八年级数学分式单元测试试题2

合集下载

八年级数学分式单元测试卷

八年级数学分式单元测试卷

一、选择题(每题4分,共20分)1. 下列分式值为1的是()A. 1/2B. 2/3C. 3/4D. 4/52. 若a、b、c是互不相等的实数,则下列分式中值为0的是()A. a/bB. b/cC. c/aD. a/b + c/c3. 分式2x/(x+1)的定义域为()A. x ≠ 0B. x ≠ -1C. x ≠ 1D. x ≠ 0且x ≠ -14. 若x > 0,则下列分式中值最大的是()A. 1/xB. xC. x^2D. 1/x^25. 分式(2x+3)/(x-1)的增减性为()A. 在x < 1时递增,在x > 1时递减B. 在x < 1时递减,在x > 1时递增C. 在整个定义域内递增D. 在整个定义域内递减二、填空题(每题4分,共16分)6. 分式3/(x-2)的值域为______。

7. 若分式f(x) = (x-1)/(x+2)在x = -1时的值为1,则f(x)的定义域为______。

8. 分式(2x+5)/(x-3)的分子分母同时乘以3后,其值为______。

9. 若a、b是实数,且a+b=0,则分式a/b的值为______。

10. 分式(1/x)的倒数是______。

三、解答题(共64分)11. (12分)已知分式f(x) = (x^2-4)/(x-2),求f(x)的定义域和值域。

12. (12分)若分式g(x) = (2x+3)/(x-1)的值在x=3时为5,求g(x)的表达式。

13. (20分)已知函数f(x) = (x^2+2x+1)/(x+1),求f(x)的定义域、值域和f(-1)的值。

14. (20分)若分式h(x) = (x-1)/(x^2-4)在x=2时的值为-1/3,求h(x)的定义域和h(0)的值。

注意:本试卷满分100分,考试时间为60分钟。

请将答案填写在答题卡上相应的位置。

答案:一、选择题1. B2. D3. B4. D5. A二、填空题6. x ≠ 27. x ≠ -28. 29. 010. x三、解答题11. 解:f(x)的定义域为x ≠ 2,值域为实数集R。

八年级数学上册《分式》单元测试卷(含答案解析)

八年级数学上册《分式》单元测试卷(含答案解析)

八年级数学上册《分式》单元测试卷(含答案解析)一.选择题1.下列各式﹣3x,,,,,,中,分式的个数为()A.1 B.2 C.3 D.42.下列各式中:①;②;③;④;⑤;⑥分式有()A.1个B.2个C.3个D.4个3.代数式中,,, +b,,分式有()A.1个B.2个C.3个D.4个4.下列约分中,正确的是()A.= B.=0 C.=x3 D.=5.把分式﹣约分结果是()A.﹣B.﹣C.﹣D.﹣6.已知=7,则的值是()A.B.2 C.D.7.下列运算中正确的是()A.= B.C.•=﹣ D.÷=8.当x=﹣2时,下列分式有意义的是()A. B.C. D.9.若分式的值为0,则x的值为()A.﹣5 B.5 C.﹣5和5 D.无法确定10.下列各式,从左到右变形正确的是()A.B. C. D.二.填空题11.当x时,分式有意义.12.约分=.13.写出一个含有字母m,且m≠2的分式,这个分式可以是.14.若分式的值为负数,则x的取值范围是.15.计算=.16.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n 为正整数).17.若式子的值为零,则x的值为.18.不改变分式的值,使分式的分子、分母中各项系数都为整数,=.19.化简:=.20.下列各式中中分式有个.三.解答题21.(1)=(2)=22.当x为何值时,分式的值为0?23.给定下面一列分式:,…,(其中x≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.24.下列分式,当x取何值时有意义.(1);(2).25.已知实数a,b满足,6a=2010,335b=2010,求+的值.26.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如==+=1+,==a﹣1+,则和都是“和谐分式”.(1)下列分式中,属于“和谐分式”的是:(填序号);①;②;③;④(2)将“和谐分式化成一个整式与一个分子为常数的分式的和的形为:=.(3)应用:已知方程组有正整数解,求整数m的值.参考答案与解析一.选择题1.解:﹣3x,,的分母中均不含有字母,因此它们是整式,而不是分式.﹣,,,分母中含有字母,因此是分式.故选:D.2.解:①分母中含有π,是具体的数,不是字母,所以不是分式;②分母中含有字母a,是分式;③是等式,不是分式;④分母中没有字母,不是分式;⑤分母中含有字母x,是分式;⑥分母中没有字母,不是分式;分式有②⑤2个,故选:B.3.解;代数式, +b的分母中含有字母,是分式,故选:B.4.解:A、=,故此选项错误;B、,无法化简,故此选项错误;C、=x4,故此选项错误;D、=,正确.故选:D.5.解:﹣=﹣=﹣.故选:C.6.解:∵=7,∴=,∴x﹣4﹣=,∴x﹣=,∵的倒数为x﹣1﹣=﹣1=,∴=,故选:C.7.解:A、=≠,不正确;B、=﹣1,正确;C、=,不正确;D、==,不正确;故选:B.8.解:A、当x=﹣2时,x+2=0,无意义;B、当x=﹣2时,有意义;C、当x=﹣2时,x2﹣4=0,无意义;D、当x=﹣2时,x2+3x+2=4﹣6+2=0,无意义.故选:B.9.解:由题意得,|x|﹣5=0,解得x=±5,当x=5时,x2﹣4x﹣5=0,分式无意义;当x=﹣5时,x2﹣4x﹣5=40≠0,分式有意义;∴x的值为﹣5.故选:A.10.解:A、2前面是加号不是乘号,不可以约分,原变形错误,故本选项不符合题意;B、原式=﹣,原变形错误,故本选项不符合题意;C、原式==,原变形正确,故本选项符合题意;D、从左边到右边不正确,原变形错误,故本选项不符合题意;故选:C.二.填空题11.解:由题意得:2x+3≠0,解得:x≠﹣,故答案为:≠﹣.12.解:=.故答案为:.13.解:含有字母m,且m≠2的分式可以是,故答案为:(答案不唯一).14.解:∵分式的值为负数,∴﹣2x+3<0,解得:x>.故答案为:x>.15.解:原式=x=.故答案为:.16.解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.17.解:∵式子的值为零,∴x2﹣1=0,(x﹣1)(x+2)≠0,解得:x=﹣1.故答案为:﹣1.18.解:分式的分子,分母同时乘以500就可得到.故答案为:.19.解:原式==,故答案为:.20.解:中分式为:、+1,﹣共3个.故答案为:3.三.解答题21.解:(1)由分式的基本性质,可得故答案为:5y.(2)分式的分子分母同时乘以﹣1,得=,故答案为2﹣x.22.解:∵分式的值为0,∴,解得x=0且x≠3,∴x=0.∴当x=0时,分式的值为0.23.解:(1)﹣÷=﹣;÷(﹣)=﹣…规律是任意一个分式除以前面一个分式恒等于;(2)∵由式子:,…,发现分母上是y1,y2,y3,…故第7个式子分母上是y7,分子上是x3,x5,x7,故第7个式子是x15,再观察符号发现第偶数个为负,第奇数个为正,∴第7个分式应该是.24.解:(1)要使分式有意义,则分母3x+2≠0,解得:x≠﹣;(2)要使分式有意义,则分母2x﹣3≠0,x≠.25.解:∵6a=2010,335b=2010,∴6ab=2010b,335ab=2010a,∴6ab×335ab═2010b+a,(6×335)ab=2010 a+b,∴ab=a+b,∴+==1.26.解:(1)①=,故是和谐分式;②=,故不是和谐分式;③=,故是和谐分式;④=,故是和谐分式;故答案为①③④;(2)===,故答案为;(3)解方程组得,∵方程组有正整数解,∴m=﹣1或﹣7.。

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。

(必考题)初中数学八年级数学下册第五单元《分式与分式方程》测试题(含答案解析)(2)

