高考理科数学概率与统计专题复习

合集下载

高三《概率与统计》专题复习

高三《概率与统计》专题复习

高三《概率与统计》专题复习一、常用知识点回顾 1、概率:古典概型nm=p (枚举法、列表法);几何概型。

2、特征数:众数、中位数、平均数、方差得概念及其求法。

3、频率分布直方图、茎叶图。

(1)在频率分布直方图中,各小组得频率等于小长方形得面积,且各小长形得面积之与等于1;(2)在频率分布直方图中,求众数、中位数、平均数得方法;频率频数样本容量,样本容量频率,频数样本容量频数)频率(÷=⨯==34、回归分析。

(1)回归直线必过样本中心点),(y x ;(2)求回归直线方程。

(3)求相关系数,判断拟合效果。

5、独立性检验。

填写22⨯列联表,并根据22⨯列联表求随机变量K 2,判断“两个随机变量有关”可能性大小。

二、题型训练【例1】、某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出得酸奶降价处理,以每瓶2元得价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份得订购计划,统计了前三年六月份各天得最高气温数据,得下面得频数分布表:(1)求六月份这种酸奶一天得需求量不超过300瓶得概率;(2)设六月份一天销售这种酸奶得利润为Y (单位:元),当六月份这种酸奶一天得进货量为450瓶时,写出Y 得所有可能值,并估计Y 大于零得概率.【练习1】、某汽车美容公司为吸引顾客,推出优惠活动:对首次消费得顾客,按200元/次收费, 并注册成为会员, 对会员逐次消费给予相应优惠,标准如下:该公司从注册得会员中, 随机抽取了100位进行统计, 得到统计数据如下:消费次第第1次第2次第3次第4次第5次频数60201055假设汽车美容一次, 公司成本为150元, 根据所给数据, 解答下列问题:(1)估计该公司一位会员至少消费两次得概率;(2)某会员仅消费两次, 求这两次消费中, 公司获得得平均利润;(3) 设该公司从至少消费两次, 求这得顾客消费次数用分层抽样方法抽出8人, 再从这8人中抽出2人发放纪念品, 求抽出2人中恰有1人消费两次得概率、【练习2】、2017年春节前,有超过20万名广西、四川等省籍得外来务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让过往返乡过年得摩托车驾驶人有一个停车休息得场所。

