比较和分析,得出了一些有用的结论。 关键字:降水预测,随机过程,马尔可夫链,模拟 前言:大气降水是自然界水循环的一个重要环节。尤其在干旱半干旱地区, 降 水是水资源的主要补给来源, 降水量的大小,决定着该地区水资源的丰富程度。因此, 在水资源预测、水文预报中经常需要对降水量进行预报。然而, 由于气象条件的变异性、多样性和复杂性, 降水过程存在着大量的不确定性与随机性, 因此到目前为止还难以通过物理成因来确定出未来某一时段降水量的准确数值。在实际的降水预测中,有时不必预测出某一年的降水量,仅需预测出某个时段内降水的状况既可满足工作需要。因此,预测的范围相应扩大,精度相应提高。因此对降水的预测可采用随机过程的马尔可夫链来实现。 用随机过程中马尔可夫链进行预测是一种较为广泛的预测方法。它可用来预测未来某时间发生的变化, 如预测运输物资需求量、运输市场等等。马尔可夫链, 就是一种随机时间序列, 它表示若已知系统的现在状态, 则系统未来状态的规律就可确定, 而不管系统如何过渡到现在的状态。我们在现实生活中, 有很多情况具有这种属性, 如生物群体的生长与死亡, 一群体增加一个还是减少一个个体, 它只与当前该生物群体大小有关, 而与过去生物群体大小无关。] 本文针对降水预测过程中采用马尔可夫链进行模拟进行了综述和总结。主要的方法有利用传统的马尔可夫链的方法模拟;有采用加权的马尔可夫链模拟来进行预测;还有基于模糊马尔可夫链状模型预测的方法;还有通过聚类分析建立降水序列的分级标准来采用滑动平均的马尔可夫链模型来预测降水量;从这些方法中我们可以看出,马尔可夫链对降水预测有着重要的理论指导意义。 1.随机过程基本原理 我们知道,随机变量的特点是,每次试验结果都是一个实现不可预知的,但为确定的量。而在实际中遇到的许多物理现象,实验所得到的结果是一个随时间变化的随机变量,且用一个或多个随机变量我们有时无法描述很多这种现象的的全部统计规律,这种情况下把随时间变化的随机变量的总体叫做随机过程。对随机过程的定义如下:

马尔可夫链预测方法及其一类应用【文献综述】

文献综述 数学与应用数学 马尔可夫链预测方法及其一类应用 马尔可夫性是俄国数学家A.A.Mapkov 在1906年最早提出的. 但是, 什么是马尔可夫性呢? 一般来讲,认为它是“相互独立性”的一种自然推广. 设有一串随机事件,...,,...,,121n n A A A A -中(即n A 属于概率空间(P ,,ξΩ)中的σ代数ξ,1≥n ), 如果它们中一个或几个的发生, 对其他事件的发生与否没有影响, 则称这一串事件是相互独立的(用概率空间(P ,,ξΩ)的符号表示, 即))()(11n m n m n n A P A P X I ===, 推广下, 如果在已知,...,1+n n A A 中的某些事件的发生, 与,,...,,121-n A A A 中的事件发生与否无关, 则称这一串事件{1:≥n A n }具有马尔可夫性. 所以说, 马尔可夫性可视为相互独立性的一种自然推广. 从朴素的马尔可夫性, 到抽象出马尔可夫过程的概念, 从最简单的马尔可夫过程到一般的马尔可夫过程, 经历了几十年的发展过程. 它有极其深厚的理论基础, 如拓扑学、函数论、几何学、近世代数、泛函分析. 又有很广泛的应用空间, 如随机分形、近代物理、公共事业中的服务系统、电子信息、计算技术等. 在现实世界中, 有很多过程都是马尔可夫过程, 如软件可靠性测试、传染病受感染的人数、农村剩余劳动力流动趋势预测、液体中微粒所作的布朗运动、产品市场占有率及利润率的变动, 车站排队问题等等, 都可视为马尔可夫过程. 所谓马尔可夫链是指时间连续(或离散)、状态可列、时间齐次的马尔可夫过程. 之所以要研究这种过程, 一方面是由于它的理论比较完整深入, 可以作为一般马尔可夫过程及其他随机过程的借鉴; 二是由于它在自然科学和许多实际问题(如遗传学、教育学、经济学、建筑学、规则论、排队论等)中发挥着越来越大的作用. 自从我国著名数学家、教育家、中科院王梓坤院士在上世纪50年代将马尔可夫理论引入国内以后, 我国数学家对马尔可夫过程的研究也取得了非常好的效果, 在生灭过程的构造和它的积分型泛函的分布、马尔可夫过程的零壹律、Martin 边界与过份函数、马尔可夫过程