(必考题)初中数学八年级数学下册第五单元《分式与分式方程》测试题(含答案解析)(2)

一、选择题1.已知113x y -=,则代数式21422x xy y x xy y----的值( ) A .4 B .9 C .-4 D .-82.若关于x 的一元一次不等式组312(2)213x x x a +≤-⎧⎪-⎨<⎪⎩的解集为x≤-5,且关于x 的分式方程24233ax x x ++=--有非负整数解,则符合条件的所有整数a 的和为( ) A .-6 B .-4 C .-2 D .03.分式33y x -有意义,则x 、y 满足的条件是( ) A .3x = B .3x ≠ C .0y ≠ D .3x > 4.H7N9病毒直径为30纳米,已知1纳米=0.000 000 001米.用科学记数法表示这个病毒直径的大小,正确的是( )A .93010-⨯米B .83.010-⨯米C .103.010-⨯米D .90.310-⨯米5.分式293x x --等于0的条件是( ) A .3x =B .3x =-C .3x =±D .以上均不对 6.关于代数式221a a +的值,以下结论不正确的是( ) A .当a 取互为相反数的值时,221a a +的值相等 B .当a 取互为倒数的值时,221a a +的值相等 C .当1a >时,a 越大,221a a +的值就越大 D .当01a <<时,a 越大,221a a+的值就越大 7.若关于x 的方分式方程222x m x x=---有非负整数解,且关于y 的不等式组()()2123513y y y y m +⎧+≥⎪⎨⎪-<-+⎩有且只有2个整数解,则所有符合条件的正整数m 的和为( ) A .5 B .7 C .8 D .98.已知分式34x x -+的值为0,则x 的值是( )A .3B .0C .-3D .-49.若a =1,则2933a a a -++的值为( ) A .2 B .2- C .12 D .12- 10.对于两个非零的实数a ,b ,定义运算*如下:11a b b a*=-.例如:113443*=-.若2x y *=,则xy x y -的值为( ) A .12 B .2 C .12- D .2-11.小红和小丽分别将9000字和7500字的两篇文稿录入计算机,…,求两人每分钟各录入多少字?设小红每分钟录入x 个字,则可得方程90007500220x x=-,根据此情景,题中用“…”表示的缺失的条件应为( )A .两人每分钟录入字数的和是220字B .所用时间相同,两人每分钟录入字数的和是220字C .所用时间相同,小红每分钟录入字数比小丽多220字D .所用时间相同,小丽每分钟录人字数比小红多200字 12.分式242x x -+的值为0,则x 的值为( ) A .2- B .2-或2 C .2 D .1或2二、填空题13.化简2242()44224x x x x x x -+÷++++的结果是_______. 14.已知实数m 、n 均不为0且22227m mn n m n mn--=-+,则11m n -=______.15.先化简再求值:214111x x x -⎛⎫-÷ ⎪--⎝⎭,其中2x =. 16.若231x x +=-,则11x x _______________________.17.如果30,m n --=那么代数式2⎛⎫-⋅ ⎪+⎝⎭m n n n m n 的值为______________________.18.x 的取值范围是______________. 19.关于x 的分式方程3122m x x-=--无解,则m 的值为_____. 20.计算33(2)2----=______.三、解答题21.某商店准备购进A ,B 两种商品, A 种商品每件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A ,B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?22.(1)解方程:2124111x x x +=+--. (2)先化简,再求值:22321(1)24x x x x -+-÷+-,其中5x =. 23.先化简,再求值:2222222x xy y x y x y y x x xy ⎛⎫+++÷ ⎪---⎝⎭,其中x ,y 满足()2210x y ++-=.24.计算 (1)()()2222232322a a a a a -⋅+-+(2)()()()2235x x x ---+(3)用简便方法计算:22202020204020-⨯+(4)解分式方程:52332x x x =-- (5)2124111x x x +=+-- 25.应用题(步骤要完整)(1)一辆汽车开往距离出发地180km 的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40min 到达目的地.求前一小时的行驶速度.(2)两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工快?26.为切实做好新冠肺炎的防控工作,贯彻落实“预防为主,安全第一”的方针,某学校计划购买A 、B 两种品牌的消毒液,已知B 品牌消毒液每瓶的价格是A 品牌消毒液每瓶价格的2倍少20元,用600元买A 品牌消毒液的数量与用800元购买B 品牌消毒液的数量相同.(1)求A 、B 两种品牌消毒液每瓶的价格各是多少元?(2)若该校一次性购买A 、B 两种品牌的消毒液分别为20瓶和30瓶,请问该校此次购买消毒液花费为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】 由11x y=3,变形得y -x =3xy ,然后整体代入代数式,计算化简,即可得到结论. 【详解】解:由11x y =3,得y x xy-=3,即y -x =3xy ,x -y =-3xy , 则21422x xy y x xy y ----=2()142x y xy x y xy ----=61432xy xy xy xy----=4. 故选:A .【点睛】本题主要考查了分式化简求值,利用整体代入法是解决本题的关键.2.D解析:D【分析】先解不等式组,根据不等式组的解集得到a 的范围,再解分式方程,根据分式方程的解为非负数得到a 的值,即可求解.【详解】解:不等式组整理得:523x x a -⎧⎨<+⎩, 由解集为5x -,得到235a +>-,即4a >-,分式方程去分母得:()2234ax x --+-=,整理得:(2)12a x -=,解得:122x a=-, 由x 为非负整数,且3x ≠,得到21a -=,2,3,6,12,解得1a =或0或1-或4-或10-4a >-,1a 或0或1-,符合条件的所有整数a 的和为1010+-=.故选:D .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.3.B解析:B【分析】分式有意义的条件是分母不等于零.【详解】 解:分式33y x -有意义,则x 应满足的条件是x-3≠0,即x≠3,y 为任意数. 故选:B .【点睛】本题主要考查了分式有意义的条件,分式有意义的条件是分母不等于零. 4.B解析:B【分析】由于1纳米=10-9米,则30纳米=30×10-9米,然后根据幂的运算法则计算即可.【详解】解:1纳米=0.000 000 001米=10-9米,30纳米=30×10-9米=3×10-8米.故选:B .【点睛】本题考查了科学记数法-表示较小的数:用a×10n (1≤a <10,n 为负整数)表示较小的数. 5.B解析:B【分析】根据分式等于0的条件:分子为0,分母不为0解答.【详解】由题意得:290,30x x -=-≠,解得x=-3,故选:B .【点睛】此题考查分式的值等于0的条件,熟记计算方法是解题的关键. 6.D解析:D【分析】根据相反数的性质,倒数的性质以及不等式的性质来解决代数式的值即可;【详解】当a 取互为相反数的值时,即取m 和-m ,则-m+m=0,当a 取m 时,①222211=m a a m ++ ,当a 取-m 时,②()()222222111a m m a m m +=-+=+- , ①=②,故A 正确; B 、当a 取互为倒数的值时,即取m 和1m ,则11m m ⨯= , 当a 取m 时,①222211=m a a m ++,当a 取1m 时,②2222221111m 1m a m a m ⎛⎫+=+=+ ⎪⎝⎭⎛⎫ ⎪⎝⎭①=②,故B 正确;C 、可举例判断,由a >1得,取a=2,3(2<3) 则22112=424++< 22113=939++ , 故C 正确; D 、可举例判断,由01a <<得,取a=12,13(12>13) 2222111111=4+=924391123⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭< , 故D 错误;故选:D .【点睛】本题考查了相反数的性质,倒数的性质,不等式的性质和代数式求值的知识,正确理解题意是解题的关键.7.B解析:B【分析】由题意根据分式方程去分母转化为整式方程,由解为非负整数以及不等式组只有2个整数解,确定出符合条件m 的值,求出它们的和即可.【详解】解:去分母得:()22x x m =-+,解得:4x m =-,由解为非负整数解,得到40m -≥,且42m -≠,解得:4m ≤且2m ≠,不等式组整理得:242y y m ⎧⎪⎨-⎪≥-⎩<, 由不等式组只有2个整数解,得到y=-2,-1,即1024m --≤<, 解得:2≤m <6,综上:2<m≤4则符合题意m=3,4,它们的和为7.故选:B .【点睛】本题考查分式方程的解以及一元一次不等式组的整数解,熟练掌握相关运算法则是解答本题的关键. 8.A解析:A【分析】根据分式的值为0的条件可以求出x 的值;分式为0时,分子为0分母不为0;【详解】由分式的值为0的条件得x-3=0,x+4≠0,由x-3=0,得x=3,由x+4≠0,得x≠-4,综上,得x=3时,分式34x x -+ 的值为0; 故选:A .【点睛】本题考查了分式的值为0的情况,若分式的值为0,需要同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可. 9.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 10.A解析:A【分析】根据新定义,把2x y *=转化为分式的运算即可.【详解】解:根据定义运算*,2x y *=,112y x-=, 去分母得,2x y xy -=, 代入xy x y-得, 122xy xy =, 故选:A .【点睛】本题考查了新定义运算以及分式运算,解题关键是根据新定义运算找到x 、y 之间的关系,再整体代入.11.B解析:B【分析】根据工作时间=工作总量÷工作效率,从而得出正确答案.【详解】解:设小红每分钟录入x 个字,则可得方程90007500220x x=-,根据此情景,题中用“…“表示的缺失的条件应补为所用时间相同,两人每分钟录入字数的和是220字,故选:B .【点睛】 本题主要考查了由实际问题抽象出分式方程,根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.12.C解析:C【分析】分式的值为零时,分子等于零,分母不等于零.【详解】解:依题意,得x 2-4=0,且x+2≠0,所以x 2=4,且x≠-2,解得,x=2.故选:C .【点睛】本题考查了求一个数的平方根,分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.