新高考数学复习:概率与统计

新高考数学复习:概率与统计

新高考数学复习:概率与统计随着新高考改革的深入,数学科目的考查范围与难度也在逐年增加。

作为高考复习的重要环节,概率与统计部分的知识点成为了考生们的焦点。

本文将探讨如何有效地进行新高考数学复习,特别是概率与统计部分的知识点。

一、明确考试要求在复习概率与统计之前,首先要了解新高考数学对于这一部分的考试要求。

通常,高考数学对于概率与统计的考查包括以下几个方面:随机事件及其概率、随机变量及其分布、数理统计的基本概念与方法等。

因此,在复习过程中,要着重这些方面的知识点。

二、扎实基础知识概率与统计部分的知识点较为抽象,需要考生具备扎实的数学基础。

在复习过程中,要注重对基础知识点的掌握,例如:集合、不等式、函数等。

只有掌握了这些基础知识,才能更好地理解概率与统计的相关概念与公式。

三、强化解题能力解题能力是高考数学考查的重要方面。

在复习概率与统计时,要注重强化解题能力。

具体而言,可以通过以下几个方面来提高解题能力:1、掌握解题方法对于概率与统计的题目,要掌握常用的解题方法,例如:直接法、排除法、枚举法等。

同时,要了解各类题型的解题步骤与方法,从而在解题时能够迅速找到突破口。

2、多做真题做真题是提高解题能力的有效途径。

通过多做真题,可以了解高考数学对于概率与统计的考查重点与难点,进而有针对性地进行复习。

同时,也可以通过对比历年真题,发现自身的知识盲点,及时查漏补缺。

3、反思与总结在解题过程中,要及时反思与总结。

对于做错的题目,要分析错误原因,并总结出正确的解题方法。

同时,也要总结出各类题型的解题技巧与注意事项,以便在今后的解题中能够更加得心应手。

四、拓展知识面高考数学对于考生知识面的考查也越来越广泛。

在复习概率与统计时,要注重拓展自身的知识面。

具体而言,可以通过以下几个方面来拓展知识面:1、阅读相关书籍可以阅读相关的数学书籍,例如:《概率论与数理统计》、《统计学》等。

通过阅读这些书籍,可以深入了解概率与统计的相关知识点,拓展自身的知识面。

新课标全国卷2023届高考理科数学大单元二轮复习讲重难专题八概率与统计第一讲排列组合与二项式定理课件

新课标全国卷2023届高考理科数学大单元二轮复习讲重难专题八概率与统计第一讲排列组合与二项式定理课件

第二步,增播一个商业广告,共 3 个广告,排好有 A33 6 种,
第三步,在
2
个空中,插入两个不同的公益宣传广告,有
A
2 2
2
种方法,
根据乘法原理,共有1062 120 种方法.故选 B.
2.如图所示,用不同的五种颜色分别为 A,B,C,D,E 五部分着色,相邻部分不能用同一种
颜色,但同一种颜色可以反复使用,也可不使用,则复合这些要求的不同着色的方法共有( )
不同点
的每种方法都能独立完成这件事 步骤都完成才算完成这件事情,
情,要注意“类”与“类”之间的独立 要 注 意 “步 ”与 “步 ” 之间的 连续
性和并列性.分类计数原理可利用 性.分步计数原理可利用“串联”
“并联”电路来理解
电路来理解
解题技巧
两个计数原理的应用技巧 (1) 在应用分类加法计数原理和分步乘法计数原理时, 一般先分类再分步,每一步当中又可能用到分类加法计数原理. (2) 对于复杂的两个计数原理综合应用的问题,可恰当列出示意图或表格, 使问题形象化、直观化.
解答排列组合问题的常用方法 排列组合问题从解法上看,大致有以下几种: (1) 有附加条件的排列组合问题,大多需要用分类讨论的方法, 注意分类时应不重不漏; (2)排列与组合的混合型问题,用分类加法或分步乘法计数原理解决; (3)元素相邻,可以看作是一个整体的方法;
解题技巧
(4)元素不相邻,可以利用插空法; (5)间接法,把不符合条件的排列与组合剔除掉; (6)穷举法,把符合条件的所有排列或组合一一写出来; (7)定序问题缩倍法; (8)“小集团”问题先整体后局部法.
A.500 种
B.520 种
√C.540 种
D.560 种

高考高三数学二轮复习专题概率与统计

高考高三数学二轮复习专题概率与统计

专题:概率与统计考点阐释高中学习的《概率统计》是大学统计学的基础,起着承上启下的作用,是每年高考命题的热点。

下面通过简析有关概率统计方面的试题,来分析命题方向,透视命题信息,以便科学高效地组织好新课程的高考复习。

一.试题特点(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。

(2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。

这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。

(3)概率统计试题主要考查基本概念和基本公式,对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n次独立重复试验中恰发生k次的概率、离散型随机变量分布列和数学期望、方差、抽样方法等内容都进行了考查。

(4)概率统计试题在试卷中的题型逐年发生变化,由 2004年、 2005年有解答题,到2006年、2007年稳定在2道题,一题选择题一题填空题。

由此可以看出,试题经过这几年发展逐步稳定,并成为高考卷中的主流应用题。

二、对概率统计的备考1.重视教材的基础作用教材是学习数学基础知识,形成基本技能的“蓝本”,是高考试题的重要知识载体.纵观高考试卷中的概率统计试题,大多数试题源于教材,特别是客观题都是从课本上的练习题或习题改编的,既使是解答题,也是由教材例、习题的组合、加工和拓展而成,充分表现出教材的基础作用.复习阶段必须按《教学大纲》和《考试说明》对本部分内容的要求,以课本的例、习题为素材,深入浅出、举一反三地加以类比、延伸和拓展,在“变式”上下功夫,力求对教材内容融会贯通,只有这样,才能“以不变应万变”,达到事半功倍的效果。