马尔可夫链预测方法

马尔可夫链预测方法 一、基于绝对分布的马尔可夫链预测方法 对于一列相依的随机变量,用步长为一的马尔可夫链模型和初始分布推算出未来时段的绝对分布来做预测分析方法,称为“基于绝对分布的马尔可夫链预测方法”,不妨记其为“ADMCP 法”。其具体方法步骤如下: 1.计算指标值序列均值x ,均方差s ,建立指标值的分级标准,即确定马尔可夫链的状态空间I ,这可根据资料序列的长短及具体间题的要求进行。例如,可用样本均方差为标准,将指标值分级,确定马尔可夫链的状态空间 I =[1, 2,…,m ]; 2.按步骤1所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3.对步骤2所得的结果进行统计计算,可得马尔可夫链的一步转移概率矩阵1P ,它决定了指标值状态转移过程的概率法则; 4.进行“马氏性” 检验; 5.若以第1时段作为基期,该时段的指标值属于状态i ,则可认为初始分布为 (0)(0,,0,1,0,0)P = 这里P (0)是一个单位行向量,它的第i 个分量为1,其余分量全为0。于是第2时段的绝对分布为 1(1)(0)P P P =12((1),(1),,(1))m p p p = 则第2时段的预测状态j 满足:(1)max{(1),}j i p p i I =∈; 同样预测第k +1时段的状态,则有 1()(0)k P k P P =12((),(),,())m p k p k p k = 得到所预测的状态j 满足: ()max{(),}j i p k p k i I =∈ 6.进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。 二、叠加马尔可夫链预测方法 对于一列相依的随机变量,利用各种步长的马尔可夫链求得的绝对分布叠加来做预测分析,的方法,称为“叠加马尔可夫链预测方法”,不妨记其为“SPMCP 法’。其具体方法步骤如下: 1) 计算指标值序列均值x ,均方差s ,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体问题的要求进行; 2) 按1)所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3) 对2)所得的结果进行统计,可得不同滞时(步长)的马尔可夫链的转移概率矩阵,它决定了指标值状态转移过程的概率法则; 4) 马氏性检验; 5) 分别以前面若干时段的指标值为初始状态,结合其相应的各步转移概率矩阵即可预测出该时段指标值的状态概率 (6)将同一状态的各预测概率求和作为指标值处于该状态的预测概率,即 ,所对应的i 即为该时段指标值的预测状态。待该时段的指标值确定之后,将其加 入到原序列之中,再重复步骤"(1)一(6)",可进行下时段指标值状态的预测。 (7)可进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。

实验4_马尔科夫预测

实验4:马尔柯夫预测 实验目的 1、了解状态及状态转移的概念,理解马尔科夫链定义和性质,能根据具体实例和研究目的划分状态; 2、掌握用Excel 软件计算一步转移概率矩阵的全过程; 3、掌握利用Excel 软件进行马尔科夫链、市场占有率、马尔科夫稳态的相关预测。 实验原理 马尔柯夫预测的基本原理 马尔可夫预测法是马尔科夫过程和马尔科夫链在经济预测领域的一种应用,这种方法通过对事物状态划分、研究各状态的初始概率和状态之间转移概率来预测事物未来状态变化趋势,以预测事物的未来。 马尔可夫链 若时间和状态参数都是离散的马尔科夫过程,且具有无后效性,这一随机过程为马尔可夫链。无后效性可具体表述为如果把随机变量序列{}(),Y t t T ∈的时间参数s t 作为“现在”,那么s t t >表示“将来”,s t t <表示“过去”,那么,系统在当前的情况()s Y t 已知的条件下,()Y t “将来”下一时刻所处的的情况与“过去”的情况无关,随机过程的这一特性称为无后效性。 状态及状态转移

1、状态是指客观事物可能出现或存在的状况。在实际根据研究的不同事物、不同的预测目的,有不同的预测状态划分。 (1)预测对象本身有明显的界限,依状态界限划分。如机器运行情况可以分为“有故障”和“无故障”两种状态,天气有晴、阴、雨三种状态。(2)研究者根据预测事物的实际情况好预测目的自主划分。如:公司产量按获利多少人为的分为畅销、一般销售、滞销状态。这种划分的数量界限依产品不同而不同。 2、状态转移是指所研究的系统的状态随时间的推移而转移,及系统由某一时期所处的状态转移到另一时期所处的状态。发生这种转移的可能性用概率描述,称为状态转移概率 状态转移概率矩阵及计算原理 1、概念:状态转移概率指假如预测对象可能有E 1,E 2,…,E n 共n 种状态,其每次只能处于一种状态i E ,则每一状态都具有n 个转向(包括转向自身),即:1i E E →1 、2i E E →、 、i n E E →,将这种 转移的可能性用概率描述,就是状态转移概率。最基本的是一步转移概率(|)j i P E E ,它表示某一时间状态i E 经过一步转移到下一时刻状态 j E 的概率,可以简记为ij P 。 2、状态转移概率矩阵P 系统全部一次转移概率的集合所组成的矩阵称为一步转移概率矩阵,简称状态转移概率矩阵