二、填空题13.2【分析】先约分再算加法然后把除法化为乘法进而即可求解【详解】原式=====2故答案是:2【点睛】本题主要考查分式的化简掌握分式的四则混合运算法则是解题的关键解析:2【分析】先约分,再算加法,然后把除法化为乘法,进而即可求解.【详解】原式=2(2)(2)2(2)224x x x x x x ⎡⎤+-+÷⎢⎥+++⎣⎦ =()222222x x x x x -⎡⎤+÷⎢⎥+++⎣⎦ =()222222x x x x x +-⎡⎤+⋅⎢⎥++⎣⎦=()222x x x x+⋅+ =2,故答案是:2.【点睛】本题主要考查分式的化简,掌握分式的四则混合运算法则,是解题的关键.14.【分析】将原分式化简得再两边同时除以即可得结果【详解】由得所以则故答案为:【点睛】本题考查了分式的化简求值观察式子得到已知与未知的式子之间的关系是解题的关键 解析:163【分析】 将原分式化简得163n m mn -=,再两边同时除以mn 即可得结果. 【详解】 由22227m mn n m n mn--=-+得24414m mn n m n mn --=-+ 所以163n m mn -=,则11163m n -= 故答案为:163【点睛】本题考查了分式的化简求值,观察式子得到已知与未知的式子之间的关系是解题的关键. 15.;【分析】先计算括号内的代数式然后化除法为乘法进行化简然后代入求值【详解】当时原式【点睛】本题考查了分式的化简求值注意先把代数式化简然后再代入求值解析:12x -+;3- 【分析】先计算括号内的代数式,然后化除法为乘法进行化简,然后代入求值.【详解】214111x x x -⎛⎫-÷ ⎪--⎝⎭ 22114x x x x --=⋅-- 12x -=+当2x =时,原式== 【点睛】本题考查了分式的化简求值.注意先把代数式化简,然后再代入求值.16.【分析】先将化为再由得然后代入计算即可【详解】解:先把原式变为:∵∴∴故填:-2【点睛】本题主要考查了代数式求值和分式的加减运算根据题意对已有等式和代数式灵活变形是解答本题的关键解析:2-【分析】 先将11x x 化为211x x x +-+,再由231x x +=-得213x x =--,然后代入计算即可. 【详解】 解:先把原式变为:211111111x x x x xx x x x ∵231x x +=-∴213x x =-- ∴22111312111x x x x x x x x .故填:-2.【点睛】本题主要考查了代数式求值和分式的加减运算,根据题意对已有等式和代数式灵活变形是解答本题的关键.17.【分析】将原式进行分式的混合计算化简先算小括号里面的然后算乘法最后整体代入求值【详解】解:===∵∴故答案为:3【点睛】本题考查分式的混合运算掌握运算顺序和计算法则正确计算是解题关键解析:3【分析】将原式进行分式的混合计算化简,先算小括号里面的,然后算乘法,最后整体代入求值.【详解】 解:2⎛⎫-⋅ ⎪+⎝⎭m n n n m n =22m n n m n n ⎛⎫⋅ ⎪⎭-+⎝ =()()n n m nm n m n -⋅++ =m n -∵30m n --=,∴=3m n -故答案为:3.【点睛】本题考查分式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.18.且【分析】根据分式有意义可得根据二次根式有意义的条件可得再解即可【详解】由题意得:且解得:且故答案为:且【点睛】本题主要考查了分式有意义和二次根式有意义的条件关键是掌握分式有意义的条件是分母不等于零 解析:0x ≥且1x ≠【分析】根据分式有意义可得10x -≠,根据二次根式有意义的条件可得0x ≥,再解即可.【详解】由题意得:10x -≠,且0x ≥,解得:0x ≥且1x ≠,故答案为:0x ≥且1x ≠.【点睛】本题主要考查了分式有意义和二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.19.-3【分析】先求解分式方程得到用m 表示的根然后再确定该分式方程的增根最后让分式方程的根等于增根并求出m 的值即可【详解】解:m+3=x-2x=m+5由的增根为x=2令m+5=2解得m=-3故填:-3【解析:-3【分析】先求解分式方程得到用m 表示的根,然后再确定该分式方程的增根,最后让分式方程的根等于增根并求出m 的值即可.【详解】 解:3122m x x-=-- 3122m x x +=-- 312m x +=- m+3=x-2x=m+5 由3122m x x-=--的增根为x=2 令m+5=2,解得m=-3.故填:-3.【点睛】本题主要考查了解分式方程以及分式方程的增根,理解增根的定义是解答本题的关键. 20.【分析】先根据负整数次幂进行化简然后再运算即可【详解】解:==故答案为【点睛】本题考查了负整数次幂的计算法则灵活应用负整数次幂的计算法则是解答本题的关键 解析:14- 【分析】先根据负整数次幂进行化简,然后再运算即可.【详解】解:33(2)2---- =1188-- =14-. 故答案为14-. 【点睛】本题考查了负整数次幂的计算法则,灵活应用负整数次幂的计算法则是解答本题的关键. 三、解答题21.(1)A 种商品每件的进价为50元,B 种商品每件的进价是30元;(2)该商店有5种进货方案.【分析】(1)设A 种商品每件的进价为x 元,则B 种商品每件的进价是(x−20)元,由题意得关于x 的分式方程,求解并检验,然后作答即可;(2)设购进A 种商品a 件,则购进B 种商品(40−a )件,由题意得关于a 的不等式组,解得a 的取值范围,再取整数解,则方案数可得.【详解】解:(1)设A 种商品每件的进价为x 元,则B 种商品每件的进价是(x−20)元, 由题意得:3000180020x x =-, 解得:x =50, 经检验,x =50是原方程的解且符合实际意义.50−20=30(元),答:A 种商品每件的进价为50元,B 种商品每件的进价是30元;(2)设购进A 种商品a 件,则购进B 种商品(40−a )件,由题意得:()5030401560402a a a a ⎧+-≤⎪⎨-≥⎪⎩, 解得:403≤a≤18, ∵a 取整数, ∴a 可为14,15,16,17,18,答:该商店有5种进货方案.【点睛】本题考查了分式方程和一元一次不等式组在实际问题中的应用,理清题中的数量关系是解题的关键.22.(1)无解;(2)21x x --;34 【分析】(1)去分母,化分式方程为整式方程,解整式方程得解,最后把解代入最简公分母检验; (2)先算括号里面的分式的减法,再把除法变成乘以它的倒数,约分化简成最简,最后把5x =代入计算即可.【详解】(1)解:去分母得:1224x x -++=,,解得:1x =,检验:当1x =时,210x =-∴1x =是原方程的增根,所以原分式方程无解.(2)22321(1)24x x x x -+-÷+-223(2)(2)2(1)x x x x x +-+-=⋅+- 2121(1)x x x --=⋅- 21x x -=-, 当5x =时,原式523514-==-. 【点睛】 本题考查了解分式方程以及分式的化简求值.根据它们的运算法则准确计算是解题的关键.解分式方程要注意最后要检验是否是增根;分式的化简求值,先化简再求值. 23.x y,-2 【分析】由分式的加减乘除混合运算,把分式进行化简,得到最简分式,然后由非负数的性质求出x 、y 的值,再代入计算,即可得到答案.【详解】解:原式=()()()()22x y x x y x x y x y x y y ⎡⎤+--⨯⎢⎥+--⎢⎥⎣⎦=()2x x y y x y y -⨯- =x y; ∵()2210x y ++-=,∴2x =-,1y =,将2x =-,1y =代入x y,得: 原式=221-=-. 【点睛】 本题考查了分式的加减乘除混合运算,分式的化简求值,非负数的性质,解题的关键是熟练掌握运算法则,正确的进行化简.24.(1)46274a a a ++;(2)1519x +;(3)4000000;(4)x=-5;(5)无解.【分析】(1)原式先分别计算积的乘方与幂的乘方,以及单项式乘以单项式,然后再合并同类项即可得到答案;(2)原式分别根据完全平方公式和多项式乘以多项式运算法则去括号,然后再合并同类项即可得到答案;(3)原式运用差的完全平方公式进行计算即可;(4)先把方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(5)先把方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()()2222232322a a a a a -⋅+-+ =4462924a a a a -++=46274a a a ++(2)()()()2235x x x ---+=()22102556x x x x ++--+=22102556x x x x ++-+-=1519x +(3)22202020204020-⨯+=222020*********-⨯⨯+=2(202020)-=22000=4000000; (4)52332x x x=-- 去分母得,x=-5 经检验,x=-5是原方程的解,∴原方程的解为:x=-5;(5)2124111x x x +=+-- 去分母得,(1)2(1)4x x -++= 解得,x=1经检验,x=1是增根,∴原方程无解.【点睛】此题考查了整式的运算和解分式方程,熟练掌握相关运算法则是解答此题的关键. 25.(1)60km /h ;(2)乙队快【分析】(1)直接根据题意表示出变化前后的速度,进而利用所用时间得出等式求出答案; (2)由“甲队单独施工1个月完成了总工程的三分之一”知甲的工作效率为 13,设乙队如果单独施工x 个月能完成总工程,则乙的工作效率为1x ,根据(甲的工作效率+乙的工作效率)×12=1-13,由此可列方程,从而问题得解. 【详解】解:(1)设前一小时的行驶速度为xkm/h ,根据题意可得:1801804011.560x x x -+=-,解得:x=60, 检验得:x=60是原方程的根,答:前一小时的行驶速度为60km/h .(2)设乙队如果单独施工x 个月能完成总工程.依题意列方程:( 113+x )×12=1-13. 解方程得:x=1.经检验:x=1是原分式方程的解.答:乙队单独施工1个月可以完成总工程,所以乙队的施工进度快.【点睛】本题考查了分式方程的应用,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据,找到关键描述语,找到合适的等量关系是解决问题的关键.26.(1)A 种品牌消毒液每瓶的价格是30元,B 种品牌消毒液每瓶的价格是40元;(2)1800元【分析】(1)设A 种品牌消毒液每瓶的价格是x 元,则B 种品牌消毒液每瓶的价格是(220)x -元;根据题意列分式方程并求解,即可得到答案;(2)结合(1)的结论,根据题意计算A 、B 两种品牌的消毒液花费,即可得到答案.【详解】(1)设A 种品牌消毒液每瓶的价格是x 元,则B 种品牌消毒液每瓶的价格是(220)x -元 根据题意得:600800220x x =- 解得:30x =经检验,30x =是原方程的解∴22040x -=元∴A 种品牌消毒液每瓶的价格是30元,B 种品牌消毒液每瓶的价格是40元; (2)A 种品牌的消毒液花费为:2030600⨯=(元) B 种品牌的消毒液花费为:30401200⨯=(元)共花费为: 60012001800+=(元),∴该校此次购买消毒液花费为1800元.【点睛】本题考查了分式方程、有理数运算的知识;解题的关键是熟练掌握分式方程、有理数运算的性质,从而完成求解.。