当然,如果再做一些经典的高考试题,对考生的复习也是很有效的。

对于这部分知识,考生还应当重视其与传统内容的有机结合,重视概率统计的应用功能。

概率与统计 高考数学专题复习精细高效梳理(附详解)

概率与统计 高考数学专题复习精细高效梳理(附详解)

高考数学专题复习精细高效梳理(附详解)

第一节 随机事件的概率 一、必记4个知识点 1.随机事件和确定事件 (1)在条件S下,①____________的事件,叫做相对于条件S的必然事件,简称必然事件. (2)在条件S下,②____________的事件,叫做相对于条件S的不可能事件,简称不可能事件. (3)必然事件和不可能事件统称为相对于条件S的确定事件,简称确定事件. (4)在条件S下,③________________________的事件,叫做相对于条件S的随机事件,简称随机事件. 2.频率与概率 (1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例④____________为事件A出现的频率. (2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的⑤________fn(A)稳定在某个⑥________上,把这个⑦________记作P(A),称为事件A的概率,简称为A的概率. 3.事件的关系与运算 高考数学专题复习精细高效梳理(附详解)

定义 符号表示 包含关系 如果事件A发生,则事件B一定发生,这时称事件B⑧____事件A(或称事件A包含于事件B) ⑨______(或A⊆B)

并事件 (和事件) 若某事件发生当且仅当A发生或事件B发生,称此事件为事件A与事件B的○10______(或和事件) A∪B(或A+B)

交事件 (积事件) 若某事件发生当且仅当⑪____________且⑫______发生,则称此事件为事件A与事件B的交事件 A∩B(或AB)

互斥事件 若A∩B为不可能事件,则事件A与事件B互斥 A∩B=∅

对立事件 若A∩B为不可能事件,A∪B为必然条件,那么称事件A与事件B互为对立事件 4.概率的几个基本性质 (1)概率的取值范围:⑬____________. (2)必然事件的概率P(E)=⑭____________. (3)不可能事件的概率P(F)=⑮____________. (4)互斥事件概率的加法公式. ①如果事件A与事件B互斥,则P(A∪B)=⑯____________. ②若事件B与事件A互为对立事件,则P(A)=⑰____________. 高考数学专题复习精细高效梳理(附详解)

【高考第一轮复习数学】统计与概率专题

【高考第一轮复习数学】统计与概率专题

专题二:统计与概率1、随即现象的概念:必然现象是在一定的条件下必然发生的某种结果的现象.在试验中必然不发生的现象叫做不可能现象,在相同条件下多次观察同一现象,每次观察到得结果不一定相同,事先很难预料哪一种结果会出现,这种现象就叫做随机现象.2.必然事件、不可能事件、随机事件在一定条件下,必然会发生的事件叫做必然事件.在一定条件下,肯定不会发生的事件叫做不可能事件. 在一定条件下,可能发生也可能不发生的事件叫做随机事件.通常用大写的英文字母A 、B 、C 。

表示随机事件,随机事件可以简称为事件.3.基本事件和基本事件空间在试验中,能够表示其他事件且不能再分的最简单的事件成为基本事件. 所有基本事件构成的集合称为基本事件空间,常用大写的希腊字母Ω表示. 4.频率与概率(1).在n 次重复进行的试验中,事件A 发生的频率nm ,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动的幅度越来越小,这时就把这个常数叫做事件A 的概率,记作P(A).0《P(A)《1,这个定义叫做概率的统计定义.当A 是必然事件时,P(A)=1,当A 是不可能事件时,P(A)=0.(2).频率与概率的关系频率不能很准确的反应出事件发生的可能性大小,但从大量的重复试验中发现,随着试验次数的的增多,频率就稳定与某一固定的值.概率是通过频率来测量的,或者说频率是概率的一个近似值. 5.概率的加法公式 (1).互斥事件不能同时发生的两个事件叫做互斥事件.(或称互不容事件)不能同时发生的两个事件A 、B 是指,如果A 发生,则B 不一定发生;如果B 发生,则A 不一定发生.推广:如果A 、B 、C 、D 。