5马尔可夫链模型

马尔可夫链模型 在考察随机因素影响的动态系统时,常常碰到这样的情况,系统在每个时期所处的状态是随机的,从这个时期到下个时期的状态按照一定的概率进行转移,并且下个时期的状态只取决于这个时期的状态和转移概率,与以前各时期的状态无关。这种性质称为无后效性或马尔可夫性。通俗的说就是已知现在,将来与历史无关。 具有马氏性的,时间、状态无为离散的随机转移过程通常用马氏链(Markov Chain)模型描述。 马氏链模型在经济、社会、生态、遗传等许多领域中有着广泛的应用。值得提出的是,虽然它是解决随机转移过程的工具,但是一些确定性系统的状态转移问题也能用马氏链模型处理。 马氏链简介: 马氏链及其基本方程:按照系统的发展,时间离散化为 0,1,2,n = ,对每个n ,系统的状态用随机变量n X 表示,设n X 可以 取k 个离散值1,2,,n X k = ,且n X i =的概率记作() i a n ,称为状态概 率,从n X i =到1 n X j +=的概率记作ij p ,称为转移概率。如果1 n X +的 取值只取决于n X 的取值及转移概率,而与1 2,,n n X X -- 的取值无关, 那么这种离散状态按照离散时间的随机转移过程称为马氏链。 由状态转移的无后效性和全概率公式可以写出马氏链的基本方程为 1 (1)()1,2,,k i j ij j a n a n p i k =+= =∑

并且() i a n 和ij p 应满足 1 1 ()10,1,2,;0 ;1 1,2,,k k j ij ij j j a n n p p i k ====≥==∑∑ 引入状态概率向量和转移概率矩阵 12()((),(),,()) {}k ij k a n a n a n a n P p == 则基本方程可以表为1 (1)()(0)n a n a n P a P ++== 例1:某商店每月考察一次经营情况,其结果用经营状况好与孬表示。若本月经营状况好,则下月保持好的概率为0.5,若本月经营状况不好,则下月保持好的概率为0.4,试分析该商店若干时间后的经营状况。 解:商店的经营状况是随机的,每月转变一次。用随机变量n X 表示第n 个月的经营状况,称为经营系统的状态.1,2 n X =分别表示 好与不好,0,1,n = 。用() i a n 表示第n 月处于状态i 的概率(1,2i =) 即()()i n a n P X i ==,ij p 表示本月处于状态i ,下月转为状态j 的概率。 这里1 n X +无后效性,只取决于n X 和ij p 。 112112220.5,0.4,0.5,0.6p p p p ==∴== 根据全概率公式可以得到: 11112212112222 (1)()()0.50.5(1)()(1)()()0.4 0.6a n a n p a n p a n a n P P a n a n p a n p +=+??? ?+==? ?+=+?? ? 假设这个递推公式存在极限w ,有w w P = ,即()0w P E -=。于 是当经营状况好或孬时,经计算可以得到下面的结果

马尔科夫链决策方法

马尔科夫预测与决策法

马尔科夫预测与决策法——是应用随机过程中马尔科夫链的理论和方法研究分析有关经济现象变化规律并借此对未来进行预测和决策的一种方法。 池塘里有三张荷叶,编号为1,2,3,假设有一只青蛙随机地在荷叶上跳来跳去。在初始时刻t ,它在第二张荷叶上。在时 ,它有可能跳到第一张或者第三张荷叶上,也有可能在原刻t 1 地不动。我们把青蛙某个时刻所在的荷叶称为青蛙所处的状态。这样,青蛙在未来处于什么状态,只与它现在所处的状态有关,与它以前所处的状态无关。实际上青蛙在一段时间内在荷叶间跳或不跳的过程就是一个马尔科夫过程。 2010年6月6日Sunday2

马尔可夫性与转移概率矩阵 一个过程或系统在未来时刻的状态只依赖于现状时刻的状态,而与以往更前的时刻无关,这一特性就成为无后效性(无记忆性)或马尔可夫性(简称马氏性)。换一个说法,从过程演变或推移的角度上考虑,如果系统在时刻的状态概率,仅依赖于当前时刻的状态,而与如何达到这个状态的初始概率无关,这一特性即马尔可夫性。 2010年6月6日Sunday3

设随机变量序列,{X ,X2, ···,X n, ···},它的状态集合记为 1 S= {s1,s2 , ···, s n, ···} 若对任意的k和任意的正整数i , i2 , ···,i k, i k+1,有下式成 1 立: P{X k+1= s ik+1| X1= s i1, X2= s i2, ···X k= s ik} = P{X k+1= s ik+1| X k= s ik} ,X2, ···,X n, ···} 为一个马尔可夫则称随机变量序列{X 1 链(Markov chains)。 2010年6月6日Sunday4

相关文档
最新文档