初二数学分式单元测试卷附答案

初二数学分式单元测试卷附答案

初二数学分式单元测试卷附答案初二数学分式单元测试卷附答案一、填空题(每空2分,共20分)1.下列有理式:其中分式有________.2.当__________时,分式有意义.3.当__________时,分式的值为零.4.不改变分式的值,把分式的分子、分母各项系数都化为整数,得__________5.分式与的最简公分母是__________.6.化简:__________.7.若分式与的值相等,则x=__________.8.当m=__________时,方程的.根为.9.若方程有增根,则a=__________.10.甲、乙两人在电脑上合打一份稿件,4小时后甲另有任务,余下部分由乙单独完成又用6小时.已知甲打6小时的稿件乙要打7.5小时,若设甲单独完成需x小时,则根据题意可列方程__________.二、选择题(每题3分,共30分)11.如果分式,那么a、b满足()A.a=2bB.a≠一bC.a=2b且a≠一bD.a=一612.分式中,最简分式有()A.4个B.3个C.2个D.1个13.分式约分等于()A.B.C.D.14.若把分式中的x、y都扩大2倍,则分式的值()A.扩大为原来的2倍B.不变C.缩小为原来的2倍D.缩小为原来的4倍15.下列计算正确的是()A.B.C.D.16.计算的结果为()A.B.C.D.17.满足方程的的值是()A.0B.1C.2D.没有18.要使的值和的值互为倒数,则的值是()A.0B.一1C.D.1A.11B.3C.9D.1320.甲、乙两人承包一项任务,合作5天能完成,若单独做,甲比乙少用4天,设甲单独做需x天,则可列方程为()A.B.C.D.三、解答题(共50分)21.计算(每题4分,共16分)(1)(2);22.解分式方程(每题5分,共10分)(1)(2).23.(6分)先化简,再求值:其中a=一2,b=一1.24.(6分)已知x,y满足求的值.26.(6分)用价值为100元的甲种涂料与价值为240元的乙种涂料配制成一种新涂料,其每千克的售价比甲种涂料每千克的售价少3元,比乙种涂料每千克的售价多1元,新涂料的总价值不变,求这种涂料每千克售价多少元?参考答案1.2.3.4.5.6.17.68.29.410.11.C12.C13.D14.B15.C16.A17.A18.B19.B20.C21.(1)2(2)(3)一(x+1)(4)322.(1)(2)x=1523.224.25.原来准备参加春游的学生有300人.26.17元.高一数学上册期末试卷(附答案)高一数学期末考试试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.函数的定义域为()A.(,1)B.(,∞)C.(1,+∞)D.(,1)∪(1,+∞)2.以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为()A.(,1,1)B.(1,,1)C.(1,1,)D.(,,1)3.若,,,则与的位置关系为()A.相交B.平行或异面C.异面D.平行4.如果直线同时平行于直线,则的值为()A.B.C.D.5.设,则的大小关系是()A.B.C.D.6.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则直线EF与CD所成的角为()A.45°B.30°C.60°D.90°7.如果函数在区间上是单调递增的,则实数的取值范围是()A.B.C.D.8.圆:和圆:交于A,B两点,则AB的垂直平分线的方程是()A.B.C.D.9.已知,则直线与圆的位置关系是()A.相交但不过圆心B.过圆心C.相切D.相离10.某三棱锥的三视图如右图所示,则该三棱锥的表面积是()A.28+65B.60+125C.56+125D.30+6511.若曲线与曲线有四个不同的交点,则实数m的取值范围是()A.B.C.D.12.已知直线与函数的图象恰好有3个不同的公共点,则实数m 的取值范围是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若是奇函数,则.14.已知,则.15.已知过球面上三点A,B,C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=3cm,则球的体积是.16.如图,将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三种说法:①△DBC是等边三角形;②AC⊥BD;③三棱锥D-ABC的体积是26.其中正确的序号是________(写出所有正确说法的序号).三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)根据下列条件,求直线的方程:(1)已知直线过点P(-2,2)且与两坐标轴所围成的三角形面积为1;(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.18.(本小题12分)已知且,若函数在区间的最大值为10,求的值.19.(本小题12分)定义在上的函数满足,且.若是上的减函数,求实数的取值范围.20.(本小题12分)如图,在直三棱柱(侧棱垂直于底面的三棱柱)中,,分别是棱上的点(点不同于点),且为的中点.求证:(1)平面平面;(2)直线平面.21.(本小题12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.22.(本小题12分)已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.高一数学期末考试试题答案一、选择题ACBADBDCADBC二、填空题13.14.1315.16.①②三、解答题17.(本小题10分)(1)x+2y-2=0或2x+y+2=0.(2)3x-y+2=0.18.(本小题12分)当0当x=-1时,函数f(x)取得最大值,则由2a-1-5=10,得a=215,当a>1时,f(x)在[-1,2]上是增函数,当x=2时,函数取得最大值,则由2a2-5=10,得a=302或a=-302(舍),综上所述,a=215或302.19.(本小题12分)由f(1-a)+f(1-2a)<0,得f(1-a)<-f(1-2a).∵f(-x)=-f(x),x∈(-1,1),∴f(1-a)又∵f(x)是(-1,1)上的减函数,∴-1<1-a<1,-1<1-2a<1,1-a>2a-1,解得0故实数a的取值范围是0,23.20.(本小题12分)(1)∵是直三棱柱,∴平面。