中的任何两个都互斥,就称事件A 、B 、C 、D 。

彼此互斥,从集合角度看,n 个事件彼此互斥是指各个事件所含结果的集合彼此不相交.(2).事件的并一般的,事件A 与B 至少有一个发生(即A 发生,或B 发生,或A 、B 都发生),则由事件A 与B 构成的事件C 叫做A 与B 的并.记作:A ∪B ;类比集合:事件A ∪B 是由事件A 或事件B 所包含的基本事件组成的集合. 事件A 与事件B 的并等于事件B 与事件A 的并,即A ∪B=B ∪A. (3).互斥事件的概率加法公式 如果A 、B 是互斥事件,在n 次试验中,事件A 出现的频数为n 1,事件B 出现的频数为n 2,则事件A ∪B 出现的频数正好是n 1+n 2,所以时间A ∪B 的频数为nnnnnnn2121+=+.而).()(nnnn21nB A B A n B nA nnμμμμ+=⋃)(总有中事件出现的频率,则次试验表示在果用出现的频率,因此,如是事件出现的频率,是事件由概率的统计定义,可知P (A ∪B )=P (A )+P(B). 6.对立事件及概率公式(1).对立事件:不能同时发生且必有一个发生的两个事件叫做互为对立事件。

年高考数学二轮复习 专题七 概率与统计 第2讲 概 率课件 理.pptx

年高考数学二轮复习 专题七 概率与统计 第2讲 概 率课件 理.pptx

3.(2017·全国Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一 件,有放回地抽取100次,X表示抽到的二等品件数,则D(X)=_1_._9_6__. 解析 由题意得X~B(100,0.02), ∴D(X)=100×0.02×(1-0.02)=1.96.
1234
解析 37 答案
4.(2017·江苏)记函数f(x)= 6+x-x2 的定义域为D.在区间[-4,5]上随机取
∴E(ξ1)=p1,E(ξ2)=p2,
D(ξ1)=p1(1-p1),D(ξ2)=p2(1-p2),
又∵0<p1<p2<12,∴E(ξ1)<E(ξ2),
把方差看作函数y=x(1-x),
当 0<x<12时,y′=1-2x>0,根据 0<p1<p2<12知,D(ξ1)<D(ξ2).
1234
解析 36 答案
个上车的是女生的基本事件数m=6,所以概率P=1,故选B. 2
解析 5 答案
(2)(2017届江西省重点中学盟校联考)如图,在边长为 2的正方形ABCD中,M是AB的中点,过C,M,D三 点的抛物线与CD围成阴影部分,则向正方形内撒一 粒黄豆落在阴影部分的概率是
1 A.6
1 B.3
1 C.2
√D.23
123
押题依据 43 解答
(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与期 望E(ξ).
123
46 解答
2 概率为__5__.
1234
解析 34 答案
2.(2017·浙江改编)已知随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1-pi,i=
1,2.若0<p1<p2<
1 2
,则E(ξ1)__<___E(ξ2),D(ξ1)__<___D(ξ2).(填>,<或=)

概率与统计 第三讲 统计与统计案例——2023届高考理科数学大单元二轮复习练重点【新课标全国卷】

概率与统计  第三讲 统计与统计案例——2023届高考理科数学大单元二轮复习练重点【新课标全国卷】

专题八 概率与统计 第三讲 统计与统计案例——2023届高考理科数学大单元二轮复习练重点【新课标全国卷】1.在某次赛车中,50名参赛选手的成绩(单位:min )全部介于13到18之间(包括13和18).现将比赛成绩分为五组:第一组[13,14),第二组[14,15),…,第五组[17,18],其频率分布直方图如图所示.若成绩在[13,15)内的选手可获奖,则这50名选手中获奖的人数为( )A.11B.15C.35D.392.某学校组织学生参加英语测试,成绩的频率分布直方图如图所示,数据的分组依次为[)20,40,[)40,60,[)60,80,[]80,100.若低于60分的人数是15人,则参加英语测试的学生人数是( )A.45B.50C.55D.603.我国是一个农业大国,从事农业工作的人员有5.4亿,如图为某县农村从业人员年龄结构图,为了解该县从业人员在从事农业工作中的实际困难,以推进县乡村振兴工作,某调查机构计划从某县的所有从业人员中随机抽取20人展开某项调研,则所抽取的20人中恰有2人的年龄在20岁以下的概率约为( ) (170.90.167≈,180.90.15≈,190.90.135≈,200.90.122≈)A.0.25B.0.29C.0.32D.0.354.某校高一年级在某次数学测验中成绩不低于80分的所有考生的成绩统计表如下:A.在[90,100]内B.在(100,110]内C.在(110,120]内D.在(120,130]内5.若某同学连续3次考试的名次(3次考试均没有出现并列名次的情况)不低于第3名,则称该同学为班级的尖子生.根据甲、乙、丙、丁四位同学过去连续3次考试名次的数据,推断一定是尖子生的是( )A.甲同学:平均数为2,众数为1B.乙同学:平均数为2,方差小于1C.丙同学:中位数为2,众数为2D.丁同学:众数为2,方差大于16.2021年某省高考体育百米测试中,成绩全部介于12秒与18秒之间,抽取其中100个样本,将测试结果按如下方式分成六组:第一组[12,13),第二组[13,14),…,第六组[17,18],得到如下的频率分布直方图.则该100考生的成绩的平均数和中位数(保留一位小数)分别是( )A.15.2 15.3B.15.1 15.4C.15.1 15.3D.15.2 15.37.设样本数据1x ,2x ,…,10x 的平均数和方差分别为1和4,若i i y x a =+(a 为非零常数,1,2,,10i =),则1y ,2y ,…,10y 的平均数和方差分别为( ) A.1a +,4B.1a +,4a +C.1,4D.1,4a +8.已知变量x ,y 之间的一组数据如下表:若y 关于x 的线性回归方程为0.7y x a =+,则a =( ) A.0.1B.0.2C.0.35D.0.459.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得经验回归直线方程0.6754.9y x =+,表中有一个数据模糊不清,请你推断出该数据的值为( )C.68 10.第24届冬季奥林匹克运动会将于2022年在北京举办.为了解某城市居民对冰雪运动的关注情况,随机抽取了该市100人进行调查统计,得到如下22⨯列联表.参考公式:()()()()2n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.附表:A.该市女性居民中大约有5%的人关注冰雪运动B.该市男性届民中大约有95%的人关注冰雪运动C.有95%的把握认为该市居民是否关注冰雪运动与性别有关D.有99%的把握认为该市居民是否关注冰雪运动与性别有关11.一个项目由15个专家评委投票表决,剔除一个最高分96,一个最低分58后所得到的平均分为92,方差为16,那么原始得分的方差为_______.12.经市场调查,某款热销品的销售量y(万件)与广告费用x(万元)之间满足回归直线方程 3.5=+.若样本点中心为(45,35),则当销售量为52.5万件时,可估计投入y bx的广告费用为_________________万元.13.某学校为了制订治理学校门口上学、放学期间家长接送孩子乱停车现象的措施,对全校学生家长进行了问卷调查.根据从中随机抽取的50份调查问卷,得到了如下的列联表:14.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602.15.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):1(优) (2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.附:2()()()()K a b c d a c b d =++++,)2kk答案以及解析1.答案:A解析:由题意可得,成绩在[13,15)内的频率为10.080.320.380.22---=.又本次赛车中,共50名参赛选手,所以这50名选手中获奖的人数为500.2211⨯=.故选A. 2.答案:B解析:根据频率分布直方图的特点可知,低于60分的频率是(0.0050.01)200.3+⨯=,则所求学生人数是15500.3=. 3.