人教版八年级上单元测试题:第15章 分式 (2)(含答案)

人教版八年级上单元测试题:第15章 分式 (2)(含答案)

数学人教版八年级上第十一章三角形单元检测一、选择题(本大题共9小题,每小题3分,共27分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.以下列各组线段为边,能组成三角形的是().A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cmC.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm2.下列说法错误的是().A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线3.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是().A.k B.2k+1C.2k+2 D.2k-24.四边形没有稳定性,当四边形形状改变时,发生变化的是().A.四边形的边长B.四边形的周长C.四边形的某些角的大小D.四边形的内角和5.如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()对.A.4 B.5C.6 D.76.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=90°-∠B,④∠A=∠B-∠C中,能确定△ABC是直角三角形的条件有().A.1个B.2个C.3个D.4个7.如果三角形的一个外角小于和它相邻的内角,那么这个三角形为().A.钝角三角形B.锐角三角形C.直角三角形D.以上都不对8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是().A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)9.一个角的两边分别垂直于另一个角的两边,那么这两个角之间的关系是().A.相等B.互补C.相等或互补D.无法确定二、填空题(本大题共9小题,每小题3分,共27分.把答案填在题中横线上)10.造房子时,屋顶常用三角形结构,从数学角度来看,是应用了__________,而活动挂架则用了四边形的__________.11.已知a,b,c是三角形的三边长,化简:|a-b+c|-|a-b-c|=__________.12.等腰三角形的周长为20 cm,一边长为6 cm,则底边长为__________.13.如图,∠ABD与∠ACE是△ABC的两个外角,若∠A=70°,则∠ABD+∠ACE=__________.14.四边形ABCD的外角之比为1∶2∶3∶4,那么∠A∶∠B∶∠C∶∠D=__________.15.如果一个多边形的内角和等于它的外角和的3倍,那么这个多边形是__________边形.16.如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.17.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=__________.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了__________米.三、解答题(本大题共4小题,共46分)19.(本题满分10分)一个正多边形的一个外角等于它的一个内角的13,这个正多边形是几边形?20.(本题满分12分)如图所示,直线AD和BC相交于点O,AB∥CD,∠AOC=95°,∠B=50°,求∠A和∠D.21.(本题满分12分)如图,经测量,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向,求∠C的度数.22.(本题满分12分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R的扇形草坪(图中阴影部分).(1)图①中草坪的面积为__________;(2)图②中草坪的面积为__________;(3)图③中草坪的面积为__________;(4)如果多边形的边数为n,其余条件不变,那么,你认为草坪的面积为__________.参考答案1.B点拨:只有B中较短两边之和大于第三边,能组成三角形.2.C点拨:直角三角形也有三条高,只是有两条与边重合了,因此C错误,故选C.3.C点拨:任何多边形的外角和都是360°,所以内角和就是180°的2k倍,即(n-2)=2k,所以边数n=2k+2,故选C.4.C点拨:四边形形状改变时,只是改变了四个角的大小,内角和、边长、周长都不改变.故选C.5.A点拨:等底同高的三角形的面积是相等的,所以△ABD,△ADE,△AEC三个三角形的面积相等,有3对,△ABE与△ACD的面积也相等,有1对,所以共有4对三角形面积相等,故选A.6.D点拨:根据三角形内角和定理可知,①中∠C=90°,②中∠C=90°,③中∠A +∠B=90°,两锐角互余,④中∠B=90°,所以①②③④都能判定是直角三角形,故选D.7.A点拨:外角小于内角,它们又互补,所以内角大于90°,故三角形为钝角三角形.故选A.8.B点拨:∠A=180°-(∠B+∠C)=180°-(∠AED+∠ADE),所以∠B+∠C=∠AED+∠ADE,在四边形BCDE中,∠1+∠2=360°-2(180°-∠A),化简得,∠1+∠2=2∠A.9.C点拨:如图,有两种情况,一是∠A与∠D的两边互相垂直,另一种是∠A与∠BDE的两边所在的直线相互垂直,根据四边形内角和是360°,能得到第一种情况时互补,第二种情况时相等,所以两角相等或互补,故选C.10.三角形的稳定性不稳定性11.2a-2b点拨:因为a,b,c是三角形的三边长,三角形两边之和大于第三边,所以a-b+c>0,a-b-c<0,所以原式=a-b+c-[-(a-b-c)]=2a-2b.12.8 cm或6 cm点拨:当腰长是6 cm时,根据周长20 cm求得底边长是8 cm,能组成三角形;当底边长是6 cm时,求得腰长是7 cm,也能组成三角形,两种情况都成立,所以底边长是8 cm或6 cm.13.250°点拨:由∠A=70°,可得∠ABC+∠ACB=110°,∠ABD+∠ACE+∠ABC +∠ACB=360°,所以∠ABD+∠ACE=360°-110°=250°,也可用外角性质求出.14.4∶3∶2∶1点拨:由外角之比是1∶2∶3∶4可求得四边形ABCD的外角分别是36°,72°,108°,144°,内角分别是144°,108°,72°,36°,所以它们的比是4∶3∶2∶1.15.八点拨:由题意可知内角和是360°×3=1 080°,所以是八边形.16.360°点拨:由图可知∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠1,∠2,∠3的和是中间的三角形的外角和,等于360°,所以∠A+∠B+∠C+∠D+∠E+∠F=360°.17.45°点拨:在△ABC中,∠ABC=180°-∠A-∠C=70°,∠1=∠ABC-∠D=70°-25°=45°.18.120点拨:由题意可知,回到出发点时,小亮正好转了360°,由此可知所走路线是边长为10米,外角为30°角的正多边形,360°÷30°=12,所以是正十二边形,周长为120米,所以小亮一共走了120米.19.解:设正多边形的边数为n ,得180(n -2)=360×3,解得n =8.答:这个正多边形是八边形.20.解:因为∠AOC 是△AOB 的一个外角,所以∠AOC =∠A +∠B (三角形的一个外角等于和它不相邻的两个内角的和).因为∠AOC =95°,∠B =50°,所以∠A =∠AOC -∠B =95°-50°=45°.因为AB ∥CD ,所以∠D =∠A =45°(两直线平行,内错角相等).21.解:因为BD ∥AE ,所以∠DBA =∠BAE =57°.所以∠ABC =∠DBC -∠DBA =82°-57°=25°.在△ABC 中,∠BAC =∠BAE +∠CAE =57°+15°=72°,所以∠C =180°-∠ABC -∠BAC =180°-25°-72°=83°.22.答案:(1)12πR 2 (2)πR 2 (3)32πR 2 (4)n -22πR 2 点拨:因为一个周角是360°,所以阴影部分的面积实际上就是多边形内角和是整个周角的多少倍,阴影部分的面积就是圆面积的多少倍.如(1)中三角形内角和是180°,因此图①中阴影部分的面积就是圆面积的一半,依次类推.。