答案:B解析:由频率分布直方图可得20岁以下的农村从业人员的概率为0.1,所以从所有从业人员中抽取20人,其中恰有2人的年龄在20岁以下的概率为221820C (0.1)(0.9)0.2850.29≈≈,故选B. 4.答案:B解析:由表可知,及格的考生共有401512105284+++++=人,在[90,100]内有40人,在(100,110]内有15人,故及格的所有考生成绩的中位数在(100,110]内.5.答案:B解析:甲同学:若平均数为2,众数为1,则有一次名次应为4,故排除A ;乙同学:平均数为2,设乙同学3次考试的名次分别为1x ,2x ,3x ,则方差()()()2222123122213s x x x ⎡⎤=-+-+-<⎣⎦,则()()()2221232223x x x -+-+-<,所以1x ,2x ,3x 均不大于3,符合题意;丙同学:中位数为2,众数为2,有可能是2,2,4,不符合题意;丁同学:众数为2,方差大于1,有可能是2,2,6,不符合题意.故选B. 6.答案:C解析:100名考生成绩的平均数12.50.1013.50.1514.50.15x =⨯+⨯+⨯+15.50.3016.50.2517.50.0515.1⨯+⨯+⨯=.因为前三组频率直方图面积和为0.100.150.150.4++=,前四组频率直方图面积和为0.100.150.150.300.7+++=,所以中位数位于第四组内,设中位数为a ,则(15)0.300.1a -⨯=,解得15.3a ≈,故选C.7.答案:A解析:由题意知i i y x a =+,即()1210110110y x x x a x a a =⨯++++=+=+,方差{}222212101()()()10x a x a x s a x a x a x a ⎡⎤⎡⎤⎡⎤=⨯+-+++-++++-+⎣⎦⎣⎦⎣⎦()()()22212101410x x x x x x ⎡⎤=⨯-+-++-=⎢⎥⎣⎦. 故选A. 8.答案:C解析:本题考查线性回归方程截距的求解.因为11(3456) 4.5,(2.534 4.5) 3.544x y =+++==+++=,所以0.7 3.50.7 4.50.35a y x =-=-⨯=,故选C. 9.答案:C解析:设表中模糊看不清的数据为m .由表中数据得30x =, 3075m y +=,将30730,5m x y +==代入经验回归方程0.6754.9y x =+,得68m =.故选C. 10.答案:C解析:由22⨯列联表中的数据可得()22352515251004.167 3.84160405050K ⨯-⨯⨯=≈>⨯⨯⨯,因此,有95%的把握认为该市居民是否关注冰雪运动与性别有关.故选:C.11.答案:88解析:根据题意,设剔除最高分、最低分之后的13个数据为1a ,2a ,3a ,…,13a ,由这13个数据的平均分为92,方差为16, 知()1231319213a a a a ++++=,()()()222121319292921613a a a ⎡⎤-+-++-=⎣⎦, 解得123131196a a a a ++++=,2221213110240a a a +++=,对于原始得分96,58,1a ,2a ,3a ,…,13a , 其平均数()12313196589015a a a a a =++++++=,其方差为()(()22222212131(9690)(5890)9090)908815s a a a ⎤⎡=-+-+-+-++-=⎣⎦. 12.答案:70解析:本题考查线性回归方程.依题意,将(45,35)代入回归直线方程 3.5y bx =+(提示:回归直线必过样本点中心),得3545 3.5b =⨯+,解得0.7b =,所以回归直线方程为0.7 3.5y x =+.令0.7 3.552.5y x =+=,得70x =. 13.答案:99.5%解析:因为2250(2015510)8.33325253020χ⨯⨯-⨯=≈⨯⨯⨯,又()27.8790.0050.5%P χ==≥,所以我们有99.5%的把握认为“是否同意限定区域停车与家长的性别有关”.14.答案:(1)产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为20%(2)平均数与标准差的估计值分别为30%,17%解析:(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=.产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为20%. (2)1(0.1020.10240.30530.50140.707)0.30100y =⨯-⨯+⨯+⨯+⨯+⨯=, ()52222111(0.40)2(0.20)100100i i i s n y y=⎡=-=⨯-⨯+-⨯⎣∑222240530.20140.4070.0296⎤+⨯+⨯+⨯=⎦,0.020.17s .所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.15.答案:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:1(100203003550045)350100⨯+⨯+⨯=. (3)根据所给数据,可得22⨯列联表:根据列联表得25.82055457030K =≈⨯⨯⨯. 由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档