鲁教版八年级数学上册 第二章 分式与分式方程 单元测试卷

鲁教版八年级数学上册第二章 分式与分式方程 单元测试题一、选择题:1. 下列关于分式方程增根的说法正确的是( )A. 使所有的分母的值都同时为零的解是增根B. 分式方程的解为0就是增根C. 使分子的值为0的解就是增根D. 使最简公分母的值为0的解是增根2. 当x =1时,下列分式没有意义的是( ) A.x+1xB. xx−1C.x−1xD. xx+13. 下列各式:1−x 5,4x π−3,x 2−y 22,5x,其中分式共有( )A. 1个B. 2个C. 3个D. 4个4. 若x 、y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( ) A. xy+1B. x+yx+1C. xyx+yD. 2x3x−y5. 计算(2a b )3的正确结果是( ) A. 8a b 33B. 8a b3C. 2a b33D. 6a b336. 老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( ) A. 只有乙B. 甲和丁C. 乙和丙D. 乙和丁7. 甲从A 地到B 地要走m 小时,乙从B 地到A 地要走n 小时,若甲、乙二人同时从A 、B 两地出发,经过几小时相遇( ) A. (m +n)小时 B.m+n 2小时 C.m+nmn 小时 D. mnm+n 小时8. 下列说法错误的是( )A. 13x与a6x 2的最简公分母是6x 2 B. 1m+n 与1m−n 的最简公分母是m 2−n 2 C. 13ab 与13bc 的最简公分母是3abcD. 1a(x−y)与1b(y−x)的最简公分母是ab(x −y)(y −x)9. 已知分式x+y1−xy 的值是a ,如果用x ,y 的相反数代入这个分式所得的值为b ,则a ,b 关系为 ( ) A. 相等B. 互为相反数C. 互为倒数D. 乘积为−110. 若ab =1,m =11+a +11+b ,则m 2021的值为( ) A. 1B. −1C. 2D. −211. 《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x 天,则可列出正确的方程为( ) A. 900x+3=2×900x−1 B. 900x−3=2×900x+1 C. 900x−1=2×900x+3D. 900x+1=2×900x−312. 若数a 使关于x 的分式方程2x−1+a1−x =4的解为正数,且使关于y 的不等式组{y+23−y2>12(y −a)≤0的解集为y <−2,则符合条件的所有整数a 的和为( )A. 10B. 12C. 14D. 16二、填空题: 13. 若分式3−2x x+1的值为0,则x 的值为__________.14. 分式12x ,12y 2,−15xy 的最简公分母为______.15. 若关于x 的分式方程3x x−2−1=m+3x−2有增根,则m 的值为______.16. 已知 x n−1y +(3−n)xy n−2−nx n−3y +4x n−4y 3−mx 2y n−4+(n −3)是关于x 与y 的五次三项式,则(−mn )5=______. 17. 若分式|a |−3(a+2)(a−3)的值为0,则a =__________.18.若关于x的分式方程2xx−1−3=m1−x的解为正数,则m的取值范围是______ .三、解答题:19.计算:(1)4x3y ⋅y2x2(2)4a+4b5ab⋅15a2ba2−b220.解方程:(1)1−xx−2+2=12−x.(2)32x+1−22x−1=x+14x2−1.21.化简求值:(3m+2+m−2)÷m2−2m+1m+2;其中m=√2+122.北京市以2022年冬奥会和冬残奥会为契机,大力提升城市服务保障能力.在水定河沿岸,紧邻北京冬奥组委和首钢滑雪大跳台建成冬奥公园.冬奥公园最大的亮点是拥有一条长42km的全封闭马拉松跑道.马拉松线路设计很有创意,分为智慧跑、公园跑、滨水跑和堤上跑.小明先进行了2km智慧跑,接着进行了4km堤上跑,一共用时40分钟.已知小明进行堤上跑的平均速度是他进行智慧跑的平均速度的1.5倍,求小明进行智慧跑,堤上跑的平均速度各是多少.23.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?24. 某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成分每千克含铁42毫克配料表原料每千克含铁甲食材50毫克乙食材10毫克规格每包食材含量每包单价A包装1千克45元B包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?。

八年级分式单元测试题

八年级分式单元测试题一、选择题(每题3分,共15分)1. 下列式子是分式的是()A. (x)/(2)B. (x + 1)/(2)C. (1)/(x + 1)D. (x)/(π)解析:分式的定义是分母中含有字母的式子。

A选项分母为2,是常数;B选项分母为2,是常数;C选项分母为x + 1,含有字母x,是分式;D选项分母为π,π是常数。

所以答案是C。

2. 若分式(x 1)/(x + 2)的值为0,则x的值为()A. 1.B. 1.C. 2.D. -2.解析:分式的值为0的条件是分子为0且分母不为0。

由分子x 1 = 0,解得x = 1,当x = 1时,分母x+2=1 + 2 = 3≠0。

所以答案是A。

3. 化简frac{a^2-b^2}{a b}的结果是()A. a bB. a + bC. (a + b)/(a b)D. (a b)/(a + b)解析:根据平方差公式a^2-b^2=(a + b)(a b),所以frac{a^2-b^2}{a b}=((a + b)(ab))/(a b)=a + b。

答案是B。

4. 计算(2)/(x 1)+(3)/(1 x)的结果是()A. -1.B. 1.C. (1)/(x 1)D. (5)/(x 1)解析:先将(3)/(1 x)化为-(3)/(x 1),则(2)/(x 1)+(3)/(1 x)=(2)/(x 1)-(3)/(x 1)=(2 3)/(x 1)=-(1)/(x 1)=-1。

答案是A。

5. 若分式方程(x)/(x 3)=2+(k)/(x 3)有增根,则k的值为() A. 3 B. 0 C. -3 D. 1 解析:分式方程有增根,就是分母为0,即x 3 = 0,解得x = 3。

方程两边同时乘以x 3得到x = 2(x 3)+k,把x = 3代入得3 = 2×(3 3)+k,解得k = 3。

答案是A。

二、填空题(每题3分,共15分)6. 当x=______时,分式\frac{1}{x 2}\)无意义。

鲁教版八年级数学上 第2章 分式与分式方程 单元测试题

鲁教版八年级数学上册第二章 《分式与分式方程》 单元检测卷一、选择题:1. 下列各式中不属于分式的是( )xx D x C y x B xA 22211454+- 2. 分式412-a 有意义,则a 的值是( ) 2244±≠≠±≠≠a D a C a B a A 3. 化简22241-⎪⎪⎭⎫ ⎝⎛•y x yx 的结果为( )4344224141414xyD y x C x B y x x A 4. 已知1=x 是方程xx a -=+-4114的解,则a 的值为( ) 2104D C B A 5. 分式242--x x 的值为零,则x 的值为( ) 4222D C B A -±6. 方程12422=+--x x x去分母得( ) ()()()()222422422122422xx x D x x x C x x B x x x A -=---=--=++--=--7. 已知长方形的长与宽分别为b a 、,长方形的周长为6、面积为4,则bb a a b a +++2的值为( ) 41310149D C B A 8. 若方程2324-+=--x a a x 有增根,则a 的值为( ) 7321--D C B A9. 一艘轮船顺水航行40千米和逆水行驶30千米所用的时间相同。

若船在静水中的速度为每小时21千米,设水流速度为h km x/,则可列方程为( ) 21402130214021302130214021302140-=+-=+-=+-=+x x D x x C x x B x x A 10. 已知()()326332--+=-+-x x B x x x A ,则B A 、的值分别为( ) ....153A B C D - 3、-15 -15、3 -3、15 、11.如果分式12-x 与33+x 的值相等,则x 的值是( ) A.9 B.7 C.5 D.312.如果a b =2,则a 2-ab+b 2a 2+b 2 的值为( )A .45B .1C .35D .2二、填空题:13. 2241y x 与3121xy的最简公分母为 。

第15章 分式 人教版八年级数学上册单元测试卷(含详解)

第15章《分式》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.分式中,当时,下列结论正确的是()A.分式的值为零B.分式无意义C.若时,分式的值为零D.若时,分式的值为零2.能使等式成立的x的取值范围是( )A .B.C.D.3.分式的值为整数,则整数a的值为()A.1,2,4B.C.0,1,3D.4.若运算的结果为整式,则“□”中的式子可能是()A .B.C.D.5.解分式方程时,下列去分母变形正确的是()A .B.C.D.6.已知关于的分式方程的解是非负数,则的取值范围是()A .B.C.且D.且7.已知正整数,的最大公约数是3,最小公倍数是60,若,则().A.B.C.D.或8.在平面直角坐标系中,过点的直线交x轴、y轴于点,,则的最小值为()A.B.C.D.以上均不正确9.若关于x的不等式组恰有3个整数解,且关于y的分式方程的解是非负数,则符合条件的所有整数a的和是( )A.6B.10C.8D.210.如图,分别表示某一品牌燃油汽车和电动汽车所需费用y(单位:元)与行驶路程S (单位:千米)的关系,已知燃油汽车每千米所需的费用比燃气汽车每千米所需的费用的2倍少0.1元,设电动汽车每千米所需的费用为x元,则可列方程为( )A.B.C.D.二、填空题(本大题共8小题,每小题4分,共32分)11.要使分式有意义,则x的取值范围是.12.若是方程的根,则代数式的值是.13.若,则.14.若关于x的方程无解,则a的值是15.定义:若两个分式A与B满足:,则称A与B这两个分式互为“美妙分式”.若分式与互为“美妙分式”,且a,b均为不等于0的实数,则分式.16.如图,在中,平分,于,若,,,则的面积为.17.人们把这个数叫做黄金分割数,著名数学家华罗庚的优选法中的0.618就应用了黄金分割数.设,,记,,……,,则的值为.18.元代的《四元玉鉴》是一部成就辉煌的数学名著.该著有一道“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽、每株椽钱三文足,无钱准与一株椽”.大意是:用6210文钱买一批椽.如果每株椽的运费是3文,那么少拿一株椽后,剩下椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设6210元能够买珠椽,则列出分式方程为.三、解答题(本大题共6小题,共58分)19.(8分)计算∶(1);(2)20.(8分)化简求值:先化简,再从,中选择一个合适的数代入并求值.21.(10分)解下列分式方程:(1);(2)22.(10分)某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?23.(10分)关于的方程:的解为;的解为或;的解为;的解为;…根据材料解决下列问题:(1)方程的解是___________;(2)猜想方程的解,并将所得的解代入方程中检验;(3)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程右边的形式与左边完全相同,只有把其中的未知数换成某个常数,那么这样的方程可以直接得解.请用这个结论解关于的方程:.24.(12分)阅读材料:已知,为非负实数,,当且仅当“”时,等号成立.这个结论就是著名的“均值不等式”,“均值不等式”在一类最值问题中有着广泛的应用.例:已知,求代数式最小值.解:令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为6.根据以上材料解答下列问题:【灵活运用】(1)已知,则当______时,代数式到最小值,最小值为________.(2)已知,求代数式的最小值.【拓展运用】(3)某校要对操场的一个区域进行改造,利用一面足够长的墙体将该区域用围栏围成中间隔有两道围栏的矩形花圃,如图1所示,为了围成面积为的花圃,所用的围栏至少为多少米?(4)如图2,四边形的对角线,相交于点,和的面积分别是4和12,求四边形面积的最小值.参考答案:一、单选题1.D【分析】本题主要考查分式的有意义的条件、分数值为零的条件,解答本题的关键是熟练掌握分式的分子为0,分母不为0时,分式的值为零.根据分式有意义的条件和分式值为零的条件即可求得结果.【详解】当时,,即,解得:,当,时,分式的值为零故选:D.2.C【分析】本题考查了二根式有意义的条件,分式有意义的条件.熟练掌握二根式有意义的条件,分式有意义的条件是解题的关键.由题意知,,,求解作答即可.【详解】解:由题意知,,,解得,,故选:C.3.D【分析】根据分式的值为整数可知,a+1的值为-4,-2,-1,1,2,4,计算可得答案.【详解】解:∵分式的值为整数,∴a+1是4的因数,故a+1的值为-4,-2,-1,1,2,4,∴a的值为-5,-3,-2,0,1,3,故选:D.4.D【分析】本题考查分式的乘除法和整式,根据分式的乘除法的运算法则进行解题即可得到答案.【详解】解:,∵运算的结果为整式,∴中式子一定有的单项式,∴只有D项符合,故选:D.5.A【分析】本题考查了分式方程的解法,方程两边同乘以,化成整式方程,问题得解.【详解】解:,方程两边同乘以得.故选:A6.D【分析】本题考查分式方程的解,解一元一次不等式,根据解分式方程的方法可以求得的取值范围,即可求解.解答本题的关键是明确解分式方程的方法.【详解】解:,方程两边同乘以,得,移项及合并同类项,得,∵分式方程的解是非负数,,∴,解得,且,故选:D.7.D【分析】先由、是正整数,、的最大公约数是3,最小公倍数是60,得到、的值,然后代入求出代数式的值.【详解】解:、都是正整数,它们的最大公约数是3,所以设,、都是正整数,且由于、的最小公倍数是60,所以即由于、互质,、都是正整数,,或,.即:或当时,原式;当时原式故选:D8.B【分析】首先求出,所在直线的解析式为,然后将代入得到,然后代入变形为,利用换元法和完全平方公式得到,然后利用平方的非负性求解即可.【详解】设,所在直线的解析式为∴,解得∴∴将代入得整理得,即∴设∴原式∵∴∴的最小值为∴的最小值为.∴的最小值为.故选:B.9.A【分析】本题考查了不等式组的取值范围,分式方程的解,分式方程的非负整数与a的整数解容易混淆,仔细辩解是解决本题的关键.分别解不等式组的两个不等式,根据“该不等式组有且仅有3个整数解”,得到关于a的不等式组,解之,解分式方程,结合“该分式方程解是非负数”,得到a的值,即可得到答案.【详解】解:解不等式得:,解不等式得:,∵该不等式组有且仅有3个整数解,∴该不等式组的整数解为:2,3,4,则,解得:,解分式方程得:且,∵该分式方程有非负数解,且,则,1,2,3,符合条件的所有整数a的和是.故选:A.10.A【分析】本题考查了列分式方程、函数图象,读懂函数图象,正确获取信息是解题关键.先求出燃油汽车每千米所需的费用为元,再根据函数图象可得燃油汽车所需费用为25元时与燃气汽车所需费用为10元时,所行驶的路程相等,据此列出方程即可得.【详解】解:由题意得:燃油汽车每千米所需的费用为元,由函数图象可知,燃油汽车所需费用为25元时与燃气汽车所需费用为10元时,所行驶的路程相等,则可列方程为,故选:A.二、填空题11.x≠-3且【分析】根据,且计算即可,本题考查了分式有意义条件,熟练掌握是解题的关键.【详解】分式有意义.故,且,解得x≠-3,且故答案为:x≠-3且.12.【分析】本题考查代数式求值,涉及方程根的定义、整体代入法求代数式值、分式的混合运算等知识,根据题中所给代数式的结构特征,结合已知条件,恒等变形代值求解即可得到答案,熟练掌握分式混合运算法则化简求值是解决问题的关键.【详解】解:是方程的根,,即,,故答案为:.13.2【分析】本题主要考查了求代数式的值、分式的加减及解二元一次方程组,熟练掌握分式的加减法法则是解题的关键.由,从而有,进而构造二元一次方程组求得m,n的值代入原式即可得解.【详解】解:∵,,∴,∴,解得,∴,故答案为:2.14.1和2【分析】本题主要考查了分式方程无解的情况,分式方程无解有两种情况,第一分式方程本身无解,第二分式方程有增根,据此求解即可.【详解】解:去分母得:,移项,合并同类项得:,当,即时,此时方程无解;当,即时,,∵此时方程无解,方程有增根,∴,解得,经检验,是原方程的解;综上所述,或.故答案为:1和2.15.或【分析】本题考查了分式的加减法和实数的性质,绝对值的意义,熟练掌握分式加减法的法则,对新定义的理解是解题关键.根据分式与互为“美妙分式”,得到,求出①,②,分别把①②代入分式中求出结果即可.【详解】与互为“美妙分式”,,,或,或,、均为不等于的实数,①,②,把①代入,把②代入,综上:分式的值为或.故答案为:或.16.【分析】过点作于点,利用角平分线性质则有,然后根据面积公式即可求解.【详解】如图,过点作于点,∵是的角平分线,,∴,∴.故答案为:.17.【分析】本题考查分式的加减法和二次根式的运算.找出规律是解题的关键.利用分式的加减法则分别可求,,•••,,利用规律求解即可.【详解】解:∵,∴,,……,……∴.故答案为:.18.【分析】本题考查了从实际问题中抽象出分式方程,正确理解题意找出等量关系是解题关键.设6210元购买椽的数量为株,根据单价总价数量,求出一株椽的价钱为,再根据少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,即可列出分式方程,得到答案.【详解】解:设6210元购买椽的数量为株,则一株椽的价钱为,由题意得:,故答案为:.三、解答题19.(1)解:原式;(2)原式.20.解:原式,,,,∵,∴,当时,原式;当时,原式.21.(1)解:去分母得:,去括号得:,移项得:,合并同类项得:,检验,当时,,∴是原方程的解;(2)解:去分母得:,去括号得:,移项得:,合并同类项得:,系数化为1得:检验,当时,,∴不是原方程的解;∴原方程无解.22.(1)设种原料每千克的价格为元,则种原料每千克的价格为元,根据题意得:,解得:.答:购入种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为元,则零售价为元,根据题意得:,解得:,经检验,是原方程的根,且符合实际.答:这种产品的批发价为50元.23.(1)解:由可得,∴该方程的解为:或;(2)方程的解为:或,检验:当时,左边右边,故是方程的解,当时,左边右边,故也是方程的解;(3)原方程可化为:,所以或,解得:或,经检验,或是原方程的解,故答案为:或.24.解:(1)令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为.故答案为:,;(2)令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为.∴代数式的最小值为(3)设花圃的宽为米,则长为米,所用的围栏令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为.故:所用的围栏至少为米(4)作,如图所示:由题意得:∵∴四边形面积令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为.∴四边形面积的最小值为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六章 分式 单元测试题
一、选一选(请将唯一正确答案代号填入题后的括号内) 1.已知x ≠y ,下列各式与
x y
x y
-+相等的是( ).
(A )()5()5x y x y -+++ (B)22x y
x y -+ (C) 222()x y x y -- (D )2222
x y x y -+
2.化简2
122
93
m m +-+的结果是( ). (A )
269m m +- (B)23m - (C)23m + (D )229
9
m m +-
3.化简3222121
()11
x x x x x x x x --+-÷+++的结果为( ).
(A)x-1 (B)2x-1 (C)2x+1 (D)x+1
4.计算
11
()a a a a -÷-的正确结果是( ). (A )11a + (B )1 (C )1
1
a - (D )-1
5.分式方程12
12
x x =--( ).
(A )无解 (B )有解x=1 (C )有解x=2 (D )有解x=0 6.若分式
2
1
x +的值为正整数,则整数x 的值为( )
(A )0 (B )1 (C )0或1 (D )0或-1 7.一水池有甲乙两个进水管,若单独开甲、乙管各需要a 小时、b 小时可注满空池;现两管同时打开,那么注满空池的时间是( )
(A )
11a b + (B )1ab (C )1a b + (D )ab a b
+ 8.汽车从甲地开往乙地,每小时行驶1v km ,t 小时可以到达,如果每小时多行驶2v km ,
那么可以提前到达的小时数为 ( )
(A )
212v t v v + (B ) 112v t v v + (C )1212v v v v + (D )1221
v t v t
v v -
9.下列说法:①若a ≠0,m,n 是任意整数,则a m
.a n
=a m+n
; ②若a 是有理数,m,n 是整
数,且mn>0,则(a m )n =a mn ;③若a ≠b 且ab ≠0,则(a+b)0=1;④若a 是自然数,则a -3.a 2=a -1
.其中,正确的是( ).
(A )① (B )①② (C )②③④ (D )①②③④ 10.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是:( )
(A )1515112x x -=+ (B )15
15
112x x -=+ (C )
1515112x x -=- (D )15
15
112
x
x -=-
二、填一填
11.计算
2
21
42a a a -=-- . 12.方程 3470x x
=-的解是 . 13.计算 a 2b 3
(ab 2)-2
= . 14.瑞士中学教师巴尔末成功地从光谱数据
9162536
,,,,5122132
中得到巴尔末公
式,从而打开了光谱奥秘的大门,请你按这种规律写出第七个数据是 .
15.如果记 2
2
1x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=2211211=
+;f(12)表示当x=12时y 的值,即f(12)=2
21()12151()2
=+;……那么f(1)+f(2)+f(
12)+f(3)+f(13)+…+f(n)+f(1
n
)= (结果用含n 的代数式表示).
三、做一做
16.先化简,再求值:62
393
m m m m -÷+--,其中m=-2.
17.解方程:11115867
x x x x +=+++++.
18.有一道题“先化简,再求值: 2221
()244
x x x x x -+÷+-- 其中,x=-3”
小玲做题时把“x=-3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么
回事?
19.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,问这笔钱全部用来买钢笔或日记本,可买多少?
20.A 、B 两地相距80千米,甲骑车从A 地出发1小时后,乙也从A 地出发,以甲的速度的1.5倍追赶,当乙到达B 地时,甲已先到20分钟,求甲、乙的速度.
四、试一试
21.在数学活动中,小明为了求 234
11111
22222n
+++++
的值(结果用n 表示),设计如图1所示的几何图形.
(1)请你利用这个几何图形求23411111
2222
2n
+++++
的值为 ; (2)请你利用图2,再设计一个能求
23411111
2222
2n
+++++
的值的几何图形.
本章测试题
一、1.C 2.B 3.A 4.A 5.D 6.C 7.D 8.A 9.B 10.B
二、11.
12a + 12.x=30 13.16 14.8177 15.12
n - 三、16.-5 17.x=132
- 18. 2
4x +. 19.可以买钢笔100支或者日记本450本.
20.甲的速度为40千克/时,乙速为60千克/时. 21.(1)1
12
n -;(2)略
12
2
1
2图2
图1。

相关文档
最新文档